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a b s t r a c t

We introduce a new approach to locating key material transport barriers in two-dimensional, non-
autonomous dynamical systems, such as unsteady planar fluid flows. Seeking transport barriers as
minimally stretchingmaterial lines, we obtain that such barriersmust be shadowed byminimal geodesics
under the Riemannian metric induced by the Cauchy–Green strain tensor. As a result, snapshots of
transport barriers can be explicitly computed as trajectories of ordinary differential equations. Using
this approach, we locate hyperbolic barriers (generalized stable and unstable manifolds), elliptic barriers
(generalized KAM curves) and parabolic barriers (generalized shear jets) in temporally aperiodic flows
defined over a finite time interval. Our approach also yields a metric (geodesic deviation) that determines
the minimal computational time scale needed for a robust numerical identification of generalized
Lagrangian Coherent Structures (LCSs). As we show, an extension of our transport barrier theory to non-
Euclidean flow domains, such as a sphere, follows directly. We illustrate our main results by computing
key transport barriers in a chaotic advection map, and in a geophysical model flow with chaotic time
dependence.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Most dynamical systems with general time dependence have
no classic phase space barriers, such as periodic and quasiperiodic
orbits, or homoclinic and heteroclinic trajectories. Yet, even in
such general systems, the observed lack of exchange among flow
domains often suggests the presence of generalized transport
barriers. Here we develop an approach to uncover such barriers in
two-dimensional flows.

There is broad interest in identifying, forecasting or even con-
trolling transport barriers in a number of physical settings, includ-
ing geophysical flows [1], chemical mixers [2], celestial mechanics
[3], molecular reaction dynamics [4], and nuclear fusion [5].
Despite this widespread interest, however, a universal defining
property of transport barriers has not emerged.

Indeed, while it is often noted that the flux through a transport
barrier is expected to be zero or near-zero, the flux through any

material line (an evolving curve of initial conditions) will also
be zero. Admittedly, in autonomous or time-periodic dynamical
systems, one may exclude unsteady or temporally aperiodic
material lines from consideration, and define transport barriers
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3, 8092 Zürich, Switzerland. Tel.: +41 44 633 82 50; fax: +41 44 632 11 45.
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as steady material lines (invariant curves) for the flow or for
the associated Poincaré map. In aperiodic dynamical systems,
however, no material lines are expected to remain steady under
the flow or under any stroboscopic mapping, and hence imposing
steadiness as a distinguishing property of barriers is not a viable
option. In turn, zero flux as a defining property of transport barriers
becomes meaningless for dynamical systems with general time
dependence.

Beyond lacking a general definition, the study of transport barri-
ers has also been more heuristic than analytic in nature. A number
of Eulerian (i.e, lab-frame based) and Lagrangian (i.e., trajectory-
based) diagnostic tools have been proposed to highlight barriers
(see [6–9] for reviews). Careful studies of these diagnostics, how-
ever, tend to reveal shortcomings, including dependence on the
reference frame and threshold parameters [10,6,8], as well as the
accidental detection of structures with large flux as barriers [11].
More recent set-theoretical and topological approaches bring a
much needed mathematical flavor to the subject area [12,13], but
focus more on detecting the sets separated by transport barriers.
As a result, these approaches have proven less efficient in locating
the barriers themselves.

Here we propose an approach to describe transport barriers as
exceptional material lines that deform less than their neighbors.
Thisminimal stretching property is readily verified for all canonical
examples of barriers in two dimensions, including stable and
unstable manifolds of steady fixed points, steady shear jets, and
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KAM curves in time-periodic flows. We take this extremum
property as a definition of transport barriers, andbuild a variational
theory that identifies the most influential barriers in general
unsteady flows. This theory represents a generalization of the
concept of Lagrangian Coherent Structures (LCSs) from hyperbolic
material lines [11] to elliptic and parabolic material lines.

Ourminimal stretching approach ultimately leads to first-order
differential equations for hyperbolic and shear-type transport
barriers. The differential equations represent dynamical systems
that are dual to the original time-evolving flow: their trajectories
are snapshots of influential material lines in the phase space at a
frozen time instance. These influential material lines, which we
call strainlines and shearlines, turn out to act as strong transport
barriers whenever they run close to least-stretching geodesics of
the metric induced by the Cauchy–Green strain tensor, a classic
positive definite tensor field used in describing the deformation of
moving continua [14,2].1 The Cauchy–Green metric is defined on
the space of initial fluid particle positions; accordingly, strainlines
and shearlines mark the initial positions of the transport barriers.
Later positions of these barriers can be identified by advecting
them under the flow map.

Closeness to least-stretching geodesics is measured in terms
of the geodesic deviation, the pointwise C

2-distance of a curve
from themost shrinking Cauchy–Green geodesic through the same
point. Use of the geodesic deviation allows for the optimization
of numerical barrier extraction. Specifically, the integration of
trajectories for transport barrier analysis can be stopped once the
geodesic deviation on strainlines and shearlines drops below a
desired error bar. This procedure provides a long-sought answer
to a question in Lagrangian structure extraction: How long should
one integrate to obtain converged Lagrangian structures in a time-
aperiodic data set?

We illustrate the geodesic transport theory developed here
on simple analytic model flows, then on a discrete advection
mapping with well-understood barriers. Surprisingly, our theory
identifies elliptic barriers from data sets that are significantly
shorter than what is normally needed to visualize KAM curves
with the same resolution. Next, we uncover transport barriers in a
meandering jet model perturbed in a temporally chaotic fashion.
In this case, invariant manifold theory, KAM theory or Poincaré
maps do not apply, and hence the direct detection – or even the
indirect visualization – of barriers has been an open problem. In
Appendix G, we also describe an extension of our theory to non-
Euclidean flow domains, such as the surface of a planet.

2. Motivation: Simple examples of transport barriers

Consider the planar dynamical system

ẋ = v(x, t), x ∈ U ⊂ R2, t ∈ [t−, t+] , (1)

defined by the smooth vector field v on an open spatial domain U ,
and over the finite time interval [t−, t+]. The flow map for (1) is
defined between initial times t0 and final times t within [t−, t+] as

F
t

t0
(x0):= x(t; t0, x0),

with x(t; t0, x0) denoting the solution of (1) starting at time t0 from
the position x0.

Consider a smooth, parametrized curve of initial conditions

γ0 = {x0 = r(s) ⊂ U : s ∈ [s1, s2]} ,

1 The least-stretching geodesic at a point p is the geodesic tangent to the direction
of minimal stretching at p. This direction is the eigenvector corresponding to the
smaller eigenvalue of the Cauchy–Green strain tensor.

Fig. 1. (a) Unstable manifold W
u(p) of a saddle p, observed as a transport barrier

in forward time. (b) Minimal stretching property of a curve γ0 ⊂ W
u(p) in large

enough backward time, relative to the nearby initial curves γ̂0, γ̃0, and γ ∗
0 . Note

that γ−t is shorter than γ̃−t , even though γ0 was initially shorter than γ̃0. Observe
that the extremum property of γ0 also holds with respect to nearby curves of the
unstable manifold, such as γ ∗

0 , that do not even share their endpoints with γ0.

Fig. 2. Minimal stretching property of a material line, for large enough times, in
a steady meandering jet among material lines with the same endpoints. Note that
perturbations to the curve γ0 will stretch longer than γt , whether or not they were
initially longer than γ0.

with its endpoints a = r(s1) and b = r(s2) yet unspecified. The
curve γ0 is carried forward by the flow map into a time-evolving
material line

γt = F
t

t0
(γ0) . (2)

In three classic examples of transport barriers, we now point
out a common minimal stretching property that a material line γt

must possess to be observed as a transport barrier.

Example 1: Stable and unstable manifolds of a saddle point in steady

flow

Finite material lines in stable and unstable manifolds of saddle
points show minimal stretching relative to nearby material lines
that are not subsets of the manifolds (see Fig. 1). The latter class
of material lines stretches more due to normal repulsion by the
underlying manifold in forward or backward time.

Example 2: Shear jet in steady flow

A reference material line within a jet trajectory shows minimal
stretching relative to nearby material lines that share their end-
points with the reference material line (see Fig. 2). The latter class
of material lines stretch more due to strong shear along the under-
lying jet trajectory. At each point of the jet, an appropriately de-
fined Lagrangian measure of shear is maximal along the direction
of the jet (see Appendix A).

Example 3: KAM curve in incompressible, time-periodic flow

A reference material line within a KAM curve – a closed
invariant curve of the period-Tmap – shows minimal stretching
relative to nearby material lines that share their endpoints with
the referencematerial line (Fig. 3). The latter class of material lines



1682 G. Haller, F.J. Beron-Vera / Physica D 241 (2012) 1680–1702

Fig. 3. Minimal stretching property for a closed transport barrier (a KAM curve) in
a two-dimensional temporally T -periodic flow, for large enough iteration numbers
n of the Poincare map. Note that fixed-endpoint perturbations to the curve γ0 will
stretch longer than γnT , whether or not they were initially longer than γ0.

stretches more due to strong shear (twist) across the KAM curve.
The KAM curve preserves its length under the period-Tmap.

The simple properties reviewed in this section for well-known
steady and time-periodic flows will guide us in the development
of a general theory for transport barriers in two-dimensional
unsteady flows given over finite time intervals.

3. Transport barriers as material length minimizers

In a well-mixed flow, most material lines stretch, typically at
an exponential rate. We seek transport barriers as exceptional ma-
terial lines that defy this trend by being the locally least stretch-
ing material lines in forward or backward time. Transport barriers
identified in this fashion are automatically frame-independent (or
objective) and invariant under the flow (or Lagrangian, in fluidme-
chanical terms). The three canonical examples of transport barriers
we discussed in Section 2 all share this minimal stretching prop-
erty, but also exhibit subtle differences that we shall exploit in our
analysis.

3.1. Formulation

An evolving material line γt , as defined in (2), has length

l(γt) =
�

γt

|dx| =
�

b

a

��DFt

t0
(r)dr

��

=
�

s2

s1

��
r �, Ct

t0(r)r
��ds, (3)

where DF
t

t0
(x0) denotes the derivative of the flow map, and

C
t

t0
=

�
DF

t

t0

�
T

DF
t

t0
(4)

denotes the Cauchy–Green strain tensor, with T referring to the
matrix transpose.

The eigenvalues λi(x0) and unit eigenvectors ξi(x0) of the
positive definite, symmetric tensor Ct

t0
(x0) satisfy

C
t

t0
ξi = λiξi, |ξi| = 1, i = 1, 2, 0 < λ1 ≤ λ2. (5)

We will only be considering initial points x0 with λ1(x0) �= λ2(x0),
which are generically isolated (cf. [15]). For such points, we fix
the relative orientation of the orthonormal strain eigenvectors by
letting

ξ2 = Ωξ1, Ω =
�
0 −1
1 0

�
. (6)

Motivated by the canonical examples of Section 2, we seek
transport barriers at time t0 as material lines that are local mini-
mizers of the length functional

l
t

t0
(γ0) := l(γt). (7)

Unlike in classic calculus of variations problems, the end points
of the extremal curves of lt

t0
are a priori unknown. Nevertheless,

we can still write material lines C
1-close to the yet unknown ex-

tremum γ0 in the form r(s) + h(s), where
h: [s1, s2] �→ R2, h(s) ⊥ r

�(s),

is a pointwise normal, smooth perturbation to γ0.
The first variation of lt

t0
along a local extremum curve γ0 is given

by

δlt
t0
(γ0) [h] = lim

ε→0

d

dε
l(γε)

=
√
2 lim

ε→0

d

dε

×
�

s2

s1

�
L(r(s) + εh(s), r �(s) + εh�(s))ds, (8)

with the function L defined as

L(r, r �) = 1
2

�
r
�, Ct

t0
(r)r �� . (9)

Computing the variation (8), we obtain

δlt
t0
(γ0) [h] =

√
2

�
∂r �

�
L(r, r �) · h

�
s2

s1

+
√
2

�
s2

s1

�
∂r

�
L(r, r �) − d

ds
∂r �

�
L(r, r �)

�
· hds. (10)

For l
t

t0
to admit an extremum on a curve γ0, we require its first

variation to vanish on γ0:

δlt
t0
(γ0) = 0. (11)

3.2. Boundary conditions for the stretched length functional

We seek minimizers for the functional lt
t0

that satisfy a com-
putable (strong) Euler–Lagrange equation under the broadest pos-
sible conditions. To achieve this, we must select the boundary
points a = r(s1) and b = r(s2) of γ0 in a way that makes the brack-
eted boundary term in (10) vanish. As we shall see below, there are
two natural ways to do this.

3.2.1. Hyperbolic boundary conditions

In the classic treatment of variable-endpoint variational prob-
lems (see, e.g., [16]), one would cancel out the boundary term in
(10) by selecting endpoints satisfying

∂r �
�
L(r, r �)

���
a,b

= 0. (12)

This would allow for general normal perturbations h(s1,2) to γ0 at
its endpoints.

Note, however, that in our case,

∂r �
�
L(r, r �)

���
a,b

=
C
t

t0
(r)r �

2
√
L(r, r �)

�����
a,b

�= 0 (13)

holds for any curve γ0 with well-defined tangents r �(a), r �(b) �= 0,
because the Cauchy–Green strain tensor Ct

t0
(r) is positive definite.2

2 The nonexistence of endpoints satisfying (12) is, in fact, not surprising: no curve
γ0 canminimize the stretching functional lt

t0
under the completely general endpoint

perturbations allowed by (12). Indeed, for a slightly shorter initial curve, γ̄0 ⊂ γ0,
obtained from tangential perturbations to γ0 at its endpoints, the advected curve
F
t

t0
(γ̄0) will always remain strictly a subset of γt , given that F t

t0
is a diffeomorphism.

As a result, wewill necessarily have lt
t0
(γ̄0) < l

t

t0
(γ0), and hence γ0 cannot be a local

minimizer for lt
t0
.
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For this reason,we divert from the classic treatment of variable-
endpoint variational problems by requiring

h(s1,2) ⊥ ∂r �
�
L(r(s1,2), r �(s1,2)). (14)

This boundary condition still ensures the cancellation of the
boundary term in (10), and leads to the requirement

C
t

t0

�
r(s1,2)

�
r
�(s1,2) � r

�(s1,2),

i.e., r �(s1,2) must be an eigenvector of the Cauchy–Green strain
tensor. Since we are looking for a local minimum of l

t

t0
, we

choose the relevant eigenvector to be ξ1(r
�(s1,2)), the eigenvector

corresponding to the smaller eigenvalue λ1(r(s1,2)) of Ct

t0

�
r(s1,2)

�
.

We therefore require

r(s2) �= r(s1), r
�(si) = ξ1(r(si)), i = 1, 2 (15)

at the endpoints of γ0.
This choice of the boundary conditions implies that, at least at

its endpoints, the curve γ0 exhibits the largest possible normal
repulsion, as measured by the locally largest Lagrangian strain
λ2(r(s1,2)). This is consistent with the strongest normal repulsion
and attraction property of the stable and unstable manifolds in our
first motivating example, as well as with the recently identified
locally maximal repulsion property of hyperbolic Lagrangian
Coherent Structures (LCSs) for general unsteady flows (see [11]).
This prompts us to refer to the specialized variable-endpoint
boundary conditions (15) as hyperbolic boundary conditions.

3.2.2. Shear boundary conditions

Here we seek to ensure the cancellation of the boundary terms
in (10) in a way different from (15). The second way to ensure this
cancellation is to simply require fixed-end boundary conditions. To
eliminate any overlap between this class of boundary conditions
and (15), we require

r(s1) �= r(s2), r
�(s1,2) �� ξ1(r(s1,2)), h(s1,2) = 0, (16)

i.e., define the fixed-end boundary conditions for curves that do not
already satisfy hyperbolic boundary conditions.

Note, however, that the fixed-end boundary conditions in (16)
only exclude one tangential direction for the curve γ0 at each of
its endpoints. Therefore, (16) will typically lead to a minimizer
between any two points a and b of the planar domain U (cf. our
Remark 1 later on the Hopf–Rinow theorem). Clearly, the vast
majority of these curves would lack any significance for the overall
dynamics of system (1).

To make the boundary conditions (16) more specific, observe
that out of all transport barriers, hyperbolic boundary conditions
distinguish those whose endpoint-tangents align with directions
of maximum compression. Keeping our second and third motiva-
tional examples (the shear jet and KAM curves) in mind, we now
seek transport barriers that fall in the other extremebymaximizing
an appropriately defined Lagrangian shear along their endpoint-
tangents.

As we show in Appendix A, prescribing such tangents at the
endpoints of γ0 leads to the more specific boundary conditions

h(s1,2) = 0, r
�(s1) = η±(r(s1)),

r
�(s2) = η±(r(s2)), r(s1) �= r(s2),

(17)

where the normalized Lagrangian shear vector fields η±(x) are
defined as

η± =
� √

λ2√
λ1 + √

λ2
ξ1 ±

� √
λ1√

λ1 + √
λ2

ξ2, (18)

with the plus (minus) sign referring to the direction of maximal
positive (negative) shear in the frame of [ξ1, ξ2]. We refer to

the fixed-endpoint boundary conditions (17) as shear boundary

conditions.
We note that the shear vector field η±(x) is derived as the direc-

tion field that locally maximizes the Lagrangian shear σ(x0, e0) in-
troduced in Appendix A. As we show, this notion of material shear
is different from the classic notion of shear strain used in contin-
uummechanics (cf. Appendix A.4).

4. Definitions and existence result for transport barriers

Based on the above discussion, we now formally define what
we mean by a transport barrier, and state a result on the existence
of such barriers.

Definition 1. A transport barrier of system (1) over the time inter-
val [t0, t] is a material line γt , whose initial position γ0 is a min-
imizer of the length functional lt

t0
under the boundary conditions

(15) or (17).

Observe that our definition of a transport barrier has a finite time
scale T = t − t0 associated with it. We classify such finite-time
transport barriers as follows:

Definition 2. A transport barrier γt is a hyperbolic barrier if γ0
satisfies hyperbolic boundary conditions as defined in (15). A
transport barrier γt is a shear barrier if γ0 satisfies shear boundary
conditions as defined in (17).

Using these definitions and the analysis of natural boundary
conditions for transport barriers in Section 3.2, we obtain the
following result.

Theorem 1. Assume that γt is a transport barrier. Then

(i) γ0 is a geodesic on the Riemannian manifold (U, c), with the
Riemannian metric c defined at each x ∈ U as

cx(u, v) =
�
u, Ct

t0
(x)v

�
, (19)

as long as F τ
t0
(x) ∈ U holds for all times τ ∈ [t0, t].

(ii) Let Clk denote the (l, k) entry of the Cauchy–Green strain
tensor C

t

t0
, and C

il denote the (i, l) entry of the inverse

Cauchy–Green strain tensor
�
C
t

t0

�−1. Then an appropriate
parametrization r(s) =

�
r
1(s), r2(s)

�
of γ0 satisfies the

system of differential equations
�
r
i
��� + Γ i

jk

�
r
j
�� �

r
k
�� = 0, (20)

with summation implied over repeated indices, and with
the Christoffel symbols Γ i

jk
defined as

Γ i

jk
= 1

2
C
il
�
Clj,k + Clk,j − Cjk,l

�
, C

il
Clk = δi

k
. (21)

(iii) With the generalized momentum p defined as
p = ∂r �L = C

t

t0
(r)r �,

the parametrization r(s) of γ0 also satisfies the first-order
system of differential equations
r
� =

�
C
t

t0
(r)

�−1
p,

p
� = −1

2
∂r

�
p,

�
C
t

t0
(r)

�−1
p

�
, (22)

which is a canonical Hamiltonian systemwithHamiltonian

H(r, p) = 1
2

�
p,

�
C
t

t0
(r)

�−1
p

�
. (23)

Proof. See Appendix B. �
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Remark 1. Since U is a compact subset of R2, the Hopf–Rinow
theorem (cf. [17]) guarantees that any two points of U are
connected by a geodesic under the Cauchy–Green metric c .
This fact underlines the role of hyperbolic and shear boundary
conditions in distinguishing transport barriers from ordinary
geodesics. Indeed, the latter can be found between any two points
of the physical domain U .

Remark 2. In differential geometric terms, the Cauchy–Green
metric is just the pullback metric c =

�
F
t

t0

�∗
e, with e denoting

the standard two-dimensional Euclideanmetric. As a consequence,
geodesics of c are pre-images of straight lines (i.e., the geodesics of
e) under the flowmap F

t0
t . As such, all Cauchy–Green geodesics can

be written in the explicit, parametrized form

r(s; r0, r �
0) = F

t0
t

�
F
t

t0
(r0) + sDF

t

t0
(r0)r

�
0
�
. (24)

Such a geodesic can be launched from any point r0 along any initial
unit tangent r �

0. Out of this abundance of curves, we will focus on
the ones with the most tangible impact on transport.

Remark 3. The Hamiltonian (23) can also be viewed as that of a
freely moving particle on the space F

t

t0
(U), with the preimage r of

the particle under the flow map used as a generalized coordinate,
and with the generalized momentum vector p canonically
conjugate to r . For details, see Appendix C.

5. Homogeneous (idealized) transport barriers

A transport barrier, as defined inDefinition 1,will have themost
prominent effect on nearby trajectories if all its subsets behave in
the same fashion relative to nearby trajectories. We now define
special transport barriers with this property.

Definition 3. We call a transport barrier γt over [t0, t] homoge-

neous if any material line γ̄t ⊂ γt is also a transport barrier of
system (1) over the time interval [t0, t] in the sense of Definition 1,
with γ̄0 satisfying the same type of boundary conditions as γ0 does.

In addition to solving the two-dimensional set of second-order
Euler–Lagrange equations, homogeneous transport barriers solve
simpler first-order differential equations.

Proposition 1. Let γt be a homogeneous transport barrier over the

time interval [t0, t]. Assume that γ0 ⊂ U0, where U0 ⊂ U is an open

set in which the unit strain eigenvector fields, ξ1(x) and ξ2(x), of the
Cauchy–Green strain tensor field C

t

t0
(x) are smooth.

(i) If γt is a hyperbolic transport barrier, then γ0 is a strainline , i.e., a
trajectory of the differential equation

r
� = ξ1(r). (25)

(ii) If γt is a shear barrier, then γ0 is a shearline , i.e., a trajectory of

the differential equation

r
� = η±(r), (26)
with either the+ or the− sign chosen in the definition (18) of the
shear vector field η±.

Proof. Since γt is a homogeneous transport barrier, any γ̄t ⊂ γt

must be a transport barrier of the same type. Now any point r ∈ γ0
is the endpoint of some γ̄0 ⊂ γ0, therefore Eqs. (15) and (17), as
well as the smoothness of the ξi(x) fields imply the statements of
the proposition. �

Shown in Fig. 4, homogeneous transport barriers are ideally
the most observable inhibitors of transport, with all their subsets
consistently behaving as hyperbolic or shear barriers. Such
geodesics are highly constrained, however, and hence may not
exist in a generic unsteady flow over a given time scale. In
Appendix D, we review two classes of unsteady flows with
homogeneous transport barriers: non-autonomous linear systems
and non-autonomous parallel shear flows.

Fig. 4. Homogeneous transport barriers are idealized transport barriers that
coincide with locally least-stretching geodesics, satisfying the same hyperbolic
or shear boundary conditions at all their points. Lower panel: Near-homogeneous
transport barriers satisfy hyperbolic or shear boundary conditions at each of their
points, and are shadowed closely (in the C

2 metric) by locally least-stretching
Cauchy–Green geodesics.

6. Near-homogeneous transport barriers

The examples of Appendix D underline the significance of
homogeneous transport barriers in idealized flows. As noted above,
however, typical flows may not admit barriers that are exactly
homogeneous. Motivated by these observations, we seek near-
homogeneous transport barriers as special material lines that, at
the initial time t0, satisfy hyperbolic or shear boundary conditions
at each of their points at time t0, and are closely shadowed by
least-stretching Cauchy–Green geodesics. Such material lines are
necessarily strainlines or shearlines, respectively, by Proposition 1,
but are not necessarily exact geodesics. Their closeness to least-
stretching geodesics distinguishes them, because least-stretching
geodesics – as locally the most stretching images of straight
material lines under the inverse flow map – are the most capable
of wrapping around transport barriers in backward time.

6.1. Detection of near-homogeneous barriers

Let a smooth curve γt0(s) ⊂ U be a candidate for a near-
homogeneous transport barrier at time t0. Consider a point p =
γt0(sp), and let the curve r(s) denote the least-stretching geodesic at
p under the Cauchy–Greenmetric c , i.e., the geodesic starting from
p in the least-stretching direction with a unit tangent vector:

r(sp) = p, r
�(sp) = ξ1(r(sp)).

Definition 4. The geodesic deviation dg(p) of the transport barrier
candidate γt0(s) at the point p is defined as the local C2 distance of
γt0(s) from r(s) at the point p:

dg(p) =
�����1 −

�
γ �
t0
(sp), r

�(sp)
�

��γ �
t0(sp)

�� ��r �(sp)
��

�����

+
�����
det(γ �

t0
(sp), γ

��
t0
(sp))

��γ �
t0(sp)

��3
− det(r �(sp), r ��(sp))��r �(sp)

��3

����� . (27)

Note that dg(p) deems the curve γt0(s) and the least-stretching
geodesic r(s) close at p if both their tangents and their curvatures
are close. Also note that if the curve γt0(s) is a strainline, then the
first term in the definition (27) vanishes, and hence dg(p) becomes
analogous to the classic expression for geodesic curvature.3

3 Note that the classic notion of geodesic curvature measures how close curves
on two-dimensional surfaces in R3 are to geodesics. Instead of embedding our
inherently two-dimensional problem in R3 and developing further machinery
to apply related classic results, we can define an equivalent notion of geodesic
curvature for curves in our flow domain U . If we were to embed U as a two-
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Fig. 5. Near-homogeneous transport barriers at time t0 satisfy hyperbolic or shear
boundary conditions at each of their points, and are shadowed closely (in the C

2

metric) by locally least-stretching Cauchy–Green geodesics.

Assuming that
��γt0(sp)

�� = 1 and recalling
��r �(sp)

�� =
��ξ1(r(sp))

��
= 1, substitution of the tangent vector r �(sp) = ξ1(r(sp)) into the
geodesic equations (20) enables us to rewrite (27) as

dg(p) =
��1 −

�
γ �
t0
(sp), ξ1(p)

���

+
���γ ��

t0
(sp), Ωγ �

t0
(sp)

�
− �G(p, ξ1(p)), ξ2(p)�

�� (28)

where Ω is the skew-symmetric matrix introduced in (6), and the
vector-valued function G is defined as

G(r, u) = −
�

Γ 1
jk
(r)uj

u
k

Γ 2
jk
(r)uj

u
k

�

, (29)

with summation implied over repeated indices. We now formally
define when we consider the evolving material line γt = F

t

t0
(γt0) a

near-homogeneous transport barrier over the time interval [t0, t].

Definition 5. For some small constant � ≥ 0, a compact and
connected material line γt is a near-homogeneous barrier of order

� over the time interval [t0, t0 + T ] if for any point p ∈ γt0 , the
geodesic deviation (27) satisfies

dg(p) ≤ �,

with dg computed using the invariants of the Cauchy–Green strain
tensor Ct0+T

t0 .

A near-homogeneous barrier γt will again be classified as a
hyperbolic or a shear barrier if γt0 is a strainline or a shearline,
respectively. Note that a near-homogeneous transport barrier is
fully Lagrangian (invariant) under the flow, and is guaranteed to
be shadowed by locally least-stretching geodesics (see Fig. 5).

Below we derive explicit formulae for the geodesic deviation
of two important barrier candidates, strainlines and shearlines.
This will enable us to identify trajectory segments of the strain
and shear differential equations that qualify as near-homogeneous
transport barriers of a given order �. In stating the results, we will
use the quantities

κ2 = �∇ξ2ξ2, ξ1� , κ1 = �∇ξ1ξ1, ξ2� , (30)

where κi measures the Euclidean curvature of a trajectory of the
ξi vector field with respect to the trajectory’s unit normal ξj, with
i �= j. We also use the notation

α:=
� √

λ2√
λ1 + √

λ2
, β:=

� √
λ1√

λ1 + √
λ2

,

for the coefficients of ξ1 and ±ξ2, respectively, in the expression
(18).

dimensional surface in R3 through themap x �→ (F t

t0
(x), 0), the classic definition of

geodesic curvaturewould turn out to be a scalarmultiple of the one given here,with
the scalar being

�
det Ct

t0 (r). This can be concluded by applying Beltrami’s formula
for the geodesic curvature in this three-dimensional context (see, e.g., [18]).

Theorem 2 (Geodesic Deviation of Strainlines and Shearlines).
(i) At any point p with λ1 �= λ2, the geodesic deviation of the

strainline through p is given by

d
ξ1
g

= 1
λ2

����λ1κ1 − 1
2

�∇λ1, ξ2�
���� . (31)

For incompressible flows (∇ · v = 0), formula (31) can also be

written as

d
ξ1
g

= 1
λ2
2

����κ1 + 1
2λ2

�∇λ2, ξ2�
���� . (32)

(ii) At any point p with λ1 �= λ2, the geodesic deviation of the

shearline through p is given by

d
η±
g

= |1 − α| +
����∓

1
β

�∇α, η±� + ακ1 ∓ βκ2

+
�

λ1

λ2
− 1

�
κ1 − 1

2λ2
�∇λ1, ξ2�

���� . (33)

For incompressible flows (∇ · v = 0), formula (33) can also be

written as

d
η±
g

=
√
1 + λ2 − √

λ2√
1 + λ2

+

������
�∇λ2, ξ1�

2λ2
√
1 + λ2

∓
�∇λ2, ξ2�

�√
1 + λ2

3 − √
λ2

5
�

2λ3
2
√
1 + λ2

3

∓
κ1

�√
λ2

5 + (1 − λ2
2)

√
1 + λ2

�

λ2
2
√
1 + λ2

+ κ2√
1 + λ2

������
. (34)

(iii) At any point p with λ1 �= λ2, the geodesic deviation of a general

near-homogeneous transport barrier candidate γt0(s) through p

is given by

dg =
���1 −

�
γ i

0
��

ξ i

1/
��γ �

0

��
��� +

����Ωij

��
γ i

0
��� �

γ
j

0

��
/
��γ �

0

��3/2

− F
i,jl
Fj,kFl,m

�
ξ
j

1

�� �
ξ k

1
�� �

ξm

1
��
����� , (35)

with summation implied over repeated indices, and with Fi and

F
i
referring to the ith coordinate function of the flowmap F

t

t0
and

its inverse, F
t0
t , respectively.

Proof. See Appendix E. �

For any fixed bound � > 0, Theorem 2 provides a quantitative
tool to assess whether a given strainline or shearline is a near-
homogeneous transport barrier of order �. Further assistance in
classifying transport barriers is provided below.

6.2. Incompressible near-homogeneous barriers: Elliptic, parabolic

and hyperbolic barriers

Here we discuss a general classification of near-homogeneous
transport barriers in two-dimensional incompressible (area-
preserving) dynamical systems. We start with a result that under-
lines the significance of closed shear barriers.

Proposition 2. Assume that the dynamical system (1) is incompress-

ible (∇ · v = 0). Let γt0 ⊂ U denote a compact shearline of the

shear-vector fieldη±(r), computed from the Cauchy–Green strain ten-

sor field C
t0+T

t0 . Then the arclength of γt0 is preserved under the flow

map F
t0+T

t0 .
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Fig. 6. Schematic of an elliptic transport barrier. A closed shearline γt0 , computed
from flow data over [t0, t0 + T ], plays the role of a generalized KAM curve. Broken
line indicates a hypothetical translated and rotated position of γt0 for reference. The
advected material line γt0+T

has the same arclength, and encloses the same area as
γt0 does.

Fig. 7. Schematic of a parabolic transport barrier. An open shearline γt0 , computed
from flow data over [t0, t0 + T ], plays the role of a filament in a generalized shear
jet. The broken line indicates a hypothetical translated and rotated position of γt0
for reference. The advected material line γt0+T

has the same arclength as γt0 does.

Proof. See Appendix F. �

Since the mapping F
t0+T

t0 is area-preserving in an incompress-
ible flow, Proposition 2 implies that closed shearlines in incom-
pressible flows preserve both their arclength and the area they
enclose. Since typical closed material lines will increase their ar-
clength due to stretching, folding and shear in the flow, those pre-
serving their arclength clearly have special significance.

Namely, while the flow map F
t0+T

t0 may translate and rotate
closed shearlines substantially, it can only transport them with
modest deformation, because of their arclength and enclosed area
must be preserved between the times t0 and t0 + T . Note that it is
such a simultaneous preservation of arclength and enclosed area
makes classic KAM curves distinguished inhibitors of phase space
transport. In particular, they are boundaries of open sets that show
no visible mixing with their exteriors.

By Proposition 2, therefore, closed shearlines with small
�
dg

�

values can be considered elliptic barriers (generalized KAMcurves) in
incompressible, finite-time, non-autonomous dynamical systems
on the plane (cf. Fig. 6).

The preservation of arclength established in Proposition 2 is
equally applicable to open shearlines. Such shearlines can be
best thought of as frame-independent generalizations of the non-
stretching streamlines forming the steady shear jet shown in Fig. 2.
Motivated by this analogy, we refer to groups of open shearlines
with small

�
dg

�
values as parabolic barriers (generalized shear jets).

We sketch the related geometry in Fig. 7.
Finally, strainlines obtained from the eigenvector field of the

Cauchy–Green strain tensor field C
t0+T

t0 (x0) will show contraction
in an incompressible flow, given that λ1(x0) < 1 will typically
hold in such flows. Accordingly, for T > 0, we refer to strainline
segments with pointwise small dg values as forward-hyperbolic

barriers (generalized stable manifolds) at time t0. Similarly, for
T < 0, we refer to strainlines segments with small dg values
as backward-hyperbolic barriers (generalized unstable manifolds) at
time t0. We sketch the related geometry in Fig. 8.

Fig. 8. Schematic of forward- and backward-hyperbolic transport barriers.
Strainlines γt0 and γt0+T , computed from flow data over [t0, t0 + T ] and [t0 + T , t0],
play the role of generalized stable and unstable manifolds, respectively. Broken
lines indicate hypothetical translated and rotated positions of γt0 and γt0+T for
reference. The arclength of γt0 and γt0+T shrinks exponentially under forward-time
and backward-time advection, respectively, by the flow map.

7. Computation of transport barriers

7.1. Numerical algorithm

Proposition 1 and Theorem 2 establish the mathematical foun-
dation for the computation of near-homogeneous transport barri-
ers from finite-time flow data. The main steps in the algorithm are
the following:

I. Select small positive parameters �ξ1 and �η± as admissible up-
per bounds for the geodesic deviation of near-homogeneous
transport barriers.

II. For a given finite time interval [t0, t0+T ] of interest, compute
the flowmap F

t0+T

t0 over initial conditions x0 taken from a grid
G0.

III. Calculate the Cauchy–Green strain tensor field C
t0+T

t0 (x0), as
well as its eigenvalue fields λi(x0) and eigenvector fields
ξi(x0), over G0.

IV. Calculate strainlines and shearlines by solving the ODEs (25)
and (26) numerically, starting from each point x0 ∈ G0.
(Interpolate the shear and strain vector fields between grid
points.)

V. Locate the set Σ(t0,t0 + T , �ξ1) of strainline segments on
which the pointwise geodesic deviation d

ξ1
g is no larger than

�ξ1 . Then identify forward-hyperbolic barriers as strainline
segments γt0 whose relative stretching

q(γt0) = l(γt0+T )/l(γt0) (36)
is locally minimal among neighboring strainline segments in
Σ(t0,t0 + T , �ξ1) (cf. Section 7.4).

VI. Identify parabolic barriers of order �η± at time t0 as open
shearline segments on which the average geodesic deviation�
d

η±
g

�
is no larger than �η± (cf. Section 7.4).

VII. Identify elliptic barriers of order �η± at time t0 as closed
shearlines on which the average geodesic deviation

�
d

η±
g

�
is

no larger than �η± (cf. Section 7.4).
VIII. To obtain hyperbolic, parabolic and elliptic barriers at an

arbitrary time t ∈ [t0, t0 + T ], advect the barriers identified
at time t0 as material lines using the flow map F

t

t0
.

IX. To obtain backward-hyperbolic barriers at time t0, repeat steps
I–VIII, using the inverse flow map F

t0−T

t0 . 4

4 This step identifies transport barriers that are locally least-stretching in
backward time over the time interval [t0 − T , t0]. The properties of these material
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Below we summarize the main numerical challenges involved in
performing steps I–IX.

7.2. Computing strain eigenvalues and eigenvectors

A direct computation of the λ1 and ξ1 fields is usually less
accurate than that of λ2 and ξ2, because of the attracting nature
of the strongest eigenvector of Ct0+T

t0 . For this reason, computing
λ1 in terms of λ2 in (31) and (33) is preferable. If the flow is
incompressible, this is simply achieved using the relation λ1λ2 =
1. In the compressible case, we recall from Liouville’s theorem [19]
that for a general compressible flow,

detDFt

t0
(x0) = exp

��
t0+T

t0

div v(F t

t0
(x0), t)dt

�
. (37)

Noting that λ1 = det Ct0+T

t0 /λ2 =
�
detDFt

t0

�2
/λ2, we obtain the

expression

λ1(x0) = 1
λ2(x0)

exp
�
2

�
t0+T

t0

div v(F t

t0
(x0), t)dt

�
, (38)

to be used in the numerical computation of the general formulae
(31) and (33). In general, the weaker strain eigenvector is best
computed from (6) as ξ1 = −Ωξ2.

Computing the λ2 and ξ2 fields accurately typically requires the
use of an auxiliary grid, i.e., four additional grid points around each
primary grid point in G0. The auxiliary grid points can be selected
arbitrarily close to the primary grid points, thereby increasing the
precision of finite-differencing involved in computing the entries
of Ct0+T

t0 (see [20] for more detail).

7.3. Computing strainlines and shearlines

Away from degenerate points with λ1 = λ2, the eigenspaces
of the Cauchy–Green strain tensor field C

t

t0
(r) vary smoothly as

a function of the location r . Despite this smooth variation is
space, the eigenspace field is typically not an orientable vector
bundle, and hence the normalized eigenvector fields ξ1(r) and
ξ2(r) admit orientational discontinuities. As a result, even though
strainlines and shearlines are well-defined smooth curves away
from repeated strain eigenvalues, the computation of these lines
as trajectories of the discontinuous ODEs (25) and (26) requires
special care.

Strainlines also arise – as pointwise most repelling material
lines – in the computation of hyperbolic Lagrangian Coherent
Structures (LCSs). As discussed by Farazmand and Haller [20] in
that context, a scaling suggested in [21] for general tensor lines can
be applied to facilitate the integration of (25). Specifically, degener-
ate points are transformed into fixed points, and orientational dis-
continuities are eliminated along trajectories in the scaled strain
ODE

r
�(s) = sign

�
ξ1(r(s)), r

�(s − ∆)
�
z(r(s))ξ1(r(s)), (39)

with ∆ > 0 denoting the numerical stepsize, and with the scalar
field z(r) defined as

z(r):=
�

λ2(r) − λ1(r)

λ1(r) + λ2(r)

�2

. (40)

lines over the time interval [t0, t0 +T ] considered in steps I–IX, is a priori unknown.
Alternatively, one may apply the geodesic theory to the inverse flow map F

t0
t0+T

to
obtain barriers at t = t0 + T that are locally least-stretching over the original time
interval [t0, t0 + T ] in backward time. Advecting these barriers back to their t = t0
position under F t0

t0+T
, however, will typically yield very short material lines at time

t0 due to the high rate of contraction along the identified barriers in backward time.

Similarly, shearlines are obtained as smooth, nontrivial trajectories
of the scaled shear ODEs

r
�(s) = sign

�
η±(r(s)), r �(s − ∆)

�
z(r(s))η±(r(s)). (41)

Note that the numerical schemes used in (39) and (41) can
be viewed as discretizations of delay-differential equations, and
hence can produce trajectories that are significantlymore complex
than solutions of autonomous planar differential equations.
Indeed, some well-known transport barriers, such as homoclinic
tangles and strange attractors, show self-accumulation that could
not be captured by trajectories of smooth planar ODEs.

7.4. Extracting transport barriers from strainlines

We seek hyperbolic transport barriers as material lines that are
C
2-close to locally least-stretching Cauchy–Green geodesics satis-

fying hyperbolic boundary conditions (cf. Section 6.2). Introduced
in (15), hyperbolic boundary conditions ensure that the underlying
geodesic stays locally least-stretching even under normal pertur-
bations to its endpoints. If the geodesic is homogeneous (cf. Defini-
tion 3), it satisfies hyperbolic boundary conditions at all its points,
and hence remains locally least stretching among all C1 close ma-
terial curves. This uniqueness under all normal perturbations is a
propertywewant to enforce for near-homogeneous barriers in our
computations.

To this end, recall fromStepV in Section7.1 thatΣ(t0,t0+T , �ξ1)

is defined as the set of strainline segments along which d
ξ1
g ≤ �ξ1

holds pointwise. The error bar �ξ1 > 0 is the maximum admissible
error we fix for the pointwise C

2 distance of a detected transport
barrier from a locally least-stretching Cauchy–Green geodesic. In
exceedingly short data sets, none of the strainlines may meet this
admissible error bar. In general, however, the longer flow data we
have, the more pronounced the barriers become, and the smaller
�ξ1 can be selected.

We seek strainline segments in Σ(t0,t0 + T , �ξ1) that are
locally the least stretching among their immediate neighbors.5 The
computation of the invariants of Ct0+T

t0 , and hence of the direction
field ξ1(x0), will be thenoisiest precisely near such strainlines. Even
if ξ1(x0) were accurately computed, its trajectories will generally
show the highest sensitivity with respect to initial conditions near
least-stretching strainlines. In our experience, these numerical
effects tend to create oscillations in the relative stretching function
(36), leading to additional spurious local minima in the search for
the locally least stretching strainline segment.

To eliminate such spurious minima, we first compute the
relative stretching function on each connected strainline segment
intersecting a reference line L0 of initial conditions. Restricted to
L0, we have ∆(x0) := q(γt0), a function over a one-dimensional
domain parametrized by x0 ∈ L0 ∩ γt0 . The intersection set L0 ∩ γt0
may contain several points, but at each of those points, the relative
stretching function∆(x0) takes the samevalue q(γt0)bydefinition.

IfM(L0) denotes the set of strict local minima of ∆(x0) along L0,
then we define the set S(L0) as the set of super minima of ∆(x0)
along L0, i.e., the set of (not necessarily strict) local minima of
∆(x0)within the discrete setM(L0). This two-passminimization of
the relative stretching along L0 aims to eliminate spurious relative
minima arising from numerical noise and sensitive dependence, as

5 This numerical step enforces our original principle to find locally least-
stretching material lines. The computation of strainlines reduces this search to a
one-parameter family of candidates (strainline segments) that are least-stretching
under perturbations to their tangent spaces, but not necessarily under parallel
translations, given that strainlines are typically are not exact Cauchy–Green
geodesics. Finding then the locally least-stretching strainlines completes the search
for least-stretching material lines within the strainline family.
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Fig. 9. The construction of super minima (red dots) from simple local minima
(blue dots), to be used in locating intersections of locally minimally stretching
strainlines with a line L0 of initial conditions, parametrized by the coordinate x0.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

illustrated in Fig. 9. In an actual numerical implementation, M(L0)
will already be a discrete set, formed by a select number of initial
conditions from which strainlines are launched. The first pass in
minimizing∆(x0) only leads to ameaningfulM(L0) if the strainline
initial conditions along L0 are chosen dense enough.

7.5. Extracting transport barriers from shearlines

Unlike hyperbolic boundary conditions, shear boundary con-
ditions do not ensure a locally minimal stretching property for
Cauchy–Green geodesics under perturbations to their endpoints.
Indeed, as we have seen in our two canonical examples of shear
barriers (KAM curves and filaments of shear jets), these material
lines ought to be least-stretching only under perturbations that
keep their endpoints fixed.

Accordingly, near-homogeneous shear barriers will generally
not be the locally least-stretching among all nearby shearlines.
Instead, they will be pointwise least-stretching with respect to
perturbations to their tangents. This property allows a whole
family of shear barriers to co-exist, the same way KAM curves and
shear jet filaments form near-parallel material line families.

To find themost prominent shear barriers, therefore,we require
members of a shearline family to be C2-close on average to a family
of locally least-stretching Cauchy–Green geodesics. Specifically, a
compact and connected shearline segment γt0 is identified as a
shear barrier if

�
dg

�
(γt0):=

�
γt0

dg(r(s))
��r �(s)

�� ds
�
γt0

|r �(s)| ds ≤ �η± (42)

with dg computed using the invariants of the Cauchy–Green strain
tensor Ct0+T

t0 .
The small averaged geodesic deviation requirement (42) turns

out to be highly effective in the computational detection of elliptic
barriers. In our numerical experiments, we have found that �η±
values of the order of 10−2 yield barriers that are practically
indistinguishable from KAM curves (cf. Section 8).

7.6. The length of the time interval used in barrier detection

Beyond aiding the detection of transport barriers, geodesic de-
viation provides a way to optimize time integration for Lagrangian
structure extraction. In light of the explicit solutions for geodesics
obtained in formula (24), small values of geodesic deviation on a
transport barrier candidate mean that straight lines advected in
backward time stretch out and wrap tightly around this candidate
material line. In forward time, this implies that prominent shearing
or repelling action canbe observed for the barrier over the forward-
time interval over which the geodesic deviation was computed.

In particular, a hyperbolic barrier can be considered converged
from a computation over the interval [t0, t0 + T ] if its pointwise

geodesic deviation is below aprescribed error bar. In our numerical
studies, dξ1

g ≤ 10−3 has yielded excellent agreement with known
stable and unstable manifolds. Similarly, parabolic and elliptic
barriers can be considered converged from a computation over
[t0, t0+T ] if their averaged geodesic deviation is belowaprescribed
error bar. In our numerical studies,

�
d

η±
g

�
≤ 0.2 has yielded

elliptic barriers that were indistinguishable from known KAM
tori. Remarkably, these converged barriers were obtained for T

values significantly shorter than those needed to establish the
same barriers with the same resolution from the direct iteration
of Poincare maps (cf. Section 8).6

8. Example 1: Transport barriers in a two-dimensional chaotic

advection mapping

In our first example, we verify that the geodesic transport
theory developed here captures the most important transport
barriers in a discrete dynamical system where those barriers can
also be indirectly observed by simply iterating initial conditions
under a two-dimensional mapping.

Pierrehumbert [23] proposed a smooth area-preserving map of
the 2-torus T2 := [−1/2, 1/2] × [0, 1] to itself7:

P :
�
x

y

�
�→

�
x + a sin 2πy

y + a sin [2π (x + a sin 2πy)]

�
. (43)

Physically, (43) models an incompressible time-periodic flow re-
sulting from the superposition of two planar waves, one propagat-
ing in the x direction and the other in the y direction. The map (43)
has four fixed points on the torus T2: two centers at (−1/2, 0) and
(0, 1/2), respectively, and two saddles at (−1/2, 1/2) and (0, 0),
respectively. The system is non-integrable for any a > 0, with the
stable and unstable manifolds of the saddles forming heteroclinic
tangles. For moderate values of a, the ensuing stochastic band is
thin and surrounds KAM tori encircling the centers.

Fixing theparameter value a = 0.2,we explore belowwhat part
of these structures can be reconstructed accurately as transport
barriers using a few iterations of the map. Note that the dynamical
system (43) is not defined in terms of a velocity field, as assumed in
(1), but directly through the discrete flowmap F

n

0 := P
n. Evaluating

this map however, at any of the discrete time values t = n ∈ Z
is sufficient for the application of the geodesic transport theory
developed in this paper.

For reference, Fig. 10 shows a few representative hyperbolic
and elliptic transport barriers obtained by iterating select initial
conditions under P . Note that precise knowledge of the hyperbolic
fixed points of P is essential in constructing the shown pieces of
stable and unstable manifolds, which required n = 14 iterations.
Also note the large number of iterations (n = 104) required for the
visualization of primary and secondary KAM tori as continuous-
looking curves.

Fig. 11 shows forward-hyperbolic barriers reconstructed from
the numerical procedure outlined in Section 7.4. To resolve the
details of the tangle, a numerical grid of 2000 × 2000 was used.
Note the exact correspondence between the directly computed
stable manifolds in Fig. 10 (obtained from n = 14 iteration) and

6 Use of special algorithms for twist maps do accelerate the computation of
KAM curves relative to a direct visualization through iterated Poincare maps (see,
e.g., [22] for a review). The point here is that KAM curves emerge as geodesic
transport barriers automatically, without the use of the symplectic structure or
initial estimates for closed invariant curves. This spontaneous emergence enables
the exploration of elliptic barriers in non-symplectic maps and, more importantly,
in finite-time dynamical systems with general time dependence.
7 For ease of working with planar coordinates, we now switch to the notation

(x, y) from (x1, x2), which was used in earlier sections.
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Fig. 10. Select transport barriers obtained from the iteration of the advection map P with a = 0.2. Left panel: Stable and unstable manifolds obtained from n = 9 forward
and backward iterations of a small circle of radius 10−6, centered at the known hyperbolic fixed points of P . The KAM tori are obtained from n = 100 iterations of select
initial conditions. Right panel: Same as on the left, but using n = 14 iterations for the stable and unstable manifolds, and n = 104 iterations for the KAM tori.

  

Fig. 11. Forward-hyperbolic barriers (red curves) reconstructed from n = 4 and n = 9 iterations of the advection map P with a = 0.2. These barriers were located as
super-minima of relative stretching among all strainline segments satisfying the cut-off condition d

ξ1
p ≤ 10−3 pointwise. Some additional strainlines (black) are shown for

reference. The unit eigenvector field ξ1 is depicted at select positions, with double-headed arrows emphasizing its lack of a global orientation. The third plot shows a blow-up
of the barrier obtained for n = 9 near the hyperbolic fixed point at (0, 0). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

the extracted forward-hyperbolic barriers (red curves) in Fig. 11
reconstructed from fewer iterations (n = 4 and n = 9) using our
geodesic transport barrier theory.

As for elliptic barriers, Fig. 12 shows shearlines of the shear vec-
tor fields η±(x) obtained from n = 15 iterations of the advection
map P . Those qualifying as elliptic barriers with d

η±
g ≤ �η± =

0.25 are highlighted in green. The lower panel of the same fig-
ure shows the same computation using n = 50 iterations. Note
that several closed shearlines in these figures still do not yet qual-
ify as near-homogeneous barriers because

�
d

η±
g

�
> 0.25 holds on

them. Still, they already provide close approximations for KAM
tori; some even highlight secondary KAM tori within the resonant
islands.

A more detailed study of the convergence of our elliptic barrier
reconstruction algorithm is shown in Figs. 13 and 14. Note that
the more iterations are used in the reconstruction, the smaller the
geodesic deviation becomes, and the closer the closed shearline
becomes to an invariant curve. Generally, for geodesic deviations of
the order

�
d

η±
g

�
≤ 0.25, KAM tori and reconstructed elliptic barriers

appear indistinguishable.
Finally, in Fig. 15, we show together the set of reconstructed

hyperbolic and elliptic barriers. Gray curves indicate hyperbolic
and elliptic barriers from the second, high-resolution phase
portrait of P shown in Fig. 10. At this resolution, each reconstructed
hyperbolic and elliptic barrier coincides with an observed barrier

(stable manifold, unstable manifold, or KAM torus). A blow-up of
the heteroclinic tangle on the right provides further confirmation
of the accuracy of our barrier reconstruction.

We conclude that our geodesic transport theory provides highly
accurate barriers using relatively low numbers of iterations of P .
Simply iterating P for the same length of time does not provide the
same quality or detail (compare the left panels of Figs. 10 and 15).
Admittedly, the high accuracy of the geodesic theory comes at a
higher computational cost relative to the cost of simply iterating
the map P .

9. Example 2: Transport barriers in the chaotically forced

Bickley jet

In our second example, we apply our geodesic transport the-
ory to a spatially more complex, temporally aperiodic planar dy-
namical system. In this setting, no Poincaremaps are available, and
hence even an indirect visualization of transport barriers from ad-
vected initial conditions would be problematic. Indeed, there is no
known frame or stroboscopic mapping sequence under which the
barriers become steady.

Consider the two-dimensional incompressible flow defined by
the stream function
ψ(x, y, t) = ψ0(x, y) + ψ1(x, y, t) (44)
with
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Fig. 12. Select shearlines (black) and elliptic transport barriers (green) with
�
d

η±
g

�
≤ �η± = 0.25 for the advection map (43) with a = 0.2. Double-headed arrows indicate

the η± direction fields. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. A closed shearline (black) starting from a fixed initial position, reconstructed from increasingly longer iterations of P . Also shown the image of the shearline under
one iteration of P . The mismatch between the black and red curves indicates the degree of non-invariance of the black curve. Convergence of the shearline to an invariant
curve is also indicated by the gradual decrease in the shearline’s average geodesic deviation

�
d

η+
g

�
. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

ψ0(x, y) = c3y − ULytanh
y

Ly

+ ε3ULysech2 y

Ly

cos k3x, (45)

ψ1(x, y, t) = ULysech2 y

Ly

Re

�
2�

n=1

εnfn(t)eiknx
�

, (46)

kn = 2nπ/Lx. (47)

We consider the periodic variable x ∈ [0, 2π/Lx] as a zonal
coordinate, and y ∈ R as a meridional coordinate. We choose the
parameters in ψ as in [24]: Lx = πa, where a = 6371 km is
the mean radius of the Earth; U = 62.66ms−1; Ly = 1770 km;
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Fig. 14. Same as Fig. 13, but for a closed shearline of larger amplitude.

Fig. 15. Forward- and backward-hyperbolic barriers (red and blue), as well as elliptic barriers (green), obtained from the geodesic theory. The hyperbolic barriers were
reconstructed using n = 9 iterations of the chaotic advection map (43) with a = 0.2. The barrier segments were truncated at points where their geodesic deviation d

ξ1
g

reaches the cut-off value �ξ1 = 10−3. The elliptic barriers were obtained using n = 100 iterations of P , with average geodesic deviation
�
d

η+
g

�
≤ 0.25. Gray curves indicate

hyperbolic and elliptic barriers inferred from the higher-resolution phase portrait in the second panel of Fig. 10. Note that this phase portrait required a higher number of
iterations to construct (n = 14 for the hyperbolic barriers and n = 104 for the elliptic barriers). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

c3/U = 0.461; ε1 = 0.075; ε2 = 0.4; c2/U = 0.205. In that
setting, ψ0 represents a meandering eastward zonal jet (known as
the Bickley jet [25,26]) which is flanked northward and southward
by three stationary vortices produced by a wavenumber-3 Rossby
wave. The unsteady streamfunction ψ1 is a superposition of two
x-periodic modes with time-dependent amplitudes, which decay
to zero in the±y direction. Fluid particle trajectories are generated
by the unsteady velocity field

v(x, y, t) =
�
−∂yψ, ∂xψ

�
. (48)

Weconsider the following choices for theperturbations stream-
function ψ1:

(1) Time-periodic ψ1 with εn at one tenth of the values used in
[24], and with fn(t) = exp(−iσnt), where σ1 = k2(c2 − c3),
with c2 and c3 as in [24], and σ2 = 2σ1. We only consider this
case to produce a reference Poincare map for comparison with
our results on the temporally aperiodic cases.

(2) Time-aperiodic ψ1 with εn as in [24], and with fn(t) taken to
be an appropriately rescaled solution of the forced–damped
Duffing oscillator with parameters in the chaotic regime.
Specifically, we let fn(t) = 7ϕn(2πτ/5σ2)/4maxϕn(τ ) where
ϕn(τ ) satisfies

dϕ1

dτ
= ϕ2,

dϕ2

dτ
= − 1

10
ϕ2 − ϕ3

1 + 11 cos τ , (49)

with initial conditions ϕn(0) = 0;
(3) Time-aperiodic ψ1 with the same structure as in (2), but with

a smaller amplitude equal to that chosen in case (1).
Fig. 16 shows the nature of time-dependence in cases (1)–(3).

As a general reference, Fig. 17 shows transport barriers obtained
for case (1) (i.e., time-periodic forcing), obtained from iterations of
the Poincaré map F

t0+T

t0 with T = 4Lx/U . This map was applied
repeatedly to select initial conditions in the eddy regions, and to
small circles of initial conditions around the perturbed hyperbolic
fixed points.

Wenow turn to the analysis of the time-aperiodic perturbations
for which barriers are not known and cannot be visualized through
Poincaré maps. In all our computations, we use a uniform grid
of 4096 × 1637 initial conditions to obtain high-resolution and
accurate curves for transport barriers.

Fig. 18 shows forward-hyperbolic barriers obtained from the
geodesic theory for the case of strong time-aperiodic perturbation
(case (2)). The complexity of these barriers is notably higher than
those observed in the weakly forced time-periodic phase portrait
shown in Fig. 17.

The hyperbolic barriers fully penetrate the two rows of eddies,
destroying the elliptic barriers observed in Fig. 17. Parabolic
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Fig. 16. The three types of zonal perturbation velocities considered, all evaluated
at a point on the axis of the background meandering zonal jet.

Fig. 17. Phase portrait of the Poincaré map F
t0+T

t0 for the time-periodic Bickley jet
(case (1)) with t0 = 0 and T = 4Lx/U .

barriers with low geodesic deviation (
�
d

η±
g

�
≤ 0.0015) do not

exist either. This is further illustrated in Fig. 19, which shows
a superposition of forward- and backward-hyperbolic barriers
obtained from the geodesic theory at t0 = 0.

By contrast, the elliptic regions are not destroyed in the case of
weaker chaotic forcing (case (3)), as seen in Fig. 20. Convergence to
generalized KAM tori (closed green curves) and generalized shear
jets (open green curves) is apparent for increasing temporal length
T for the data set.

In general, T = 20Lx/U emerges as the minimal time scale
needed for the robust identification of shear barriers. For this

Fig. 19. Forward- and backward-hyperbolic barriers (red and blue) at time t0 = 0
obtained from the geodesic theory for Bickley jet with strong chaotic forcing (case
(2)). We used the forward time interval [t0, t0 + T ] and the backward-time interval
[t0, t0 − T ] in this analysis with T = 4Lx/U . We again let �ξ1 = 10−6 for the
admissible bound on the pointwise geodesic deviation curvature along hyperbolic
barriers. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

length of data, Fig. 21 illustrates that averaged geodesic deviation
values satisfying

�
d

η±
g

�
≤ 0.0015 are effective in isolating general-

ized KAM-type and jet-type structures from open spiraling strain-
lines. The latter strainlines also remain close to least-stretching
geodesics but do not act as closed boundaries of elliptic regions.

Finally, Fig. 22 shows a composite picture of transport barriers
obtained from our geodesic theory for the Bickley jet with weak
chaotic forcing. Note that the robust extraction of elliptic barriers
required a time interval that is about five times the minimal
time scale needed for a robust detection of hyperbolic barriers.
This is because shear barriers only prevail as minimally stretching
material lines on longer time intervals due to the algebraic growth
of material length in shear regions vs. exponential growth in high-
strain regions.

While the location of the barriers is robust for times beyond
T = 20Lx/U and for geodesic deviation values

�
d

η±
g

�
≤ 0.0015,

resolving all details of the barriers in the current, chaotically
forced setting proves to be a challenge. For instance, one of the
closed elliptic barriers centered roughly around (x/Lx, y/Ly) =
(4.1, −0.6) in Fig. 22 appears to turn around and form a lobe. This
is due to numerical errors in the computation of the underlying
strainlines over the relatively long time interval [0, 20Lx/U].
The artificial lobe disappears once the spatial resolution in our
computations is doubled in this elliptic region (cf. the right panel
in Fig. 22).

Fig. 18. Forward-time hyperbolic barriers (red) obtained from the geodesic theory at time t0 = 0 for the Bickley jet with strong chaotic forcing (case (2)) over [t0, t0 +T ], for
two different choices of the interval length T . The pointwise admissible upper bound on the geodesic deviation is chosen to be �ξ1 = 10−6. Also shown are some additional
strainlines (black) and the minimum strain eigenvector field ξ1(x, y) (gray) for reference. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 20. Elliptic and parabolic barriers (green) obtained from the geodesic theory for the Bickley jet with weak chaotic forcing (case (3)). The barriers are extracted at t0 = 0
for three different lengths of the time interval [t0, t0 + T ], with average geodesic deviation values satisfying the bound

�
d

η±
g

�
≤ 0.0015. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

10. Conclusions

We have developed a unified theory of transport barriers for
two-dimensional, non-autonomous dynamical systems. We have
obtained that the most influential barriers are locally most com-
pressing or most shearing material lines that are closely shad-
owed by least-stretching geodesics of the metric induced by
Cauchy–Green strain tensor. These barriers, strainlines and shear-
lines, can be found as trajectories of first-order ODEs.

Wehave classified transport barriers as forward- andbackward-
time hyperbolic barriers and shear barriers. The two types of hy-
perbolic barriers are formed by forward-time and backward-time
strainlines with small pointwise C

2-distance (geodesic deviation)

from least-stretching Cauchy–Green geodesics. We note that hy-
perbolic Lagrangian Coherent Structures (LCSs) have also been
identified recently as strainline segments that are more locally re-
pelling than their neighbors (cf. [20]). Although this related result
on LCSs follows fromadifferent approach, it does signal an intrinsic
connection between hyperbolic LCSs and the hyperbolic transport
barriers introduced in this paper.

In incompressible flows, shear barriers turned out to have
the same arclength at time t0 + T as they do at time t0. This
allowed us to further classify shear barriers as parabolic and
elliptic barriers. Parabolic barriers are open shearlines with small
average geodesic deviation, representing a generalization of shear
jets to temporally aperiodic flows. By contrast, elliptic barriers
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Fig. 21. Isolation of elliptic barriers from spiraling shearlines for decreasing bounds on the average geodesic deviation
�
d

η±
g

�
in the Bickley jet with weak chaotic forcing

(case (3)).

are closed shearlines with small geodesic deviation, playing the
role of generalized KAM curves (or Lagrangian eddy barriers) in
general, non-autonomous dynamical systems. Closed shearlines
are not simply local minimizers of material stretching over the
time interval [t0, t0 + T ]: they in fact have the same arclength at
time t0 + T as they do at time t0.

Transport-barrier computations can be considered converged
once geodesic deviation on the barriers decreases below an a

priori chosen error bound. This provides a quantitative criterion for
optimal stopping times in the integration of trajectories of Eq. (1),
expediting the real-time detection of transport barriers in critical
situations, such as the tracking of an evolving environmental
contamination pattern [27].

Our unified approach identifies barriers to phase space trans-
port, but does not offer a direct way to quantify transport itself.
The hyperbolic barriers we identify, however, are geometric tem-
plates for a possible extension of geometric transport theories from
two-dimensional maps and time-periodic ODEs [28–30] to time-
aperiodic planar flows.

Higher-dimensional extensions of our theory should involve
the construction of locally least-stretching codimension-one ma-
terial surfaces. Hyperbolic barriers in that context are expected to
be hypersurfaces that are tangent to the first n− 1 eigenvectors of
the Cauchy–Green strain tensor, as is the case for hyperbolic LCSs
in n-dimensions [11]. The existence of such surfaces, however, is
not a priori guaranteed and hence requires further analysis.
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Fig. 22. Forward- and backward-hyperbolic barriers (red and blue), aswell as elliptic barriers (green), obtained from the geodesic theory for the Bickley jetwithweak chaotic
forcing. The hyperbolic barriers were reconstructed using the velocity field up to the time T = 4Lx/U; the elliptic and parabolic barriers were obtained using the velocity
field up to the time T = 20Lx/U . The panel on the right shows the blow-up of a single elliptic region, with the computations performed at twice the original resolution. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

To our knowledge, the theory developed here reveals transport
barriers in general two-dimensional dynamical systems at a level
of rigor and detail that has not been achieved by prior methods. An
efficient and accurate implementation of this theory undoubtedly
requires an investment in computational resources, as we have
seen in the two examples discussed in this paper. However,
the ever-increasing availability of multi-core CPUs and graphics
processing units (GPUs) brings the necessary processing power and
memory within reach.

Indeed, orders of magnitude performance improvements have
been reported in the integration of arrays of trajectories – themost
resource-hungry part of our approach – after the introduction of
parallel computation and GPUs [31,32]. This provides a compelling
reason for investing in the necessary coding and hardware,
enabling a fast yet accurate and objective detection of transport
barriers.
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Appendix A. Lagrangian shear and its locally maximal direc-

tions

A.1. Definition of Lagrangian shear

We adapt and further develop the notion of Lagrangian shear
along a material surface from the three-dimensional context
in [33], where this frame-independent description of material
shear was apparently first introduced.

Consider an evolving material line γt . At an initial condition
x0 ∈ γt0 , a unit normal n0 to the initial material curve γt0 can be
expressed in terms of a unit tangent vector e0 ∈ Tx0γt0 as

n0 = Ωe0,

with the orthogonal rotation matrix Ω defined in (6). Further note
that the tangent space Txt γt along the trajectory xt = x(t; t0, x0)
in the material line γt is the linear span of DFt

t0
(x0)e0. Therefore,

Fig. 23. The definition of the Lagrangian shear σ t

t0
.

a unit tangent vector in Txt γt can be selected as et = DF
t

t0
(x0)e0/��DFt

t0
(x0)e0

��.
We define the Lagrangian shear σ t

t0
as the normal projection

of the linearly advected unit normal DFt

t0
(x0)n0 onto the advected

unit tangent et , as shown in Fig. 23. This definition of finite-time
Lagrangian shear along γt naturally complements the definition
of finite-time normal repulsion ρt

t0
along γt given in [11], with

ρt

t0
being the normal projection of DFt

t0
(x0)n0 onto the local unit

normal nt of γt at the point xt .
More specifically, without explicit reference to the underlying

material line γt , we can compute σ t

t0
with respect to any initial

point x0 ∈ U and any initial tangent direction e0 as

σ t

t0
(x0, e0) =

�
et ,DF

t

t0
(x0)n0

�
=

�
DF

t

t0
(x0)e0,DF

t

t0
(x)Ωe0

�
��DFt

t0(x0)e0
�� (50)

=
�
Ωe0, C

t

t0
(x0)e0

�
��

e0, C
t

t0(x0)e0
� . (51)

Positive σ t

t0
(x0, e0) values signal positive (clockwise) shear in the

local coordinate frame [ξ1(x0), ξ2(x0)]; negative σ t

t0
(x0, e0) values

signal negative (counterclockwise) shear in the same frame.

A.2. Directions and magnitude of maximal Lagrangian shear

We seek local extrema of σ t

t0
(x, ·) as unit vectors of the form

e0 = αξ1 + βξ2, α2 + β2 = 1, (52)

with the constants α(x) and β(x) to be determined. Substituting
(52) into (50), we obtain

σ(x, α, β) =
�
Ω (αξ1 + βξ2) , Ct

t0
[αξ1 + βξ2]

�
��

αξ1 + βξ2, C
t

t0 [αξ1 + βξ2]
�
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=
�
(αξ2 − βξ1) , Ct

t0
[αξ1 + βξ2]

�
��

αξ1 + βξ2, C
t

t0 [αξ1 + βξ2]
�

= αβ (λ2 − λ1)�
α2λ1 + β2λ2

.

At extrema of σ(x, ·), we have

∂σ

∂α
= β (λ2 − λ1)

�
α2λ1 + β2λ2

�
− αβ (λ2 − λ1) αλ1

�
α2λ1 + β2λ2

�3/2 = 2λα,

∂σ

∂β
= α (λ2 − λ1)

�
α2λ1 + β2λ2

�
− αβ (λ2 − λ1) βλ2

�
α2λ1 + β2λ2

�3/2 = 2λβ,

where λ is a Lagrange multiplier introduced for the constraint
α2 + β2 = 1. Equivalently, we have

(λ2 − λ1)
β3λ2

�
α2λ1 + β2λ2

�3/2 = 2λα,

(λ2 − λ1)
α3λ1

�
α2λ1 + β2λ2

�3/2 = 2λβ,

or

β

α
= ± 4

�
λ1

λ2
.

Combinedwith the constraint α2+β2 = 1, this last equation gives
the following two extremum directions for e0:

η± =
� √

λ2√
λ1 + √

λ2
ξ1 ±

� √
λ1√

λ1 + √
λ2

ξ2. (53)

Substituting these vectors into the expression (50) for σ t

t0
gives the

extremum values

σ t

t0
(x, η±(x)) = ±

√
λ2(x) − √

λ1(x)
4√λ1(x)λ2(x)

. (54)

It is simple to verify that
��σ t

t0
(x, · )

��2 admits a localmaximumalong
the vectors η±(x). Therefore, the values in (54) represent locally
maximal positive and negative Lagrangian shear values.

A.3. An alternative characterization of directions of maximum

Lagrangian shear

Note that
�
η±, Ct

t0
η±

�
=

√
λ2λ1√

λ1 + √
λ2

+
√

λ1λ2√
λ1 + √

λ2

=
�

λ1λ2 =
�
det Ct

t0 = detDFt

t0
, (55)

thus the shear vectors η± are stretched by exactly the same
factor as infinitesimal areas under the action of DFt

t0
. As long as

λ1 �= λ2, there are precisely two subspaces with this stretching
property, as one concludes from the analysis of the quadratic form�
η±, Ct

t0
η±

�
. Consequently, the two subspaces spanned by shear

vectors coincide with the two subspaces in which vectors are
stretched by a factor of detDFt

t0
.

Substituting η1
± = cosφ and η2

± = sinφ with φ ∈ [0, 2π) into
(55), we obtain an alternative equation for the shear vector fields
in terms of the angle φ they enclose with the x axis:

C11 cos2 φ + 2C12 sinφ cosφ + C22 sin2 φ = detDFt

t0
. (56)

Taking the square of this equation yields

4C2
12 sin

2 φ
�
1 − sin2 φ

�

=
�
detDFt

t0
− C11

�
1 − sin2 φ

�
− C22 sin2 φ

�2
,

which, in turn, leads to a quadratic equation for sin2 φ in the form
�
2 det C − �C�2� sin4 φ + 2

�
detDFt

t0
(C22 − C11) + C

2
12

+ det C + C
2
11

�
sin2 φ −

�
detDFt

t0
− C11

�2 = 0. (57)

For incompressible flows, (57) simplifies to
�
2 − �C�2� sin4 φ + 2

�
(1 + C22 − C11) + C

2
12 + C

2
11

�
sin2 φ

− [1 − C11]2 = 0. (58)

This formula is useful in identifying the direction of maximal
Lagrangian shear in specific examples (see, e.g., Appendix D.2.3).

A.4. Comparison of Lagrangian shear with shear strain in continuum

mechanics

We conclude this Appendix by comparing the Lagrangian shear
σ t

t0
(x0, e0) defined is (50) with the classic notion of Lagrangian

shear [14], which is associated with the change in the angle
between two initially orthogonal vectors, such as e0 and n0, under
the linearized flow map DF

t

t0
(x0). The sine of this angle change is

equal to the cosine enclosed by the advected vectors, given be the
shear strain measure

σ̂ t

t0
(x0, e0) =

�
et ,DF

t

t0
(x0)n0

�
��DFt

t0(x0)e0
�� ��DFt

t0(x0)n0
�� (59)

=
�
Ωe0, C

t

t0
(x0)e0

�
��

e0, C
t

t0(x0)e0
���

Ωe0, C
t

t0(x0)Ωe0
� . (60)

This classic shear strain measure is well-known to be maximal
in norm along the directions

η̂± = 1√
2
(ξ1 ± ξ2),

which are always at 45° angles from the eigenvectors of the
Cauchy–Green strain tensor [14]. While of clear mechanical
significance, these directions do not capture shear in a dynamical
sense. For instance, η̂± do not even align with dynamical shear-
type barriers in steady parallel shear flows (cf. Appendix D.2 with
u(y, t) ≡ u(y)).

Appendix B. Poof of Theorem 1

Statement (i) follows by observing from (3) that the stretched
arclength l

t

t0
(γ0) can be viewed as the length of γ0 under a

Riemannian metric c defined in (19). As a result, extrema of the
functional lt

t0
are geodesics on (U, c).

To prove statement (ii), observe that for hyperbolic and shear
barriers, Eqs. (10) and (11) imply that

δlt
t0
(γ0) [h] =

√
2

�
s2

s1

�
∂r

�
L(r, r �)

− d

ds
∂r �

�
L(r, r �)

�
· hds = 0 (61)

must hold for all perturbations h(s) consistent with the bound-
ary conditions (15) or (17). Since all these possible boundary con-
ditions include the case of fixed boundary conditions (h(s1) =
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Fig. 24. Cauchy–Green geodesics are preimages of orbits of a pointmassmoving on
the deformed flow configuration labeled by the coordinates (r1

t
, r2

t
). The Lagrangian

and Hamiltonian equations of motion, (20) and (22), describe this particle motion
in terms of the coordinates (r1, r2) parameterizing the initial configuration of the
flow.

h(s2) = 0), transport barriers are also local minimizers of the ar-
clength functional lt

t0
under fixed boundary conditions. As a con-

sequence, the classic Maupertius principle (see, e.g., [34]) implies
that transport barriers further minimize the energy functional

E
t

t0
(γ0) =

�
s2

s1

L(r(s), r �(s))ds (62)

under fixed boundary conditions. Applying the fundamental
lemma of the calculus of variations to the energy functional (62)
then leads to the classic Euler–Lagrange equations (20) for geode-
sics (see, e.g., [35]).

These equations admit a non-degenerate first integral

H =
�
r
�, ∂r �L

�
− L ≡ L(r(s), r �(s)). (63)

Statement (iii) of Theorem 1 then follows by direct calculation us-
ing this Hamiltonian.

Appendix C. Mechanical analogy for Cauchy–Green geodesics

Consider an imaginary free particle of unit mass, moving over
the deformed configuration F

t

t0
(U), with its path marked as rt(s).

The kinetic energy of such a particle is just T (r �
t
) = 1

2

�
r
�
t
, r �

t

�
.

Now describe the motion of this imaginary particle using the
generalized coordinate r = F

t0
t (rt), i.e., the initial position of the

particle in the flow generated by F
t

t0
. A direct calculation using (22)

and (23) gives

T (r �
t
) = 1

2
�
r
�
t
, r �

t

�
= 1

2
�
DF

t

t0
r
�,DFt

t0
r
��

= 1
2

�
r
�, Ct

t0
r
�� = 1

2

��
C
t

t0
(r)

�−1
p, Ct

t0

�
C
t

t0
(r)

�−1
p

�

= 1
2

�
p,

�
C
t

t0
(r)

�−1
p

�
= H(r, p).

Therefore, the Hamiltonian (23) can also be viewed as the
Hamiltonian of a freely moving particle on F

t

t0
(U), with the preim-

age r of the particle under the flow map used as generalized
coordinate, and with the generalized momentum vector p cano-
nically conjugate to r . Since a free particle moves on straight lines
of the planar region F

t

t0
(U), the Cauchy–Green geodesics r(s) are al-

ways preimages of straight lines under the flowmap F
t0
t (cf. Fig. 24).

These straight lines are of the form given in (24).
We note that beyond the analogy discussed abovewith classical

mechanical systems, arclength-minimizing functionals of the type
(3) also appear in Fermat’s principle for optical ray propagation in
anisotropic media [36]. In that case, however, the equivalent of the
matrix DF

t

t0
– the inverse refractive index matrix – is typically not

a gradient, and hence the analogue of the Cauchy–Green metric is
not a pull-back metric.

Appendix D. Examples of homogeneous transport barriers

Below we review two simple classes of unsteady flows in
which homogeneous transport barriers do exist, and coincide with

transport barriers one would intuitively identify for these flows.
For ease of notation, we will lower the upper indices of the
variables r i (i.e., write ri instead), without changing the position of
any other index; the summation convention over repeated indices
also remains in effect.

D.1. Example: Homogeneous transport barriers in linear flows

For an unsteady linear flow

ẋ = A(t)x, A(t) ∈ R2×2, (64)

the normalized fundamental matrix solution Φ(t, t0) can be used
to obtain the expressions

F
t

t0
(x0) = Φ(t, t0)x0, DF

t

t0
= Φ(t, t0),

C
t

t0
= ΦT (t, t0)Φ(t, t0).

Since C
t

t0
does not depend on the initial condition x0, the strain

eigenvalue fields λ1 and λ2, as well as the corresponding eigen-
vector fields, ξ1 and ξ2, are globally constant for any fixed times t0
and t .

Two simple cases of (64) are hyperbolic and elliptic steady lin-
ear flows, described by the constant coefficient matrices

Ã =
�
1 0
0 −1

�
, Â =

�
0 1

−1 0

�
, (65)

respectively. These flows have explicitly computable Cauchy–
Green strain tensors of the form

C̃
t

t0
=

�
e
2(t−t0) 0
0 e

−2(t−t0)

�
, Ĉ

t

t0
=

�
1 0
0 −1

�
. (66)

D.1.1. Cauchy–Green geodesics

Because of the constancy of Ct

t0
in x0, all Christoffel symbols

in the Euler–Lagrange equations (20) vanish. The equations for
Cauchy–Green geodesics simplify to r

�� = 0, yielding solutions that
are all straight lines of the form

r1(s) = r1(0) + sr
�
1(0),

r2(s) = r2(0) + sr
�
2(0). (67)

D.1.2. Homogeneous hyperbolic barriers

All trajectories of the constant vector field ξ1 are straight lines,
and hence are contained in the geodesic family (67). In particular,
the one-parameter family of lines

r(s) = r(0) + sξ1

are all Cauchy–Green geodesics that are tangent to ξ1 at each
of their points, and hence qualify as homogeneous hyperbolic
transport barriers. This is consistent with the results in [11],
where these parallel lines were characterized as Weak Lagrangian
Coherent Structures (WLCSs). In our current context, the ‘‘weak-
ness’’ of these barriers is seen from the fact that their parallel trans-
lations yield other geodesics (parallel lines) whose subsets shrink
at precisely the same rate. In technical terms, this means that the
Euler–Lagrange solutions in (67) are only stationary points, as op-
posed to strict local minima, for the length functional lt

t0
.

For the steady saddle flow considered in (65), we obtain that
ξ̃1 is aligned with the stable manifold (y axis) of the origin, and
hence all lines parallel to the y axis are homogeneous hyperbolic
barriers (or WLCSs), as already noted in [11]. By contrast, for the
symmetric center flow defined by Â, the weaker strain eigenvector
ξ̂1 is undefined, because Ĉ

t

t0
is the identity matrix. Therefore,

as expected, a steady linear center flow admits no hyperbolic
transport barriers.
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D.1.3. Homogeneous shear barriers

Again, all trajectories of the constant shear vector fields η± =� √
λ2√

λ1+
√

λ2
ξ1 ±

� √
λ1√

λ1+
√

λ2
ξ2 are straight lines, coinciding with the

two families of geodesics given by
r±(s) = r(0) + sη±.

Both familiesmark homogeneous transport barriers at time t0 = 0.
As the time t increases, the barriers γt = F

t

t0

�{r±(s)}s2
s=s1

�
form

rotating material lines along which maximal shear arises.
Specifically, for the steady saddle flow considered in (65), we

obtain

η̃± = 1√
1 + e−2(t−t0)

�
0
1

�
± 1√

1 + e2(t−t0)

�
1
0

�
,

thus homogeneous shear barriers approach hyperbolic barriers as
the length of the finite time interval [t0, t] tends to infinity. As for
the steady center flow defined in (65), the shear vectors η̂± are
undefined since ξ̂i are notwell-defined. Therefore, as expected, this
steady linear center flow admits no shear barriers either.

D.2. Example: Homogeneous transport barriers in unsteady parallel

shear flows

In this example only, we use the usual Cartesian coordinates
(x, y) ∈ U and the velocity field coordinates (u, v) to simplify our
notation. Consider the unsteady parallel shear flow
ẋ = u(y, t),

ẏ = v(t) (68)
on a planar domain (x, y) ∈ U , with arbitrary time dependence
in the velocities u(y, t) and v(t). We introduce the integrated
Eulerian shear

a(y) =
�

t

t0

uy(y, τ )dτ , (69)

and assume that the time-averaged shear is non-vanishing
(a(y0) �= 0) and nonlinear, i.e., da(y)/dy does not vanish on any
open subset of U .

The flowmap, its gradient, and the Cauchy–Green strain tensor
for (68) can be written as

F
t

t0
(x0, y0) =




x0 +

�
t

t0

u(y0, τ )dτ

y0 +
�

t

t0

v(τ)dτ



 ,

DF
t

t0
(x0, y0) =

�
1 a(y0)
0 1

�
,

C
t

t0
(x0, y0) =

�
1 a(y0)

a(y0) 1 + a
2(y0)

�
.

The eigenvalues and eigenvectors of the tensor field C
t

t0
satisfy

λ1(y0) = 1
2
a
2 + 1 − 1

2
a

�
a2 + 4,

λ2(y0) = 1
2
a
2 + 1 + 1

2
a

�
a2 + 4,

ξ1(y0) =





a
�
a2 + (λ1 − 1)2

λ1 − 1
�
a2 + (λ1 − 1)2



 ,

ξ2(y0) =





a
�
a2 + (λ2 − 1)2

λ2 − 1
�
a2 + (λ2 − 1)2



 .

Note that the minimum strain eigenvector ξ1(y0) is constant along
each y = y0 line, and satisfies

ξ1(y0) ·
�
0
1

�
�= 0, (x0, y0) ∈ U, (70)

given that λ1(y0) − 1 < 0 holds for a �= 0.

D.2.1. Cauchy–Green geodesics

In the Euler–Lagrange equations (20) corresponding to our
example flow (68), all Christoffel symbols vanish, except for Γ 1

22 =
da

dy0
. Therefore, the Cauchy–Green strain geodesics satisfy the

equations

r
��
1 + da(r2(s))

dy0

�
r
�
2
�2 = 0, (71)

r
��
2 = 0.

Integrating these equations twice gives the general form of
geodesics as

r1(s) = r1(0) +
�
r
�
1(0) + a(r2(0))r �

2(0)
�
s

− r
�
2(0)

�
s

0
a(r2(σ ))dσ , (72)

r2(s) = r2(0) + r
�
2(0)s.

D.2.2. Homogeneous hyperbolic barriers

For the geodesic r(s) to satisfy the hyperbolic boundary condi-
tion (15), we must have

r
�(s1,2) � ξ1

�
r(s1,2)

�
. (73)

Combining (72) and (73) leads to the identity

2a(r2(0))

a2(r2(0)) −
�
a4(r2(0)) + 4a2(r2(0))

+ a(r2(0))

= 2a(r2(s))

a2(r2(s)) −
�
a4(r2(s)) + 4a2(r2(s))

+ a(r2(s)). (74)

Onemay verify that the function g(a) = 2a
a2−

√
a4+4a2

+a is one-

to-one, so condition (74) can only hold if a(r2(s)) = a(r2(0)). If r(s)
parametrizes a homogeneous geodesic, then a(r2(s)) ≡ a(r2(0))
must hold for any s, implying

da (r2(s))

ds
= da (r2(s))

dy0
r
�
2(s) = 0. (75)

By our nonlinearity assumption (da(y)/dy does not vanish on open
subsets of U), we conclude from (75) that r �

2(s) ≡ 0 must hold on
any geodesic that is a hyperbolic transport barrier. This, however,
contradicts (73) because of the relation (70), therefore an unsteady
parallel shear flow of the form (68) does not admit any hyperbolic
transport barriers in the sense of Definition 2, as expected.

D.2.3. Homogeneous shear barriers

By formula (56) of AppendixA, the angleφ enclosedby the shear
vectors and the x axis satisfies the equation

sinφ
�
2a cosφ + a

2 sinφ
�

= 0,

yielding the solutions φ1 = 0 and φ2 = tan−1 (−2/a), or, equiva-
lently, the shear vectors

η+(y0) =
�
1
0

�
, η−(y0) = 1√

a2 + 4

�
a

−2

�
. (76)
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Recall that a homogeneous shear barrier must be tangent to one
of the vector fields η+(y0) and η−(y0). Assume first that r �(s) �
η−(y0) holds. By (72), this would mean

2
�
r
�
1(0)
r
�
2(0)

+ a(r2(0))
�

= a(r2(s)), (77)

where we also used the fact that r
�
2(0) �= 0 on a geodesic tan-

gent to η−(r �(0)). Differentiating (77) with respect to s again yields
Eq. (75), and hence we obtain a contradiction with our assumption
that r �(s) � η−(y0). Assuming r

�(s) � η+(y0) instead, we obtain
from (72) and (76) that the geodesics

r1(s) = r1(0) + r
�
1(0)s,

r2(s) = r2(0),

are tangent to the η+ vector field. We conclude that any horizontal
line γ0 marks the time-t0 position of a homogeneous shear barrier
in the shear flow (68). The corresponding evolving transport barri-
ers γt can be obtained by integrating Eq. (68) from t0 to t .

D.2.4. Jet cores

We now relax our initial assumptions and allow for the aver-
aged shear to vanish at an isolated point, i.e., we assume for system
(68) that for some value ȳ of the vertical coordinate, we have

a(y) �= 0, y �= ȳ;

a(ȳ) = 0,
da(ȳ)

dy
�= 0.

One can think of the zero shear line y = ȳ as the core or a paral-
lel jet. Away from this core, our analysis above applies and yields
horizontal lines that act as homogeneous shear barriers. At y0 = ȳ,
however, we obtain

F
t

t0
(x0, y0) =



x0 +
�

t

t0

u(ȳ, τ )dτ

y0



 ,

DF
t

t0
(x0, ȳ) =

�
1 0
0 1

�
, C

t

t0
(x0, ȳ) =

�
1 0
0 1

�
,

respectively. Both eigenvalues of Ct

t0
(x0, ȳ) are equal to one at these

points and hence there is no uniquely defined larger or smaller
strain eigenvector.

The only non-vanishing Christoffel symbol is still Γ 1
22 = da

dy0
,

leading to the same Euler–Lagrange equation (71) and the same
geodesics as in (72). The vast majority of these geodesics cross
or avoid the jet core, and their subsets away from the jet core
are covered by our prior analysis. An exception is the geodesic
satisfying initial conditions of the form r2(0) = ȳ, r �

2(0) = 0, for
which (72) yields the full solution

r1(s) = r1(0) + r
�
1(0)s

r2(s) = ȳ,

that remains inside the vertical line y = ȳ. This shows that even
though the degeneracy of the jet core y = ȳ prevents it from
satisfying hyperbolic or shear boundary conditions, this core still
is a Cauchy–Green geodesic.

Appendix E. Proof of Theorem 2

E.1. Proof of some strain eigenvector-field identities

First, we prove the identities

∇ξ1ξ1 = κ1ξ2, (∇ξ1)
T ξ1 = 0,

∇ξ1ξ2 = −κ2ξ2, (∇ξ1)
T ξ2 = κ1ξ1 − κ2ξ2,

∇ξ2ξ2 = κ2ξ1, (∇ξ2)
T ξ2 = 0,

∇ξ2ξ1 = −κ1ξ1, (∇ξ2)
T ξ1 = κ2ξ2 − κ1ξ1,

(78)

where κi(x) denotes the curvature of the trajectory of the ξi field
at the point x, with respect to the unit normal ξj with i �= j.
These identities play a key role in the proof of geodesic deviation
formulae for strainlines and shearlines.

Differentiation of the identity ξ
j

1ξ
j

1 = 1 with respect to x
k, then

subsequent multiplication by ξ k

1 yields the expressions

(∇ξ1)
T ξ1 = 0, (∇ξ1) ξ1 ⊥ ξ1,

or, equivalently,

(∇ξ1)
T ξ1 = 0, (∇ξ1) ξ1 = κ1ξ2 (79)

for an appropriate real-valued function κ1(x).
In addition to (79), we note two further identities that follow

from �ξi, ξi� = 1 by differentiation with respect to x then left-
multiplication by ξ T

j
with i �= j:

(∇ξ2)
T ξ2 = 0, (∇ξ2) ξ2 ⊥ ξ2.

∇ξ1ξ2 � ξ2, ∇ξ2ξ1 � ξ1. (80)
The second set of equations in (80) implies
∇ξ1ξ2 = ϑ1ξ2, ∇ξ2ξ1 = ϑ2ξ1, ∇ξ2ξ2 = κ2ξ1, (81)
where ϑk denotes the single nonzero eigenvalue8 of the Jacobian
∇ξk corresponding to its eigenvector ξj with j �= k, and κ2(x) is an
appropriate real-valued function.

Note that
(∇ξ1)

T ξ2 =
�
ξ2, (∇ξ1)

T ξ2
�
ξ2 +

�
ξ1, (∇ξ1)

T ξ2
�
ξ1

= �∇ξ1ξ2, ξ2� ξ2 + �∇ξ1ξ1, ξ2� ξ1

= ϑ1ξ2 + κ1ξ1. (82)
Equivalently, taking the gradient of the identity �ξ1, ξ2� = 0, we
obtain
(∇ξ1)

T ξ2 = − (∇ξ2)
T ξ1

=
�
ξ2, − (∇ξ2)

T ξ1
�
ξ2 +

�
ξ1, − (∇ξ2)

T ξ1
�
ξ1

= −�∇ξ2ξ2, ξ1� ξ2 − �∇ξ2ξ1, ξ1� ξ1

= −κ2ξ2 − ϑ2ξ1. (83)
Comparing (82) and (83) gives the following relationships between
κi and ϑj:
ϑ1 = −κ2, ϑ2 = −κ1,

leading to the final set of identities listed in (78).
It remains to show that κi(x) is in fact the curvature of the

trajectory of the ξi field at the point x, with respect to the unit
normal ξj. Since a trajectory r(s) of the vector field ξ1 satisfies the
differential equation r

�(s) = ξ1(r(s)), the classic formula for the
curvature κ of this trajectory (see, e.g., [18]) with respect to its unit
normal ξ2(r(s)) yields

κ = det(r �, r ��)

|r �|3 =
�
ξ2, r

���

|ξ1|3
= �ξ2, ∇ξ1ξ1� = κ1, (84)

as claimed, wherewe have used the fifth identity from (78), as well
as formula (6) for the orientation of the strain eigenvectors. The
proof for κ2 being the curvature of the trajectories of the ξ2 vector
field is identical.

8 Observe that the other eigenvalue of ∇ξk is always zero because (∇ξk)
T is a

singular matrix, as seen from (79) and (80). The eigenvector corresponding to this
zero eigenvalue is found to be ek = κkξj − νkξk(j �= k).
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E.2. Proof of the geodesic deviation formulae (31) and (32) for

strainlines

Here we compute the pointwise geodesic deviation d
ξ1
g for a

strainline γt0(s). On a strainline, by definition, have γ �
t0
(sp) =

r
�(sp) = ξ1(p). Therefore, by the definition (27) of the geodesic
deviation, the first term in (28) vanishes.

To evaluate the second term in (28), we differentiate the
identity γ �

t0
(s) = ξ1(γt0(s)) to obtain

γ ��
t0
(sp) = ∇ξ1(p)ξ1(p). (85)
Furthermore, from the Euler–Lagrange equations (20), we have

r
��(sp) = G(p, ξ1(p)),

with the function G defined in (29). This enables us to rewrite
formula (28) for strainlines as

d
ξ1
g

= |�[∇ξ1ξ1 − G(r, ξ1)] , ξ2�| . (86)
In order to evaluate (86) further, we first note the following

identities that follow from the eigenvalue equation Cijξ
j

1 = λ1ξ
i

1:

Clj,kξ
j

1ξ
k

1 = Clk,jξ
j

1ξ
k

1 = λ1,kξ
k

1ξ
l

1 + λ1ξ
l

1,kξ
k

1 − Cljξ
j

1,kξ
k

1 , (87)

Cjk,lξ
j

1ξ
k

1 = λ1,l.

Next, using the definition of the function G in (29) along with the
identities in (87), we obtain

G
i(r, ξ1) = −C

il

�
λ1,kξ

k

1ξ
l

1 + λ1ξ
l

1,kξ
k

1 − Cljξ
j

1,kξ
k

1 − 1
2
λ1,l

�
. (88)

Using the identities (87) again, we find that the terms in the right-
hand side of the expression (88) can be rewritten as

−C
ilλ1,kξ

k

1ξ
l

1 = − 1
λ1

λ1,kξ
k

1ξ
i

1,

−λ1C
ilξ l

1,kξ
k

1 = −λ1

�
C
jlξ l

1,kξ
k

1ξ
j

2

�
ξ i

2 − λ1

�
C
jlξ l

1,kξ
k

1ξ
j

1

�
ξ i

1

= −λ1

λ2
ξ l

1,kξ
k

1ξ
l

2ξ
i

2 −
�
ξ l

1,kξ
k

1ξ
l

1
�
ξ i

1

= −λ1

λ2
ξ l

1,kξ
k

1ξ
l

2ξ
i

2,

C
il
Cljξ

j

1,kξ
k

1 = δi

j
ξ
j

1,kξ
k

1 = ξ i

1,kξ
k

1 ,

1
2
C
ilλ1,l = 1

2

��
C
jlλ1,lξ

j

1

�
ξ i

1 +
�
C
jlλ1,lξ

j

2

�
ξ i

2

�

= 1
2λ1

λ1,lξ
l

1ξ
i

1 + 1
2λ2

λ1,lξ
l

2ξ
i

2. (89)

Based on these identities and those in (78), the function G defined
in (88) can be written in the coordinate-free form

G(r, ξ1) = − 1
2λ1

�∇λ1, ξ1� ξ1 − κ1
λ1

λ2
ξ2 + κ1ξ2

+ 1
2λ2

�∇λ1, ξ2� ξ2. (90)

Substituting (90) into the geodesic deviation formula (86), we
obtain
d

ξ1
g

= |�[∇ξ1ξ1 − G(r, ξ1)] , ξ2�| (91)

= 1
λ2

����λ1κ1 − 1
2

�∇λ1, ξ2�
���� , (92)

which proves formula (31).
Consider now an incompressible flow (∇·v = 0) in (1). For such

flows, (38) yields the relationships

λ1 = 1
λ2

, ∇λ1 = −λ1

λ2
∇λ2 = − 1

λ2
2
∇λ2. (93)

These formulae allow us to rewrite (91) as (32).

E.3. Proof of the geodesic deviation formulae (33) and (34) for

shearlines

Here we compute the pointwise geodesic deviation d
η±
g for a

shearline γt0(s). By the definition of shearlines, we have

γ �
t0

= η±(γt0) = α(γt0)ξ1(γt0) ± β(γt0)ξ2(γt0), (94)

α =
� √

λ2√
λ1 + √

λ2
, β =

� √
λ1√

λ1 + √
λ2

.

Differentiation of the above differential equation with respect to s

gives

γ ��
t0

= �∇α, η±� ξ1 + α∇ξ1η± ± �∇β, η±� ξ2 ± β∇ξ2η±

= �∇α, η±� ξ1 + α2κ1ξ2 ∓ αβκ2ξ2 ± �∇β, η±� ξ2

+ β2κ2ξ1 ∓ αβκ1ξ1. (95)

As a result, we have
�
γ ��
t0
, Ωγ �

t0

�
=

���∇α, η±� ξ1 + α2κ1ξ2

∓ αβκ2ξ2 ± �∇β, η±� ξ2

+ β2κ2ξ1 ∓ αβκ1ξ1
�
, (∓βξ1 + αξ2)

�

= ∓β �∇α, η±� + α3κ1

∓ α2βκ2 ± α �∇β, η±� ∓ β3κ2 + αβ2κ1

= ∓�β∇α − α∇β, η±� + ακ1 ∓ βκ2

= ∓ 1
β

�∇α, η±� + ακ1 ∓ βκ2, (96)

where we have used the identity α2 + β2 = 1, as well as its
consequence, ∇β = −(α/β)∇α. Substitution of (95) into the
simplified geodesic deviation formula (28) gives

d
η±
g

= |1 − �η±, ξ1�| +
���γ ��

t0
, Ωγ �

t0

�
− �G(p, ξ1), ξ2�

��

= |1 − α| +
����∓

1
β

�∇α, η±� + ακ1 ∓ βκ2

+
�

λ1

λ2
− 1

�
κ1 − 1

2λ2
�∇λ1, ξ2�

���� , (97)

proving formula (33).
For incompressible flows, the relationships (93) again hold

between λ1, λ2 and their gradients. Furthermore, the coefficients
α and β simplify to

α = 1√
1 + λ1

, β = 1√
1 + λ2

. (98)

Using these relations in the terms appearing on the right-hand side
of (97), we obtain

∓ 1
β

�∇α, (αξ1 ± βξ2)� = ±
√
1 + λ2 �∇λ1, ξ1�
2 (1 + λ1)

+ �∇λ1, ξ2�
2
√
1 + λ1

3

= ∓ �∇λ2, ξ1�
2λ2

√
1 + λ2

− �∇λ2, ξ2�
2
√

λ2
√
1 + λ2

3 ,

ακ1 = κ1√
1 + λ1

= κ1
√

λ2√
1 + λ2

∓βκ2 = ∓ κ2√
1 + λ2

.

Substituting these expressions into (97), we obtain

d
η±
g

=
����

√
1 + λ1 − 1√
1 + λ1

���� +
����∓

�∇λ2, ξ1�
2λ2

√
1 + λ2

− �∇λ2, ξ2�
2
√

λ2
√
1 + λ2

3 + κ1
√

λ2√
1 + λ2

∓ κ2√
1 + λ2
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+
�

1
λ2
2

− 1
�

κ1 + 1
2λ3

2
�∇λ2, ξ2�

����

=
√
1 + λ2 − √

λ2√
1 + λ2

+

������
∓ �∇λ2, ξ1�

2λ2
√
1 + λ2

+
�∇λ2, ξ2�

�√
1 + λ2

3 − √
λ2

5
�

2λ3
2
√
1 + λ2

3

+
κ1

�√
λ2

5 + (1 − λ2
2)

√
1 + λ2

�

λ2
2
√
1 + λ2

∓ κ2√
1 + λ2

������
,

which proves formula (34).

E.4. Proof of the general geodesic deviation formula (35)

At a point γt0(s) of a general transport barrier candidate, the
curvature κ of γt0(s) and the curvature κ0 of the locally least-
stretching geodesic r(s) can be written in index notation as

κ =
det(γ �

t0
, γ ��

t0
)

��γ �
t0

��3
=

�
γ ��
t0
, Ωγ �

t0

�

��γ �
t0

��3
= 1

��γ �
t0

��3
Ωij

�
γ i

t0

��� �
γ

j

t0

��
,

κ0 = det(r �, r ��)

|r �|3 =
�
r
��, Ωr

��

|r �|3 = 1
|r �|3 Ωij

�
r
i
��� �

r
j
��

.

(99)

The explicit solution (24) enables us to evaluate r
��. Specifically,

writing (24) in index form, using the shorthand notation Fi for the
ith coordinate function of the flow map F

t

t0
, differentiating (24)

twice with respect to s, and setting s = 0, we obtain
�
r
i
��� = F

−1
i,jl Fl,m

�
r
m

EL

��
Fj,k

�
r
k

EL

��
.

Using the indexnotation F
i,j for the tensor

�
DF

t

t0

�−1, andnoting that
r
� = ξ1 holds on the locally least-stretching geodesic, we obtain
�
r
i
��� = F

i,jl
Fj,kFl,m

�
ξ k

1
�� �

ξm

1
��

. (100)

Using (99) and (100), we obtain the curvature difference

κ − κ0 = Ωij

� �
γ i

t0

����
γ

j

t0

��

��
γ i

t0

���
γ i

t0

���3/2

− F
i,jl
Fj,kFl,m

�
ξ k

1
�� �

ξm

1
�� �

ξ
j

1
��
�

. (101)

Substituting (101) into the second term |κ − κ0| of the geodesic
deviation formula (27) gives

dg =
�����1 −

�
γ �
t0
, ξ1

�
��γ �

t0

��

����� + |κ − κ0|

=
�����1 −

�
γ i

t0

��
ξ i

1��γ �
t0

��

����� +
�����Ωij

��
γ i

t0

��� �
γ

j

t0

��

��γ �
t0

��3/2

− F
i,jl
Fj,kFl,m

�
ξ k

1
�� �

ξm

1
�� �

ξ
j

1

��
������,

which proves formula (35).

Appendix F. Proof of Proposition 2

Let γt0 be a compact shearline, and let γt0(s) be its parametriza-
tion by arclength. We then have

γ �
t0
(s) = z(γt0(s))η±(γt0(s)), (102)

where the function z(γt0(s)) takes discrete values from the set
{−1, 1}, and is introduced to eliminate any potential orientational
discontinuity of the shear vector field (cf. Section 7.3). Using
formulae (3) and (18), and recalling that λ1λ2 = 1 holds for
incompressible flows,we canwrite the length of thematerial curve
γt0+T = F

t0+T

t0 (γ0) as

l(γt0+T ) =
�

l(γt0 )

0

��
γ �
t0(s)C

t0+T

t0

�
γt0(s)

�
γ �
t0(s)

�
ds

=
�

l(γ0)

0

��z(γt0(s))
��
�

λ1
�
γt0(s)

�
λ2

�
γt0(s)

�
ds

=
�

l(γt0 )

0
ds = l(γt0),

which proves Proposition 2.

Appendix G. Extension to two-dimensional flows over smooth

surfaces

Here we show how our approach to transport barriers in planar
flows extends to flows defined on two-dimensional surfaces, such
as geophysical flows.

Let a two-dimensional smooth surface M be embedded in the
Euclidean space R3 through a local parametrization f : x �→ f (x) ∈
M , with x ∈ U ∈ R2 denoting two-dimensional local coordinates
for M . We assume that the flow of interest is given in terms of the
x coordinates, satisfying a differential equation of the form
ẋ = v(x, t). (103)
For instance, x = (φ, θ) can be longitudinal and latitudinal coordi-
nates of a sphere, whose dimension is angle, as opposed to length.
In that case, the field v(x, t) is a vector of angular velocities. The
flow map associated with (103) is also two-dimensional, defined
again as F t

t0
: x0 �→ x(t; t0, x0).

Assume that the initial curve γ0 ∈ U is parametrized by the
function r(s) at time t0. The curve γ0 is advected by the flow map
F
t

t0
, generating a material line γt = F

t

t0
(γ0) in the space of the local

coordinates of M . This curve in the coordinate space U generates
a curve f (γt) on M (see Fig. 25), whose length can be measured
using the standard Euclidean inner product inherited by M from
the ambient space R3

lM(γt) =
�

s2

s1

�����
d

ds
f

�
F
t

t0(r(s))
�����

2

ds

=
�

s2

s1

��
r �(s), C̃ t

t0(r(s))r
�(s)

�
ds, (104)

where the two-dimensional, positive semi-definite tensor field C̃
t

t0
is defined as

C̃
t

t0
(x0) =

�
DF

t

t0
(x0)

�
T

G(F t

t0
(x0))DF

t

t0
(x0),

G(x) = [Df (x)]T Df (x).
(105)

Here G(x) is the representation of the metric tensor of M in terms
of the local coordinate x, and Df denotes the Jacobian of the local
parametrization f .9 In differential geometric terms, C̃ t

t0
(x0) is the

tensor generating the pull-back metric c̃ =
�
f ◦ F

t

t0

�∗
e on the

coordinate space U ⊂ R2, with e denoting the Riemannian metric
on R3 (see, e.g., [35]).

9 To avoid technicalitieswith switching between different local parametrizations
of M , we have assume here that |t − t0| is small enough so that γt also lies in U .
Alternatively, we may also assume that the function f in fact provides a global
parametrization ofM .
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Fig. 25. Set-up for extension to flows on two-dimensional surfaces.

We define the length functional lt
t0

of the initial material line
position γ0 to be equal to the stretched length of γt , as measured
in the metric of the actual flow domain, the surfaceM:

l
t

t0
(γ0) := lM(γt).

By analogy between Eqs. (3) and (104), all our results on trans-
port barriers remain valid if we use the pull-back Cauchy–Green
strain tensor C̃ t

t0
(x0) instead of the classic Cauchy–Green strain ten-

sor Ct

t0
(x0).

G.1. Example: Transport barriers in flow over a sphere

Assume that the surface M is a two-dimensional sphere of
radius r embedded in R3. In spherical polar coordinates, points on
M are parametrized as

f (φ, θ) =
�
r sin θ cosφ
r sin θ sinφ

r cos θ

�

∈ R3.

The Jacobian of this function, and the corresponding induced
metric tensor onM are of the form

Df (φ, θ) =
�−r sin θ sinφ r cos θ cosφ

r sin θ cosφ r cos θ sinφ
0 −r sin θ

�

,

G(φ, θ) = [Df (φ, θ)]T Df (φ, θ) =
�
r
2 sin2 θ 0

0 r
2

�
.

(106)

Assume that an unsteady flow on the surface of the sphere is
described in terms of the differential equations

φ̇ = ω1(φ, θ, t),

θ̇ = ω2(φ, θ, t),

generating the flow mapping and deformation gradient

F
t

t0
(φ0, θ0) =

�
φ(t; t0, φ0, θ0)
θ(t; t0, φ0, θ0)

�
,

DF
t

t0
(φ0, θ0) =





∂φ(t; t0, φ0, θ0)

∂φ0

∂φ(t; t0, φ0, θ0)

∂θ0
∂θ(t; t0, φ0, θ0)

∂φ0

∂θ(t; t0, φ0, θ0)

∂θ0



 .

(107)

Then by formulae (105)–(107), all results in the earlier sections of
this paper will apply in the spherical coordinates (φ, θ), provided
we use the pull-back Cauchy–Green strain tensor

C̃
t

t0
(φ0, θ0) =





∂φ(t; t0, φ0, θ0)

∂φ0

∂θ(t; t0, φ0, θ0)

∂φ0
∂φ(t; t0, φ0, θ0)

∂θ0

∂θ(t; t0, φ0, θ0)

∂θ0





×
�
r
2 sin2 θ(t; t0, φ0, θ0) 0

0 r
2

�

×





∂φ(t; t0, φ0, θ0)

∂φ0

∂φ(t; t0, φ0, θ0)

∂θ0
∂θ(t; t0, φ0, θ0)

∂φ0

∂θ(t; t0, φ0, θ0)

∂θ0



 .

References

[1] J.B. Weiss, A. Provenzale (Eds.), Transport and Mixing in Geophysical Flows,
in: Lecture Notes in Physics, vol. 744, Springer, New York, 2008.

[2] J.M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport,
Cambridge University Press, Cambridge, 1989.

[3] J.E. Marsden, S.D. Ross, New methods in celestial mechanics and mission
design, Bull. Amer. Math. Soc. 43 (2006) 43–73.

[4] M. Toda, T. Komatsuzaki, T. Konishi, R.S. Berry, S.A. Rice (Eds.), Geometrical
Structures of Phase Space in Multi-Dimensional Chaos: Applications to
Chemical Reaction Dynamics in Complex Systems, Wiley-Interscience,
2005.

[5] L.C. Woods, Theory of Tokamak Transport: New Aspects for Nuclear Fusion
Reactor Design, Wiley, 2006.

[6] J. Jeong, F. Hussain, On the identification of a vortex, J. Fluid Mech. 285 (1995)
69–94.

[7] G. Boffetta, G. Lacorata, G. Redaelli, A. Vulpiani, Detecting barriers to transport:
a review of different techniques, Physica D 159 (2001) 58–70.

[8] G. Haller, An objective definition of a vortex, J. Fluid Mech. 525 (2005) 1–26.
[9] Peacock T., Dabiri J. (Eds.), Focus issue on Lagrangian coherent structures,

Chaos 20 (2010).
[10] C. Basdevant, T. Philipovitch, On the validity of the ‘‘Weiss criterion’’ in two-

dimensional turbulence, Physica D 73 (1994) 17–30.
[11] G. Haller, A variational theory of hyperbolic Lagrangian coherent structures,

Physica D 240 (2011) 574–598.
[12] G. Froyland, N. Santitissadeekorn, A. Monahan, Transport in time-dependent

dynamical systems: finite-time coherent sets, Chaos 20 (2010) 043116.
[13] M.R. Allshouse, J.-L. Thiffeault, Detecting coherent structures using braids,

Physica D 241 (2012) 95–105.
[14] C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, Springer,

New York, 2004.
[15] T. Delmarcelle, L. Hesselink, The topology of symmetric, second order tensor

field, in: Proc. of Visualization’94, 1994, pp. 140–147.
[16] I.A. Gelfand, S.V. Fomin, Calculus of Variations, Dover Publications, 2000.
[17] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin, 2002.
[18] P.A. Blaga, Lectures on the Differential Geometry of Curves and Surfaces,

Napoca Press, 2005.
[19] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, NY,

1978.
[20] M. Farazmand, G. Haller, Computing Lagrangian coherent structures from

variational LCS theory, Chaos 22 (2012) 013128.
[21] K. Tchon, J. Dompierre, M.G. Vallet, F. Guibault, R. Camarero, Two-dimensional

metric tensor visualization using pseudo-meshes, Eng. Comput. 22 (2006)
121–131.

[22] R. Calleja, R. de la Llave, Fast numerical computation of quasi-periodic
equilibrium states in 1D statistical mechanics, including twist maps,
Nonlinearity 22 (2009) 1311–1336.

[23] R.T. Pierrehumbert, Large-scale horizontal mixing in planetary atmospheres,
Phys. Fluids A 3 (1991) 1250–1260.

[24] F.J. Beron-Vera, M.J. Olascoaga, M.G. Brown, H. Koçak, I.I. Rypina, Invariant-
tori-like Lagrangian coherent structures in geophysical flows, Chaos 20 (2010)
017514.

[25] W.G. Bickley, The plane jet, Philos. Mag. 23 (1937) 727–731.
[26] D. del Castillo-Negrete, P.J. Morrison, Chaotic transport by Rossby waves in

shear flow, Phys. Fluids A 5 (1993) 948–965.
[27] M.J. Olascoaga, G. Haller, Forecasting major instabilities in environmental

contamination patterns, Proc. Natl. Acad. Sci. 109 (2012) 4738–4743.
[28] R.S.MacKay, J.D.Meiss, I.C. Percival, Transport inHamiltonian systems, Physica

D 13 (1984) 55–81.
[29] V. Rom-Kedar, S. Wiggins, Transport in two-dimensional maps, Arch. Ration.

Mech. Anal. 109 (1990) 239–298.
[30] S. Wiggins, Chaotic Transport in Dynamical Systems, Springer, New York,

1992.
[31] C. Garth, F. Gerhardt, X. Tricoche, H. Hans, Efficient computation and

visualization of coherent structures in fluid flow applications, IEEE Trans. Vis.
Comput. Graphics 13 (2007) 1464–1471.

[32] C. Conti, D. Rossinelli, P. Koumoutsakos, GPU and APU computations of finite
time Lyapunov exponent fields, J. Comput. Phys. 231 (2012) 2229–2244.

[33] W. Tang, P.W. Chan, G. Haller, Lagrangian coherent structure analysis of
terminal winds detected by LIDAR. Part I: turbulence structures, J. Appl.
Meteorol. Climatol. 50 (2011) 325–338.

[34] J. Moser, Selected Chapters in the Calculus of Variations, Birkhäuser, 2003.
[35] R. Abraham, J.E. Marsden, Foundations of Mechanics, Addison-Wesley, 1978.
[36] D.D. Holm, Geometric Mechanics Part I: Dynamics and Symmetry, Imperial

College Press, London, 2011.


	Geodesic theory of transport barriers in two-dimensional flows
	Introduction
	Motivation: Simple examples of transport barriers
	Transport barriers as material length minimizers
	Formulation
	Boundary conditions for the stretched length functional
	Hyperbolic boundary conditions
	Shear boundary conditions


	Definitions and existence result for transport barriers
	Homogeneous (idealized) transport barriers
	Near-homogeneous transport barriers
	Detection of near-homogeneous barriers
	Incompressible near-homogeneous barriers: Elliptic, parabolic and hyperbolic barriers

	Computation of transport barriers
	Numerical algorithm
	Computing strain eigenvalues and eigenvectors
	Computing strainlines and shearlines
	Extracting transport barriers from strainlines
	Extracting transport barriers from shearlines
	The length of the time interval used in barrier detection

	Example 1: Transport barriers in a two-dimensional chaotic advection mapping
	Example 2: Transport barriers in the chaotically forced Bickley jet
	Conclusions
	Acknowledgments
	Lagrangian shear and its locally maximal directions
	Definition of Lagrangian shear
	Directions and magnitude of maximal Lagrangian shear
	An alternative characterization of directions of maximum Lagrangian shear
	Comparison of Lagrangian shear with shear strain in continuum mechanics

	Poof of Theorem 1
	Mechanical analogy for Cauchy--Green geodesics
	Examples of homogeneous transport barriers
	Example: Homogeneous transport barriers in linear flows
	Cauchy--Green geodesics
	Homogeneous hyperbolic barriers
	Homogeneous shear barriers

	Example: Homogeneous transport barriers in unsteady parallel shear flows
	Cauchy--Green geodesics
	Homogeneous hyperbolic barriers
	Homogeneous shear barriers
	Jet cores


	Proof of Theorem 2
	Proof of some strain eigenvector-field identities
	Proof of the geodesic deviation formulae (31) and (32) for strainlines
	Proof of the geodesic deviation formulae (33) and (34) for shearlines
	Proof of the general geodesic deviation formula (35)

	Proof of Proposition 2
	Extension to two-dimensional flows over smooth surfaces
	Example: Transport barriers in flow over a sphere

	References


