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We develop a frame-invariant theory of material spike formation during flow
separation over a no-slip boundary in two-dimensional flows with arbitrary time
dependence. Based on the exact curvature evolution of near-wall material lines, our
theory identifies both fixed and moving flow separation, is effective also over short
time intervals, and admits a rigorous instantaneous limit. As a byproduct, we derive
explicit formulae for the evolution of material line curvature and the curvature rate
for general compressible flows. The material backbone that we identify acts first as
the precursor and later as the centrepiece of unsteady Lagrangian flow separation. We
also discover a previously undetected spiking point where the backbone of separation
connects to the boundary, and derive wall-based analytical formulae for its location.
Finally, our theory explains the perception of off-wall separation in unsteady flows
and provides conditions under which such a perception is justified. We illustrate our
results on several analytical and experimental flows.

Key words: pattern formation, separated flows, topological fluid dynamics

1. Introduction
Fluid flow separation is generally regarded as the detachment of fluid from a

no-slip boundary. It is the root cause of several complex flow phenomena, such as
vortex formation, wake flow and stall, all of which invariably reduce the performance
of engineering flow devices. Following the pioneering work of Prandtl (1904) on
two-dimensional steady flows, a number of advances have been made towards a
better understanding of flow separation. These studies can be divided into two
main categories (cf. § 1.1). The first category views separation as the appearance of a
singularity in the boundary layer equation (Sears & Telionis 1971, 1975). As examples
of both separation without such singularities and singularities without separation are
known (Liu & Wan 1985), this view practically associates separation with one’s
inability to solve the boundary layer equations accurately. The second category views
separation as ejection of material from the boundary due to the presence of wall-based
non-hyperbolic invariant manifolds in the Lagrangian dynamics (Haller 2004). This

† Email address for correspondence: serram@seas.harvard.edu
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FIGURE 1. (Colour online) (a) Streamlines of a steady flow analysed in more detail
in § 6.1.1. The green dot represents the Prandtl separation point defined by (1.1).
(b–g) Zoom of (a) in the region enclosed by the black rectangle, along with the evolution
of the spike visualized through the advection of material lines shown in black. The full
evolution of the material spike is shown in supplementary movie 1.

theory is mathematically exact, and focuses more on longer-term particle dynamics,
as opposed to the appearance of separation triggered by the formation of a material
spike, i.e. a sharp-shaped set of fluid particles ejected from the wall.

To illustrate the difference between short-term material spikes and longer-term
material ejection along unstable manifolds, figure 1 shows the evolution of material
lines initially close to the wall in a steady flow analysed in more detail in
§ 6.1.1. While fluid particles released within the black box in figure 1(a) approach
asymptotically the singular streamline (unstable manifold) emanating from the Prandtl
point x = p (cf. (1.1)), the birth of a material spike takes place at a different
upstream location, as shown in figure 1(b–g). A video showing the full time
evolution of the material lines is also available online (see supplementary movie 1
at https://doi.org/10.1017/jfm.2018.206).

1.1. Prior work on flow separation
Prandtl (1904) derived a separation criterion for two-dimensional steady
incompressible velocity fields f (x, y) = [u(x, y), v(x, y)] that satisfy the no-slip
boundary condition f (x, 0) = 0, where x is the coordinate parallel to the wall, y is
normal to the wall and (u, v) are the components of the velocity field f in the (x, y)
directions. He showed that streamlines in such a flow separate from the boundary
where the skin friction τ vanishes and admits a negative derivative (cf. figure 1).
Thus, according to Prandtl’s criterion, flow separation takes place at a point (p, 0) if

τ(p)= νρuy(p, 0)= 0,
τ ′(p)= νρuxy(p, 0) < 0,

}
(1.1)

where ν and ρ are the kinematic viscosity and the density of the fluid, and (·)y :=
(d/dy)(·).

While this separation criterion is still often considered to be valid for unsteady
flows, several studies have shown this view to be incorrect (Rott 1956; Moore 1958;
Sears & Telionis 1971). Specifically, Sears & Telionis (1975) observed that vanishing
wall shear ‘does not denote separation in any meaningful sense in unsteady flow’,
and proposed the Moore–Root–Sears (MRS) criterion. This criterion states that in the
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limit of infinite Reynolds numbers (Re), unsteady separation takes place at a point
off the boundary where uy vanishes and the streamwise velocity equals the velocity
of the separation structure. The restriction to Re→∞ together with the reliance on
the a priori unknown velocity of the separation structure, however, makes the MRS
principle practically inapplicable (Williams 1977; Van Dommelen 1981).

A large number of numerical studies have focused on solving the boundary layer
equations, defining the separation point as the location where the solution of these
equations becomes singular (Sears & Telionis 1971, 1975). Subsequently, by using
Lagrangian coordinates, Van Dommelen (1981) and Van Dommelen & Shen (1982)
overcame the computational difficulties seen earlier in the Eulerian frame. Analytic
results show, however, that separation in the boundary layer equations has no direct
connection with velocity singularities (Liu & Wan 1985). Furthermore, these methods
are inapplicable to physical two-dimensional Navier–Stokes flows, which do not
exhibit singularities. This problem has been partially solved by the triple-deck theory,
which models the interaction between the viscous boundary layer and the outer
inviscid region (see, e.g., Sychev & Sychev (1998)). The triple-deck theory, however,
like the MRS criterion, assumes an infinite Reynolds number (see also the recent
reviews by Ruban et al. (2011) and Cassel & Conlisk (2014)).

Using dynamical systems theory, Shariff, Pulliam & Ottino (1991) and Yuster &
Hackborn (1997) proposed a rigorous criterion for the existence of a material spike
on a no-slip boundary in a near-steady time-periodic incompressible flow. In particular,
they defined the separation profile in such a flow as the unstable manifold of a non-
hyperbolic fixed point on the wall. Extending this idea, Haller (2004) developed a
general theory of separation for a broader class of unsteady flows, defining two types
of separation: fixed and moving separation. Fixed separation occurs in flows with a
well-defined asymptotic mean (Kilic, Haller & Neishtadt 2005), such as periodic and
quasiperiodic flows, as well as aperiodic flows with a mean component. In this case,
the separation point on the boundary is fixed at a location where the backward-time
average of the skin friction vanishes, and the angle of separation is generally time-
dependent. In the case of compressible flows, the skin-friction average in this criterion
is weighted by a function of the flow density. These results have also been extended
to three-dimensional flows (Surana, Grunberg & Haller 2006; Surana et al. 2008).

To define moving separation points, Haller (2004) used finite-time unstable manifold
ideas from Haller (2000) which are mathematically rigorous but give non-unique
results. In a later contribution, Surana & Haller (2008) derived an exact separation
criterion for slow–fast flows (i.e. unsteady flows where the mean and fluctuating
components have different time scales). The separation point then arises at a location
where the time-varying mean skin friction vanishes. This criterion, however, relies on
a precise extraction of a slow mean-flow component of the velocity field.

Recently, using the theory of Lagrangian coherent structures (LCSs), Miron &
Vétel (2015) proposed a different approach to moving separation. They defined the
separation point as an off-wall Lagrangian saddle-type trajectory whose finite-time
unstable manifold acts as the observed separation profile. This separation profile is an
attracting LCS (Farazmand & Haller 2012) initiated from a set of points satisfying
suitable attraction properties. Among all attracting LCSs, they select a particular
subset on which the backward finite time Lyapunov exponent (FTLE) achieves a
relative maximum within a prescribed neighbourhood. Finally, the separation point
along the remaining LCSs is selected as the point where the time-averaged normal
repulsion rate is maximal after long enough time.

One may look for truly off-wall separation, but it may not exist. At the same time,
not being able to find an on-wall signature of a given separation phenomenon does
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FIGURE 2. (Colour online) (a) Initial position of material lines (black) in a time-periodic
flow analysed in more detail in § 6.3. The instantaneous streamlines and Prandtl separation
points (cf. (1.1)) are shown in blue and green respectively. (b–d) Advected images of
material lines within the time interval [0, 0.1]. The full evolution of material lines is
available as supplementary movie 2.

not imply that it has none. For instance, although commonly thought otherwise (see,
e.g., Miron & Vétel (2015)), in the classic example of flow separation over a moving
boundary, the separation point does have a clear on-wall Eulerian signature in a frame
co-moving with the boundary (see Surana & Haller (2008), figure 7). Therefore, the
existence of a truly off-wall separation point in real-life flows has been an unsettled
question.

Similarly to figure 1, figure 2 shows the evolution of material lines (black) in the
flow past a circular cylinder, analysed in more detail in § 6.3, over the time interval
[0, 0.1]. The instantaneous streamlines and Prandtl separation point are shown in blue
and green respectively. Although this flow is time-periodic with period Tp≈1.1, within
the finite time interval we used, the flow appears aperiodic. Even over this short time
interval, however, one observes a clear spike formation exactly as in the steady flow
example of figure 1. This highlights two important facts. First, the spike formation
shows a qualitatively similar behaviour in both steady and unsteady flows. Second,
and more important, existing criteria would be unable to detect such spike formation
over these short time intervals because they are either inapplicable or are designed to
capture the long-term (asymptotic) separation profile.

From both a phenomenological and a flow-control perspective, one would ideally
need a universal definition of the evolving theoretical centrepiece (backbone) of the
material spike irrespective of the time dependence, the asymptotic properties and the
time scales of the separating flow. Such a definition should be effective also over short
time intervals, and ideally admit a rigorous instantaneous limit. In summary, despite
significant advances in the long-term phenomenological study of flow separation,
a rigorous general theory for the material spike formation universally observed in
separation experiments has still been missing.

1.2. Main results
In this paper, we derive a general frame-independent theory of material spike
formation over a no-slip boundary in a two-dimensional flow with arbitrary time
dependence. Our theory identifies both fixed and moving separation, and is effective
also over short time intervals, inaccessible to previous theories.

Our results are based on explicit formulae for the evolution of material line
curvature. Material spike formation can then be captured as the emergence of the
locus of curvature maxima near the boundary. If such a ridge of the material curvature
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FIGURE 3. (Colour online) Backbone of separation (red curve) in a steady flow
(cf. § 6.1.1) at two different times, along with the streamlines (blue) and material lines
initially parallel to the wall (black). The green dot represents the Prandtl separation point
(cf. (1.1)), while the red dot marks the spiking point (cf. table 1) where the backbone
connects to the wall.

Lagrangian spiking point: (sp, 0)
Steady flow Time-periodic flow (period Tp) Temporally aperiodic flow

T = nTp, n ∈N+


vxxxyy(sp, 0)= 0
vxxxxyy(sp, 0) > 0
vxxyy(sp, 0) < 0



∫ t0+Tp

t0

vxxxyy(sp, 0, t) dt= 0∫ t0+Tp

t0

vxxxxyy(sp, 0, t) dt> 0∫ t0+Tp

t0

vxxyy(sp, 0, t) dt< 0



∫ t0+T

t0

vxxxyy(sp, 0, t) dt= 0∫ t0+T

t0

vxxxxyy(sp, 0, t) dt> 0∫ t0+T

t0

vxxyy(sp, 0, t) dt< 0

TABLE 1. Exact criteria for the location of the Lagrangian spiking point on a flat no-slip
boundary in the case of an incompressible flow observed over the time interval [t0, t0+T].

field emanates from a fixed point on the boundary, we speak of fixed separation.
Otherwise, we identify the separation as moving.

Although in the boundary layer equation community the spike formation has
exclusively been associated with unsteady separation (Van Dommelen 1981; Van
Dommelen & Shen 1982), figure 1 shows that the same phenomenon also exists in
steady flows, as noted above. Using the flow of figure 1, in figure 3, we show the
backbone of the material spike in red, along with the streamlines in blue and the
material lines initially parallel to the wall in black. Most importantly, we uncover a
previously undocumented spiking point sp, at which the backbone of the separation
spike connects to the wall. Remarkably, even in steady flows, the spiking point differs
from the classic zero-skin-friction point p identified by Prandtl.

In table 1, we summarize the general formulae that we will derive later for the
Lagrangian spiking point in the case of incompressible flows analysed over a time
interval [t0, t0 + T] (see § 4 for compressible flows).

In § 4, we show that for steady flows and time-periodic flows analysed over a
multiple of their period, the spiking point is fixed, as is the classic asymptotic
separation point (Prandtl 1904; Haller 2004). The backbone of the separation spike,
however, evolves even in steady flows, serving as the theoretical centrepiece of
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the developing material spike. In contrast, the corresponding asymptotic separation
profiles are fixed. Although our main interest is to capture the birth of the material
spike, in appendix D.3, we also derive explicit formulae for the asymptotic (T→∞)
mean location of the spiking point in the case of unsteady velocity fields with a
finite mean component such as quasiperiodic velocity fields. These formulae apply to
canonical separation problems, such as separation behind a cylinder or a backward
facing step, which admit a finite number of dominant frequencies in their Fourier
spectra.

The spiking point in table 1 involves higher-order derivatives of the velocity field.
These can be computed spectrally in direct numerical simulations, but would be
challenging to measure experimentally. In § 4, however, we derive an alternative
topological definition of spiking points without higher derivatives. In the case of
incompressible flows, our spiking point criteria can also be computed from an
approximate velocity field reconstructed from wall-based quantities (cf. appendix F).

Our theory also explains the perception of off-wall separation in unsteady flows,
providing conditions under which such a perception is correct. Additionally, in the
limit of zero advection time, our Lagrangian definition of the backbone of separation
turns into a frame-invariant Eulerian definition. We believe that this objective Eulerian
identification of the birth of a separation spike will be useful in active flow-control
applications.

This paper is organized as follows. We first develop our theoretical results in §§ 2–4,
then we give an algorithmic summary of our Lagrangian and Eulerian backbones of
separation in § 5. In § 6, we illustrate our results on several examples, including steady,
time-periodic and unsteady analytic velocity fields with flat and curved boundaries, as
well as an experimental velocity dataset.

2. Set-up and notation
We consider the two-dimensional non-autonomous dynamical system

ż= f (z, t), f (z, t)= [u(z, t), v(z, t)]>, z= [x, y]> ∈U ⊂R2, (2.1a−c)

with a smooth velocity field f (z, t) defined on an open flow domain U ⊂ R2 over a
time interval t ∈ [a, b]. We denote the vorticity of f (z, t) by ω(z, t), and recall the
customary velocity gradient decomposition

∇f (z, t)= S(z, t)+W (z, t), (2.2)

with the rate-of-strain tensor S and the spin tensor W defined as

S =
1
2
(∇f +∇f>), W =

1
2
(∇f −∇f>)≡−

ω

2
R, R :=

(
0 1
−1 0

)
. (2.3a−c)

Trajectories z(t; t0, z0) of (2.1) define the flow map

F t
t0(z0) : z0 7→ z(t; t0, z0), (2.4)

which takes an initial condition z0 at time t0 to its position F t
t0(z0) at time t, [t0, t] ⊆

[a, b]. The right Cauchy–Green strain tensor C t
t0 (Truesdell & Noll 2004) is often used

to characterize Lagrangian strain generated by F t
t0 , defined as

C t
t0 = [∇F t

t0]
>
∇F t

t0 . (2.5)
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y

x

Time

FIGURE 4. (Colour online) Curvature evolution along a material line γ in the extended
phase space of position and time.

A common diagnostic for identifying the location of maximum separation of
initially close particles over the time interval [t0, t] is the forward finite time Lyapunov
field (FTLE)

Λt
t0(z0)=

1
t− t0

log
√
λ2(z0), (2.6)

where λ2(z0) denotes the highest eigenvalue of C t
t0(z0). Similarly, the backward FTLE

is used to identify the location of maximum attraction of initially distant particles over
[t0, t]. For a discussion on results connecting the FTLE field to flow features, see
Haller (2015).

3. Curvature evolution along a material line
In this section, we derive an explicit formula for the curvature evolution along a

material line γ as a function of its parametrization at the initial time t0. We denote
with r : s 7→ r(s), s ∈ [s1, s2] ⊂R the parametrization of a material curve γ at t0, and
with (·)′ differentiation with respect to s (see figure 4 for illustration).

The normalized tangent vector to the advected curve F t
t0(γ ), as a function of r(s),

can be computed as

r̃′(s)=
∇F t

t0(r(s))r
′(s)

|∇F t
t0(r(s))r

′(s)|
=

∇F t
t0(r(s))r

′(s)√
〈r ′(s), C t

t0(r(s))r
′(s)〉

, (3.1)

and the arclength of F t
t0(γ ) from F t

t0(r(s1)) to F t
t0(r(s)) is

s̃=
∫ s

s1

√
〈r ′(τ ), C t

t0(r(τ ))r
′(τ )〉 dτ , (3.2)

where 〈· , ·〉 denotes the Euclidean inner product. Using (3.1)–(3.2), we obtain the
curvature vector of F t

t0(γ ) in the form

κ̃(s)=
d
ds̃

r̃′ =
ds
ds̃

d
ds

r̃′ =
r̃′′(s)√

〈r ′(s), C t
t0(r(s))r

′(s)〉
. (3.3)
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Finally, projecting κ̃(s) onto the curve-normal direction, we obtain the material
evolution of the curvature scalar κ t

t0(s) along γ , as a function of its parametrization
at the initial time, in the form

κ t
t0(s)= 〈κ̃(s), Rr̃ ′(s)〉. (3.4)

Similarly, the material curvature rate κ̇t0(s) along γ advected under the flow F t
t0(γ ),

at the initial time t0, can be computed as

κ̇t0(s)=
d
dt
κ t

t0(s)|t=t0 . (3.5)

Figure 4 illustrates formula (3.4). Using the formulae derived in appendix A together
with the results of this section, we obtain the following result.

THEOREM 1. Consider a smooth material curve γ ⊂U parametrized at t0 in the form
r(s), s∈ [s1, s2] ⊂R, and denote its local tangent vector by r ′(s) and curvature scalar
by κ0(s) := κ t0

t0 (s) = 〈r
′′(s), Rr ′(s)〉/

√
〈r ′(s), r ′(s)〉3. The curvature evolution along γ ,

under the action of the flow map F t
t0 , can then be computed as

κ t
t0 =
〈(∇2F t

t0(r)r
′)r ′, R∇F t

t0(r)r
′
〉

〈r ′, C t
t0(r)r

′〉3/2
+ κ0 det[∇F t

t0(r)]
〈r ′, r ′〉3/2

〈r ′, C t
t0(r)r

′〉3/2
(3.6)

and the material curvature rate as

κ̇t0 =
〈Rr ′, (∇S(r, t0)r ′)r ′〉

〈r ′, r ′〉3/2︸ ︷︷ ︸
κ̇I

−
〈∇ω(r, t0), r ′〉

2〈r ′, r ′〉1/2︸ ︷︷ ︸
κ̇II

+ κ0

[
∇ · f(r, t0)− 3

〈r ′, S(r, t0)r ′〉
〈r ′, r ′〉

]
︸ ︷︷ ︸

κ̇III

,

(3.7)
where (∇S(r, t0)r ′)ij =

∑2
k=1 Sij,k(r, t0)r′k, i, j ∈ {1, 2}. For incompressible flows (i.e.

∇ · f= 0) and under arclength parametrization of γ (i.e. 〈r ′, r ′〉 = 1), (3.6) and (3.7)
simplify to

κ t
t0 =
〈(∇2F t

t0(r)r
′)r ′, R∇F t

t0(r)r
′
〉

〈r ′, C t
t0(r)r

′〉3/2
+

κ0

〈r ′, C t
t0(r)r

′〉3/2
, (3.8)

κ̇t0 = 〈(∇S(r, t0)r ′)r ′, Rr ′〉 − 1
2 〈∇ω(r, t0), r ′〉 − 3κ0〈r ′, S(r, t0)r ′〉. (3.9)

Proof. See appendix A.

Equation (3.7) shows that the curvature rate κ̇t0(s) along γ consists of three terms:
the topology of the stretching rate (κ̇I), the topology of the rigid-body rotation rate
described by the vorticity (κ̇II) and the compressibility of f together with the stretching
rate along γ , weighted by its current curvature (κ̇III). Therefore, the curvature rate
κ̇ , and hence also the curvature map κ t

t0 , combines stretching- and rotation-based
quantities.

The computation of spatial derivatives of F t
t0 in (3.6) is a numerically sensitive

procedure. To this end, in appendix B, we derive general identities that allow us to
compute κ t

t0 without taking spatial derivatives of F t
t0 numerically. In appendix C, we

show that κ̇ and κ t
t0 are independent of the parametrization of γ and are objective, i.e.

remain unchanged under time-dependent rotations and translations of the coordinate
frame. This follows from the objectivity of the rate-of-strain tensor and the objectivity
of the vorticity gradient. Remarkably, although vorticity is not objective, its topology
described by the vorticity gradient is objective. We summarize these results as follows.
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(a) (b)

s

(c)

FIGURE 5. (Colour online) (a) Sketch of the typical shape of initially boundary-parallel
material lines (black) in the proximity of a wing profile before and after flow separation.
Red lines show the backbone B(t) of the evolving material spike. (b) Sketch of the
typical topology of the curvature change map defined by (4.2) in a neighbourhood of
the backbone of separation B(t0) at the initial time. (c) Advected time-t position of the
features in (b) for t ∈ [t0, t0 + T].

PROPOSITION 1. The material curvature rate κ̇t0 and the curvature map κ t
t0

(i) are independent of the parametrization r(s), s ∈ [s1, s2] ⊂R;
(ii) are objective, i.e. invariant under coordinate changes of the form

z=Q(t)z̃+ b(t), (3.10)

where Q(t) ∈ SO(2) and b(t) ∈R2 are smooth functions of time.

Proof. See appendix C.

Proposition 1 guarantees that flow features inferred from κ̇ and κ t
t0 are tied to

evolving fluid particles without any reference to coordinates or parametrization. This
frame-invariance property is a basic axiom of continuum mechanics (Gurtin 1982),
ensuring that the material response of a deforming continuum, including the formation
of a material spike driving flow separation, is independent of the observer.

4. The backbone of flow separation
As illustrated in figures 1 and 3, the birth of flow separation occurs at a location

different from the separation point identified by earlier asymptotic theories, even in
steady flows. Here, we seek to describe how an initial upwelling along the boundary
turns into a material spike that later converges to a long-term separation profile
predicted by Prandtl’s theory for steady flows (Prandtl 1904) and by the kinematic
theory of separation for unsteady flows (Haller 2004).

The observed backbone of separation is characterized by points of maximal
curvature change (relative to the initial curvature) along boundary-parallel material
lines in a neighbourhood of the no-slip boundary over the time interval [t0, t] (cf.
figure 5a). To express this coherence principle mathematically, we consider a curved
wall and a curvilinear coordinate system (s, η), in which the wall is defined as

W := {(s, η) ∈ [s1, s2] × [0, η1] : η= 0}. (4.1)

Next, we consider a foliation of a neighbourhood of the boundary by material
curves parallel to the wall at the initial time, parametrized in the form rη(s), where
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s ∈ [s1, s2] ⊂ R, η ∈ [0, η1], η1 > 0. We denote the tangent vectors and curvature
scalars of these curves by r ′η(s) and κ0η(s). With our definition of R in (2.3), together
with the clockwise parametrization of the boundary (cf. figure 5a), the curvature
scalar defined by (3.4) is taken with respect to normal vectors pointing towards the
boundary.

Substituting r ′η and κ0η into (3.6) and subtracting the initial curvature, we obtain the
curvature change κ t

t0(s, η) of the foliation over [t0, t],

κ t
t0 := κ

t
t0 − κ0 =

〈(∇2F t
t0(rη)r

′

η)r ′η, R∇F t
t0(rη)r

′

η〉

〈r ′η, C t
t0(rη)r

′
η〉

3/2
+ κ0η

[
det(∇F t

t0(rη))〈r
′

η, r ′η〉3/2

〈r ′η, C t
t0(rη)r

′
η〉

3/2
− 1

]
.

(4.2)
From this definition of κ t

t0 , it follows that

d
dt
κ t

t0(s, η)|t=t0 = κ̇t0(s, η). (4.3)

Thus, the time derivative of the Lagrangian curvature change coincides with the
curvature rate defined by (3.7). Because of the no-slip condition, the wall is an
invariant set of (2.1), which implies

κ t
t0(s, 0)≡ 0, ∂siκ t

t0(s, 0),

κ̇t0(s, 0)≡ 0, ∂si κ̇t0(s, 0), ∂si :=
∂ i

∂si

 (4.4)

along the wall, for any positive integer i.

4.1. The Lagrangian backbone of the separation spike
We now use the curvature change κ t

t0 to define the Lagrangian backbone of a
material spike as its theoretical centrepiece over a fixed time interval [t0, t0 + T], as
illustrated in figure 5(a). The following definition introduces a formal mathematical
characterization of such a centrepiece.

DEFINITION 1. The Lagrangian backbone B(t) of separation is the theoretical
centrepiece of the material spike over the time interval [t0, t0 + T]. The backbone
B(t) is an evolving material line whose initial position B(t0) is a positive-valued
wall-transverse ridge of the κ t0+T

t0 field.

In this context, a ridge is a set of points that are positive local maxima of κ t0+T
t0

along η= const. curves, and can be computed as described in Proposition 2.
Figure 5(b) illustrates the topology of κ t0+T

t0 (s, η) in a neighbourhood of the wall,
with the loci of maximal curvature change along each η = const. line forming the
curve B(t0). The backbone is typically located between two curves of minimal
negative curvature change, shown in blue. By continuity of κ t0+T

t0 , there also exists a
zero curve of κ t0+T

t0 in the vicinity of B(t0), as shown in dashed black. Figure 5(c)
shows the advected images of the material curves shown in figure 5(b), under the
action of the flow map F t

t0 . The material spike geometry sketched in figure 5 is
consistent with the ones observed numerically in figures 1 and 2.

Of particular interest to us is the Lagrangian spiking point

(sp, 0) :=B(t0)∩W, (4.5)
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Lagrangian spiking point: (sp, 0)
∇ · f 6= 0 ∇ · f = 0

∂ηsκ
t0+T
t0 (sp, 0)= 0

∂ηssκ
t0+T
t0 (sp, 0) < 0

∂ηκ
t0+T
t0 (sp, 0) > 0


∂ηηsκ

t0+T
t0 (sp, 0)= 0

∂ηηssκ
t0+T
t0 (sp, 0) < 0

∂ηηκ
t0+T
t0 (sp, 0) > 0

TABLE 2. Equations determining the Lagrangian spiking point on a flat no-slip boundary
in terms of the Lagrangian curvature change κ t0+T

t0 for compressible and incompressible
flows over the time interval [t0, t0 + T].

∇ · f 6= 0. Lagrangian spiking point: (sp, 0)
Steady Time-periodic: f (z, t+ Tp)= f (z, t) Temporally aperiodic

T = nTp, n ∈N+


vsssη(sp, 0)= 0

vssssη(sp, 0) > 0

vssη(sp, 0) < 0



∫ t0+Tp

t0

vsssη(sp, 0, t) dt= 0∫ t0+Tp

t0

vssssη(sp, 0, t) dt> 0∫ t0+Tp

t0

vssη(sp, 0, t) dt< 0



∫ t0+T

t0

vsssη(sp, 0, t) dt= 0∫ t0+T

t0

vssssη(sp, 0, t) dt> 0∫ t0+T

t0

vssη(sp, 0, t) dt< 0

TABLE 3. The same as the left column of table 2, but expressed in terms of averaged
Eulerian quantities.

the point where the backbone of separation connects to the wall (cf. figure 5). Because
κ t0+T

t0 (s, 0) ≡ 0 at the wall, (sp, 0) is a distinguished point on the wall with positive
maximal curvature change in the limit of η→ 0. In appendix D, we derive explicit
formulae for the spiking point on a flat no-slip boundary in the case of compressible
and incompressible flows. We summarize our results in tables 2–4. Specifically, table 2
describes the location of (sp, 0) in terms of the curvature change function.

In tables 3 and 4, we give an equivalent formulation of the results in table 2 in
terms of averaged Eulerian quantities in the case of steady, time-periodic and unsteady
flows. We have briefly introduced the results of table 4 already in § 1.2.

In our definition of (sp, 0), the first two conditions ensure that (sp, 0) is a maximum
of the curvature change κ t0+T

t0 , and the third one ensures that the curvature change at
(sp, 0) is positive, i.e. wall-parallel material lines undergo upwelling-type deformation.

The formulae in tables 3 and 4 highlight three important facts. First, in the case of
steady flows, the spiking pointy is fixed, independent of T , and can be computed from
derivatives of the velocity field on the wall. Second, in the case of Tp-periodic flows,
with T equal to any arbitrary multiple of Tp, the spiking point is fixed, independent
of t0, and can be computed by averaging derivatives of the velocity field on the wall
over one period. Third, for general unsteady flows or time-periodic flows with T 6=
nTp, n∈N+, the spiking point moves depending on t0 and T , and can be computed by
averaging derivatives of the velocity field over [t0, t0 + T]. We summarize the results
of this section in the following proposition.
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∇ · f = 0. Lagrangian spiking point: (sp, 0)
Steady Time-periodic: f (z, t+ Tp)= f (z, t) Temporally aperiodic

T = nTp, n ∈N+


vsssηη(sp, 0)= 0
vssssηη(sp, 0) > 0
vssηη(sp, 0) < 0



∫ t0+Tp

t0

vsssηη(sp, 0, t) dt= 0∫ t0+Tp

t0

vssssηη(sp, 0, t) dt> 0∫ t0+Tp

t0

vssηη(sp, 0, t) dt< 0



∫ t0+T

t0

vsssηη(sp, 0, t) dt= 0∫ t0+T

t0

vssssηη(sp, 0, t) dt> 0∫ t0+T

t0

vssηη(sp, 0, t) dt< 0

TABLE 4. The same as the right column of table 2, but expressed in terms of averaged
Eulerian quantities.

PROPOSITION 2. Over the finite time interval [t0, t0 + T], we have the following.

(i) The initial position B(t0) of the Lagrangian backbone of separation can be
computed as the set of points s ∈ [s1, s2], η ∈ [0, η1],

B(t0) :=


∂sκ

t0+T
t0 (s, η)= 0, η ∈ (0, η1],

∂ssκ
t0+T
t0 (s, η) < 0, η ∈ (0, η1],

κ t0+T
t0 (s, η) > 0, η ∈ (0, η1],

(sp, η), η= 0.

(4.6)

The Lagrangian spiking point (sp, 0) can be computed in terms of Lagrangian
quantities using the formulae in table 2, in terms of averaged Eulerian quantities
using the formulae in tables 3 and 4, or as the intersection of B(t0) with the
no-slip boundary (cf. (4.5)).

(ii) Later positions B(t) of the Lagrangian backbone of separation can be computed
as B(t)= F t

t0(B(t0)), t ∈ [t0, t0 + T].
(iii) The Lagrangian spiking point (sp, 0)

Steady flow Time-periodic flow: f(z, t+ Tp)= f(z, t) Aperiodic flow
is fixed if T = nTp, n ∈N+, is fixed moves

and independent of t0, T and independent of t0, n depending on t0, T.

By Proposition 1, the Lagrangian backbone of separation is objective. Although the
analytic formulae in tables 3 and 4 involve higher derivatives of the velocity field, the
spiking point can also be identified as the intersection of B(t0) with the wall (cf. (4.5))
with low numerical effort.

While our main interest is to capture the birth of material spikes, in appendix D.3,
we also derive explicit formulae for the asymptotic (T →∞) mean location of the
Lagrangian spiking point in the case of general unsteady velocity fields that admit a
finite asymptotic mean, such as periodic and quasiperiodic velocity fields. The latter
is relevant for several separation problems, such as separation behind a cylinder or a
backward facing step, which admit a finite number of dominant frequencies in their
Fourier spectra. In these flows, we find that the asymptotic Lagrangian spiking point
oscillates with respect to a well-defined mean position. We summarize these formulae
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Eulerian spiking point: (spE, 0)
∇ · f 6= 0 ∇ · f = 0

vsssη(spE, 0, t)= 0
vssssη(spE, 0, t) > 0
vssη(spE, 0, t) < 0.


vsssηη(spE, 0, t)= 0
vssssηη(spE, 0, t) > 0
vssηη(spE, 0, t) < 0.

TABLE 5. Exact criteria for the Eulerian spiking point on a flat no-slip boundary at a
time instant t, for compressible and incompressible flows.

in table 6. In the case of steady and time-periodic velocity fields, we recover the
formulae in tables 3 and 4 because the Lagrangian spiking point is fixed, as noted
in Proposition 2.

For incompressible flows, we derive in appendix F an approximate velocity field
f (z, t) near the boundary. With the help of this approximate velocity field, we express
f (z, t) in terms of the wall pressure, the skin friction, and their temporal and spatial
derivatives along the wall. Therefore, replacing f (z, t) (cf. (2.1)) with f (z, t) (cf. (F 8))
allows us to compute the backbone of separation in the proximity of the boundary
from wall-based quantities. For more advanced velocity estimation techniques, such
as adjoint-based methods and reduced-rank extended Kalman filters, see, e.g., Bewley
& Protas (2004).

4.2. The Eulerian backbone of the separation spike
Over an infinitesimally short time interval, we now introduce the instantaneous notion
of the backbone of separation. This Eulerian concept follows by taking the time
derivative of the Lagrangian backbone of separation and evaluating it at T = 0.

DEFINITION 2. At a time instant t ∈ [t0, t0 + T], the Eulerian backbone of separation
BE(t) is the theoretical centrepiece of the material spike over an infinitesimally short
time interval. The Eulerian backbone of separation is a positive-valued wall-transverse
maximum ridge of the κ̇t field.

In other words, BE(t) consists of the set of points where the instantaneous curvature
rate is positive and attains a local maximum along each η= const. curve, and can be
computed as described in Proposition 3.

Similarly to the Lagrangian case, we define the Eulerian spiking point at time t as

(spE, 0) :=BE(t)∩W, (4.7)

i.e. the point where the Eulerian backbone of separation connects to the wall. Because
κ̇t(s, 0) ≡ 0, (spE, 0) is a distinguished point on the wall with positive maximal
curvature rate in the limit of η→ 0. For a flat wall, we derive analytic expressions
for (spE, 0) in appendix E, which are summarized in table 5.

For steady flows, comparing the formula of (spE, 0) (cf. table 5) with the one of
(sp, 0) (cf. tables 3 and 4), we obtain that the Lagrangian and Eulerian backbones of
separation connect to the wall at the same location, i.e. spE ≡ sp (see, e.g., figure 7).
We summarize the results of this section in the following proposition.
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PROPOSITION 3. At a time instant t ∈ [t0, t0 + T], we have the following.

(i) The Eulerian backbone of separation BE(t) can be computed as the set of points
s ∈ [s1, s2], η ∈ [0, η1],

BE(t) :=


∂sκ̇t(s, η)= 0, η ∈ (0, η1],

∂ssκ̇t(s, η) < 0, η ∈ (0, η1],

κ̇t(s, η) > 0, η ∈ (0, η1],

(spE, η), η= 0.

(4.8)

The Eulerian spiking point (spE, 0) can be computed from the formulae in table 5,
or as the intersection of BE(t) with the no-slip boundary (cf. (4.7)).

(ii) The Eulerian spiking point coincides with the Lagrangian spiking point in steady
flows.

By Proposition 1, the Eulerian backbone of separation is objective. Following the
same argument as § 4.1, although the analytic formulae in table 5 involve higher
derivatives of the velocity field, the spiking point can also be identified with low
numerical effort directly from (4.7), as the intersection of BE(t) with the wall.

5. Numerical schemes

Here we summarize the numerical steps in locating the Lagrangian and Eulerian
backbones of separation in a general two-dimensional compressible flow. For a
MATLAB implementation of our method, we also indicate the relevant built-in
functions that we use.

Algorithm 1 Compute the Lagrangian backbone B(t) of separation (cf. Proposition 2)
Input: (i) A two-dimensional velocity field f (z, t) around a no-slip boundary over a
finite time interval [t0, t0+ T]. (ii) Geometry of the no-slip boundary parametrized by
r(s), s ∈ [s1, s2] ⊂R.

(i) Initialize a set of material lines parallel to the wall, parametrized in the form
rη(s), where s∈ [s1, s2], η ∈ [0, η1], η1 > 0, and compute their tangent vectors r′η(s) :=
dr/ds and curvature scalars κ0η(s) := 〈r ′′η (s), Rr′η(s)〉/

√
〈r ′η(s), r ′η(s)〉

3 with respect to
normals pointing towards the boundary.

(ii) Compute the Lagrangian curvature change κ t0+T
t0 (s, η) (cf. (4.2)). Equations

(B 4)–(B 5) in appendix B can be used to compute κ t0+T
t0 (s, η) without taking

spatial derivatives of the flow map F t0+T
t0 numerically. MATLAB functions: ODE45.m,

gradient.m, interp2.m.
(iii) Compute the initial position of the Lagrangian backbone of separation B(t0) as

a positive ridge of the κ t0+T
t0 field, transverse to η= const. curves (cf. (4.6)). MATLAB

functions: contour.m., gradient.m, interp2.m.
(iv) Compute later positions of the Lagrangian backbone of separation B(t) by

advecting its initial position under the flow map F t
t0, t∈[t0, t0+T]. MATLAB function:

ODE45.m.
Output: Lagrangian backbone of separation B(t), t ∈ [t0, t0 + T].
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Algorithm 2 Compute the Eulerian backbone BE(t) of separation (cf. Proposition 3)
Input: (i) A two-dimensional velocity field f (z, t) around a no-slip boundary at time
t. (ii) Geometry of the no-slip boundary parametrized in the form r(s), s∈ [s1, s2] ⊂R.

(i) Initialize a set of material lines parallel to the wall, parametrized in the form
rη(s), where s∈ [s1, s2], η ∈ [0, η1], η1 > 0, and compute their tangent vectors r′η(s) :=
dr/ds and curvature scalars κ0η(s) := 〈r ′′η (s), Rr′η(s)〉/

√
〈r ′η(s), r ′η(s)〉

3 with respect to
normal directions pointing towards the boundary.

(ii) Compute the Eulerian curvature rate κ̇t(s, η) := κ̇t(rη(s)) (cf. (3.7)). MATLAB
functions: gradient.m, interp2.m.

(iii) Compute the Eulerian backbone of separation BE(t) as a positive ridge of the
κ̇t field, transverse to η = const. curves (cf. (4.8)). MATLAB functions: contour.m.,
gradient.m, interp2.m.
Output: Eulerian backbone BE(t) of separation at time t.

Our kinematic theory depends neither on governing equations generating the
velocity field nor on the particular flow regime. At high Reynolds numbers, however,
filtering out the high frequencies in the velocity field may be necessary for identifying
the ridges marking multiple material spikes.

6. Examples

We now use Algorithms 1 and 2 from § 5 to locate the Lagrangian and Eulerian
backbones of separation in two-dimensional analytical and experimental velocity fields
with flat and curved no-slip boundaries.

6.1. Separation induced by a rotating and translating cylinder
We consider the creeping flow developing around a rotating and translating circular
cylinder moving close to a plane wall (Klonowska-Prosnak & Prosnak 2001; Miron &
Vétel 2015). We summarize the details of this flow in appendix G and sketch the flow
set-up in figure 6. A cylinder of radius Rc, whose centre is initially at position (0, yc),
rotates about its axis at a constant angular velocity Ω , and translates in the x direction
with velocity ẋc = Uc = U0 + β cos(ωct). Depending on the parameters Ω, U0, β and
ωc, this simple set-up allows us to generate steady, time-periodic and unsteady flows,
and hence to simulate fixed and moving separation on the wall downstream of the
cylinder. Throughout this section, we use Rc = 1 and yc = 2.

6.1.1. Steady flow
We first let Ω = 20 and U0 = β = 0, and therefore assume that the cylinder rotates

without translation (Uc= 0), generating a steady flow. Figure 1 shows the streamlines
of this flow. Figure 7 shows the initial positions of the Lagrangian backbone of
separation for two different integration times, as well as the Eulerian backbones of
separation. Specifically, (a–c) show the Lagrangian curvature change fields κ t0+T

t0 (z)
for T = 2 and T = 3, and the curvature rate field κ̇(z) that corresponds to the time
derivative of κ t0+T

t0 (z), evaluated at T = 0. Panels (d–f ) show the contour plots of the
corresponding scalar fields. The initial position B(0) of the Lagrangian backbone of
separation, i.e. the positive ridge of κ t0+T

t0 (z), is shown in red, the loci of minimal
signed curvature in the vicinity of B(0) are shown in blue and the zero set of κ t0+T

t0 (z)
is shown in black, as sketched in figure 5(b). Similarly, the Eulerian backbone of
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x

FIGURE 6. Separation induced by a rotating and translating cylinder: flow set-up and
parameters.
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FIGURE 7. (Colour online) (a) Lagrangian curvature change field κ t0+T
t0 (z) for T = 2.

(b) The same as (a) for T = 3. (c) Time derivative of κ t0+T
t0 (z) evaluated at T = 0, which

corresponds to the curvature rate field κ̇(z) (cf. (4.3)). (d–f ) Contour plots of the scalar
fields in (a–c). (d,e) The red curves show the initial position of the Lagrangian backbone
of separation B(0), the blue curves show the sets of minimal signed curvature in the
vicinity of B(0) and the black curves represent the zero set of κ t0+T

t0 (z), as sketched in
figure 5(b). ( f ) The red dashed curve shows the Eulerian backbone of separation BE(0),
while the blue dashed curves show the sets of minimal signed curvature rate in the vicinity
of BE(0).

separation BE(0) is shown in dashed red and the locus of minimal signed curvature
rate in dashed blue.

As described in Propositions 2 and 3, and illustrated by figure 7(d–f ), the
Lagrangian spiking point sp is fixed (i.e. does not depend on t0 and T) and
coincides with the Eulerian spiking point spE. Equivalently, the Lagrangian and
Eulerian backbones of separation connect to the wall at the same location even
though their shapes depend on T . More generally, the sets of Lagrangian maximum
and minimum curvature change connect to the wall at the same locations where the
instantaneous maximum and minimum curvature rates connect to the wall, as shown
in appendix E.

Figure 8 shows the Lagrangian backbone B(t) of separation extracted from κ2
0(z)

(cf. figure 7d) at later times, along with the streamlines (blue) and the material lines
initially parallel to the wall (black). The green dot represents the Prandtl separation
point (or zero-skin-friction point) defined by (1.1). The full material evolution is
available as supplementary movie 3. As already noted in § 1.2, the backbone B(t) of
separation acts as the theoretical centrepiece of the material spike from its birth to
its fully developed Lagrangian shape. Remarkably, even in steady flows, the material
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FIGURE 8. (Colour online) Lagrangian backbone B(t) of separation (red) computed over
the time interval [0, 2] (cf. figure 7d) at different times, along with the streamlines (blue)
and the material lines initially parallel to the wall (black). The green dot represents
the Prandtl separation point defined by (1.1). The full material evolution is available as
supplementary movie 3.
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FIGURE 9. (Colour online) (a) Three-dimensional plot of the backward FTLE field
computed for an integration time T = 2, equal to the extent of the time interval used in
figure 7(d). (b) Top view of (a) along with a nearby FTLE ridge shown in dashed black.

spike forms at a location different from the Prandtl point, and its backbone converges
to the unstable manifold (singular streamline connected to the wall at the Prandtl
point) only as T →∞. The full material evolution of the Lagrangian backbone of
separation computed for T = 3 (cf. figure 7e) is available as supplementary movie 4.

Figure 9 shows the backward FTLE computed for an integration time T = 2, equal
to the extent of the time interval used in figure 7(d). Specifically, figure 9(a) shows
the three-dimensional plot of the FTLE field, and figure 9(b) the corresponding two-
dimensional plot along with the FTLE ridge shown in dashed black. As described
in § 2, ridges of the backward FTLE are frequently used diagnostics for the most
attracting material lines in the flow, and have already been used to describe flow
separation (see, e.g., Garth et al. (2009), Miron & Vétel (2015), Nelson & Jacobs
(2015, 2016)).

Remarkably, the Lagrangian backbone B(t0) of separation (cf. figure 7d) remains
completely hidden in the FTLE plot. Indeed, even though also the FTLE plot in
figure 9(b) admits a ridge emanating from the wall, this ridge has a shape and a
basepoint that differ substantially from the backbone profile and the spiking point
identified in figure 7(d). This confirms that the material spike formation in flow

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

TH
-B

ib
lio

th
ek

, o
n 

20
 A

pr
 2

01
8 

at
 1

6:
55

:5
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
20

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.206


68 M. Serra, J. Vétel and G. Haller

–5
0

0

0 0.5 1.0 1.5 2.0 2.5
–5

0

5

10

15

0.01

0.02

0.03

0.04

0.05

0

500

1000

1500

1.00.5
1.5 2.0 2.5 0

0.02
y

y

x
0 0.5 1.0 1.5 2.0 2.5

0.01

0.02

0.03

0.04

0.05

x

x
1.00.5

1.5 2.0 2.5x

0.04

5
10
15

0

0
0.02

y

0.04
500

1000
1500

(a) (b)

(c) (d)

FIGURE 10. (Colour online) (a) Lagrangian curvature change field κ t0+T
t0 (z) for t0= 0 and

T = 10. (b) The same as (a) for T = 15. (c,d) Contour plots of the scalar fields in (a,b).
The red curves show the initial position B(0) of the Lagrangian backbone of separation;
the blue curves show the sets of minimal signed curvature change in the vicinity of B(0);
the black curves represent the zero set of κ t0+T

t0 (z), as sketched in figure 5(b).

separation is not a purely stretching-based phenomenon. Rather, it is characterized
by an interplay of stretching and rotation, encoded objectively in the curvature field.
That said, we generally expect some signature of a material separation onset in the
FTLE field.

6.1.2. Time-periodic flow
Here we consider the moving cylinder flow with Ω = 5, U0= 0, β = 6 and ωc= 2π.

These parameter values generate a time-periodic flow with period Tp = 1. Figure 10
shows the t0= 0 positions of the Lagrangian backbone of separation for two different
integration times. Panels (a,b) show the Lagrangian curvature change fields κ t0+T

t0 (z)
for T = 10 and T = 15. Panels (c,d) show the corresponding contour plots of these
two scalar fields. The initial position B(0) of the Lagrangian backbone of separation
is shown in red; the sets of minimal signed curvature in the vicinity of B(0) are shown
in blue; the zero set of κ t0+T

t0 (z) is shown in black, as sketched in figure 5(b). Similarly
to the steady case, for time-periodic flows with period Tp analysed over a time interval
[t0, t0+ T], T = nTp, n∈N+, the initial position of the Lagrangian backbone B(0) of
separation does not depend on t0.

Figure 10(c,d) illustrates that the Lagrangian spiking point sp is the same when
computed over an integer multiple of the flow period Tp = 1 (cf. Proposition 2). The
shape of the backbone of separation, however, depends on T . Similarly to the case
of steady flows, the sets of Lagrangian maximum and minimum curvature change
connect to the wall at the same locations, as long as T is an integer multiple of Tp,
as discussed in appendix D.

Figure 11 shows the Lagrangian backbone B(t) of separation extracted from κ15
0 (z)

(cf. figure 10d) at different times, along with the streamlines (blue) and the material
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FIGURE 11. (Colour online) Lagrangian backbone B(t) of the separation spike (red)
extracted from κ15

0 (z) (cf. figure 10d) at different times, along with the streamlines (blue)
and the material lines initially parallel to the wall (black). The full material evolution is
available as supplementary movie 5.

lines initially parallel to the wall (black). The full material evolution is available as
supplementary movie 5. The backbone curve that we locate acts as the theoretical
centrepiece of the material spike from its birth to its developed Lagrangian shape.

Figure 11 confirms also that the Prandtl point (i.e. where a singular streamline
connects to the wall) is unrelated to flow separation in unsteady flows.

6.2. Time-aperiodic flow
Here, we consider the general time-aperiodic rotating–translating cylinder flow with
the parameter values Ω = 3.5, U0 = 0.3, β = 0.5 and ωc = 2π/5, which appears
to create moving separation. From the classic asymptotic perspective, therefore,
separation is believed to be off-wall in this case. Therefore, prior separation criteria
seek an off-wall separation point in the flow.

Figure 12 shows the initial position B(t0) of the Lagrangian backbone of separation
for two different integration times. Panels (a,b) show the Lagrangian curvature change
fields κ t0+T

t0 (z) for t0 = 0, T = 7 and T = 8. Panels (c,d) show the contours of these
two scalar fields. The initial position B(0) of the backbone of separation is shown
in red and the zero set of κ t0+T

t0 (z) is shown in black. Remarkably, the Lagrangian
backbone of separation connects to the wall, consistent with the findings of Surana
& Haller (2008) in an appropriate frame, with the Lagrangian spiking point satisfying
the formulae in Proposition 2.

Figure 13 confirms that B(t) indeed acts as the evolving centrepiece of a forming
material spike. This is the case even though the upwelling in the lower material layers
is barely visible yet. The full material evolution is available as supplementary movie 6.

6.2.1. Off-wall perception of separation
Although we are primarily interested in the birth of separation, rather than its

long-term behaviour, we now analyse the same unsteady flow of § 6.2 for a longer
time interval. Similarly to figure 12, figure 14 shows the initial position of the
Lagrangian backbone of separation extracted from κ10

0 (z). Figure 14(a) shows the
Lagrangian curvature change field κ10

0 (z) and figure 14(b) shows the contours of the
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FIGURE 12. (Colour online) (a) Lagrangian curvature change field κ t0+T
t0 (z) for t0= 0 and

T = 7. (b) The same as (a) for T = 8. (c,d) Contour plots of the scalar fields in (a,b). The
red curves show the initial position B(0) of the Lagrangian backbone of separation.
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FIGURE 13. (Colour online) Lagrangian backbone B(t) of separation extracted from κ8
0(z)

(cf. figure 12d) at different times, and the material lines initially parallel to the wall
(black). The full material evolution is available as supplementary movie 6.

same field along with the initial position B(0) of the backbone of separation in red.
In contrast to figure 12, for T = 10, the backbone has two disconnected components,
namely an upper part connected to the highest value of κ t0+T

t0 (z) and a lower part
connected to the wall. This suggests that for this longer time interval, the observed
material spike is dominated by an off-wall separation process, which coexists with a
more localized upwelling phenomenon at the wall.

This prediction is consistent with figure 15, which shows the evolving Lagrangian
backbone B(t) at different times in red, along with evolving material lines initially
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FIGURE 14. (Colour online) The same as figure 12 for larger T . (a) Lagrangian curvature
change field κ t0+T

t0 (z) for T = 10. (b) Contour plots of the scalar fields in (a). The red
curves show the initial position B(0) of the Lagrangian backbone of separation.

0
1.5 2.0 2.5

x x x

y

y

3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5 4.0

0.1

0.2

0.3

0

0.1

0.2

0.3

FIGURE 15. (Colour online) Lagrangian backbone B(t) of separation (red) extracted
from κ10

0 (z) (cf. figure 14b) at different times, along with the evolution of material lines
initially parallel to the wall (black). The full evolution of material lines is available as
supplementary movie 7.

parallel to the wall shown in black. The full material evolution is available as
supplementary movie 7.

For shorter observation times, material upwelling starting at the wall can be
traced all the way to the tip of the separation spike along a single backbone curve.
As T increases, a bifurcation takes place in which the local wall-based upwelling
decouples from the globally observable spike, whose base point is now off the wall.
We emphasize that this result does not rely on a priori heuristic assumptions such
as the existence of an off-wall separation point. The presence of an on-wall or
off-wall separation, instead, is a result of our theory, encoded in the topology of the
Lagrangian backbone of separation.

Previous approaches to unsteady separation would miss this spike structure. In
particular, the spike formation criteria of Van Dommelen (1981) and Van Dommelen
& Shen (1982) would fail to detect a spike in this example as this flow develops
no finite-time singularities. The ghost-manifold-based approach of Surana & Haller
(2008) would also be inapplicable due to the lack of a clear decomposition of the
present flow into a slow mean and faster oscillations.
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FIGURE 16. (Colour online) Streamlines of the flow over a circular cylinder at t= 0.

6.3. Flow over a circular cylinder

Here we consider the flow pattern of swirling vortices caused by the flow separation
around a circular cylinder, modelled by Jung, Tél & Ziemniak (1993). We summarize
the details of this flow in appendix H. As in Jung et al. (1993), we choose a set
of parameters for which the model approximates the Navier–Stokes solution for this
geometry with Re≈ 250, leading to a time-periodic flow with period Tp = 1.107. We
show a representative snapshot of the corresponding streamlines in figure 16.

In the present example, we compute the two highest positive ridges of the
Lagrangian curvature change field, showing that our method is able to promptly
capture both of the separation profiles present in the flow past a cylinder.

Figure 17 shows the initial positions of the Lagrangian backbones of separation
for t0 = 0 and T = 0.1. Specifically, figure 17(a) shows the Lagrangian curvature
change field κ t0+T

t0 (z) and figure 17(b) shows the contours of κ t0+T
t0 (z), along with the

Lagrangian backbones B(0) of separation shown in red. Our theory not only identifies
both separation profiles, but also objectively distinguishes them through the value of
κ t0+T

t0 (z), and hence signals where the spike formation takes place first.
Figure 18 shows in red the Lagrangian backbones B(t) of separation extracted

from κ0.1
0 (z) (cf. figure 17b) at different times, along with the streamlines (blue) and

the material lines initially parallel to the wall (black). The green dot represents the
instantaneous Prandtl point (i.e. the zero-skin-friction point) defined by (1.1). The full
material evolution is available as supplementary movie 8.

As already observed in the previous examples, figure 18 confirms again that the
birth of the material spike is unrelated to the instantaneous Prandtl point. Figures 19
and 20 show the same results as figures 17 and 18 for a longer time interval, T= 0.15.

We observe that although the time intervals considered here, T = 0.1 and T = 0.15,
are significantly shorter than one period of the flow, Tp = 1.107, our theory still
accurately uncovers the backbones of separation spikes. Unlike available long-term
(Miron & Vétel 2015) and asymptotic (Haller 2004) Lagrangian separation theories,
our theory does not need velocity information over a full period of the flow in order
to locate spike formation.
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FIGURE 17. (Colour online) (a) Lagrangian curvature change field κ t0+T
t0 (z) for t0 = 0

and T = 0.1. (b) Contour plot of κ0.1
0 . The red curves show the initial positions of the

Lagrangian backbones B(0) of separation.
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FIGURE 18. (Colour online) Lagrangian backbones B(t) of separation (red) extracted from
κ0.1

0 (z) (cf. figure 17b) at different times, along with the streamlines (blue) and the material
lines initially parallel to the cylinder (black). The green dot represents the instantaneous
Prandtl point (i.e. zero-skin-friction point) defined by (1.1). The full material evolution is
available as supplementary movie 8.
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FIGURE 19. (Colour online) The same as figure 17 but for a longer T = 0.15.
(a) Lagrangian curvature change field κ t0+T

t0 (z) for T= 0.15. (b) Contour plots of κ0.15
0 . The

red curves show the initial positions of the Lagrangian backbones B(t0) of separation.

6.4. Experimental time-aperiodic flow: separation induced by a rotating and
translating cylinder

In this section, we apply our results to an unsteady dataset obtained from an
experimental set-up similar to that of Weldon et al. (2008). A horizontal cylinder
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FIGURE 20. (Colour online) The same as figure 18 but for a longer T = 0.15. Lagrangian
backbones B(t) of separation (red) extracted from κ0.15

0 (z) (cf. figure 19b) at different
times, along with the streamlines (blue) and the material lines initially parallel to the
cylinder (black). The green dot represents the instantaneous Prandtl point defined by (1.1).
The full material evolution is available as supplementary movie 9.

y

x

Glycerin

Light

FIGURE 21. Experimental set-up.

rotates and translates parallel to a wall of a transparent tank filled with glycerin,
as shown in figure 21. A particle image velocimetry (PIV) technique is used in a
horizontal plane to measure the two velocity components in a region where the flow
is approximately two-dimensional. For the case considered here, the cylinder radius
is Rc = 1.27 cm, the cylinder rotation velocity is Ω = 60 rpm, its translation velocity
is Uc =U0 + β cos(ωct), with U0 = 1 cm s−1, β = 8 cm s−1 and ωc =π rad s−1, and
the initial position of the cylinder is at xc0 = 7.5 cm, yc = yc0 = 5.75 cm.

The velocity field is available over a time interval t ∈ [0 s, 3 s] every 1/15 s on a
uniform spatial grid bounded by x ∈ [−0.5 cm, 12.5 cm] and y∈ [0 cm, 10 cm], with
a grid size of 0.08 cm in both directions.

Figure 22 shows the initial position of the Lagrangian backbone B(t0) of separation
extracted from κT

t0(z) for t0 = 0 s, T = 2.5 s. Specifically, figure 22(a) shows the
Lagrangian curvature change field κ t0+T

t0 (z) and figure 22(b) shows the contours of
κ t0+T

t0 (z) along with the Lagrangian backbone B(0) of separation in red.
As we have already noted in § 6.2, while this flow setting separation is generally

believed to generate off-wall separation, the Lagrangian backbone still connects to
the wall. Figure 23 shows snapshots of the corresponding material evolution in the
separation process. The full material evolution is available as supplementary movie 10.
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FIGURE 22. (Colour online) (a) Lagrangian curvature change field κ t0+T
t0 (z) for t0= 0 and

T = 2.5 s. (b) Contours of the scalar fields in (a). The red curve shows the initial position
B(t0) of the Lagrangian backbone of separation.

0

0.05y

0.10

0
0 0.05 0.10 0 0.05 0.10 0 0.05 0.10

0.05y

x x x

0.10

FIGURE 23. (Colour online) Lagrangian backbone B(t) of separation (red) extracted from
κ2.5

0 (z) (cf. figure 22b) at different times, along with the material lines initially parallel
to the wall (black). The full evolution of the material lines is available as supplementary
movie 10.

7. Conclusions
We have developed a frame-independent theory of material spike formation during

flow separation over a no-slip boundary in two-dimensional flows with arbitrary time
dependence. Based on the curvature evolution of material lines, our theory uncovers
the centrepiece of the material spike from its birth to its fully developed Lagrangian
structure.

Curvature objectively combines stretching- and rotation-based kinematic quantities,
and hence reveals flow features that remain hidden to criteria based only on stretching
or rotation. As a byproduct, we have derived analytical formulae for the Lagrangian
curvature evolution and the instantaneous curvature rate along a material line that
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is advected under a general compressible flow. Our purely kinematic theory can be
applied to arbitrary numerical, experimental or model velocity fields.

We have also identified a previously undetected spiking point where the backbone of
a material spike connects to the boundary. We have shown that this spiking point can
be computed from averaged wall-based quantities. Remarkably, even in steady flows,
the spiking point differs from the classic Prandtl separation point. Although in the
aerodynamic community the spike formation has generally been associated exclusively
with unsteady separation (Van Dommelen 1981; Van Dommelen & Shen 1982), here
we have shown that the same phenomenon exists also in steady flows. This underlines
the fact that material spike formation is a universal phenomenon that is unrelated to
the time dependence of the flow and to the presence of singularities in the flow.

Similarly to the asymptotic Lagrangian definition of the separation point (Haller
2004), the spiking point identified here is constant in steady flows and in time-periodic
flows analysed over a time interval that is a multiple of their period, while it moves
in general unsteady flows. Our backbone of separation, instead, evolves materially
under all flow conditions, serving as the core of the separating spike. Our theory
is effective also over short time intervals and admits a rigorous instantaneous limit.
These properties, inaccessible to existing criteria, make the present approach promising
for monitoring and controlling separation.

We have also illustrated how our curvature-based approach explains the perception
of off-wall separation in unsteady flows, and provided conditions under which such
a perception is justified. Specifically, we have found that for a relatively short time
interval T , the backbone of separation consists of a single connected component
joining the off-wall portion of the material spike to the spiking point. For longer
T , instead, the backbone bifurcates into two disconnected components: one passing
through the off-wall region characterized by the highest curvature change and the
other one connected to the wall at the new spiking point location. This suggests
that for longer T , the Lagrangian spike is driven by off-wall dynamics, losing its
connection with its original on-wall signature. This analysis offers a way to identify
the limiting T at which transition from on-wall to off-wall separation occurs.

Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2018.206.

Appendix A. Proof of Theorem 1

Here we derive a formula for the time evolution of curvature and curvature
rate along a material curve γ advected under the flow map F t

t0 . We denote the
parametrization of γ at the initial time by r(s), s ∈ [s1, s2], and its local tangent
vector by r ′(s) := dr/ds.

A.1. Curvature along a material curve
Substituting (3.1) and (3.3) into (3.4), we obtain the following expression for the
curvature of γ advected by the flow F t

t0 :

κ t
t0(s)=

〈r̃ ′′(s), R∇F t
t0(r(s))r

′(s)〉
〈r ′(s), C t

t0(r(s))r
′(s)〉

. (A 1)
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The only missing quantity for the evaluation of κ t
t0(s) is the term r̃ ′′. Differentiation

of (3.1) with respect to s gives

r̃ ′′i (s)= p1i(s)+ p2i(s), i ∈ {1, 2}, (A 2)

where

p1i =
∇F t

t0 ij,n
r ′nr ′j +∇F t

t0 ip
r ′′p√

r ′kC t
t0km

r ′m
,

p2i =−
∇F t

t0 ij
r ′j [2C t

t0pq
r ′pr ′′q + r ′l C

t
t0 ln,h

r ′nr ′h]
2(r ′k(s)C t

t0km
(s)r ′m(s))3/2

.


(A 3)

In (A 3), as well as in the rest of the paper, summation is implied over repeated
indices, all of the indices vary from 1 to 2, and commas in subscripts denote partial
differentiation, i.e. T ij,k(z) := ∂zk T ij(z), where T denotes a two-dimensional tensor field.
Substituting (A 2)–(A 3) into (A 1), we obtain

κ t
t0(s)=

〈 p1(s)+ p2(s), R∇F t
t0(r(s))r

′(s)〉
〈r ′(s), C t

t0(r(s))r
′(s)〉

= κ1(s)+ κ2(s)− κ3(s)− κ4(s), (A 4)

where, dropping the dependence on s,

κ1 =
∇F t

t0 ij,n
r ′nr ′j Ril∇F t

t0 lp
r ′p

(r ′kC t
t0km

r ′m)3/2
,

κ2 =
∇F t

t0 ij
r ′′j Ril∇F t

t0 lp
r ′p

(r ′kC t
t0km

r ′m)3/2
,

κ3 =
∇F t

t0 ij
r ′j Ril∇F t

t0 ln
r ′nA

(r ′kC t
t0km

r ′m)5/2
, A= r ′kC

t
t0km

r ′′m,

κ4 =
∇F t

t0 ij
r ′j Ril∇F t

t0 lp
r ′pB

2(r ′kC t
t0km

r ′m)5/2
, B= r ′l C

t
t0 ln,h

r ′nr ′h.



(A 5)

It should be noted that ∇F t
t0 ij

r ′j Ril∇F t
t0 ln

r ′n≡〈∇F t
t0r
′,R∇F t

t0r
′
〉≡ 0 and hence κ3= κ4≡

0. Therefore, we rewrite (A 4) in compact form as

κ t
t0 =
〈(∇2F t

t0(r)r
′)r ′, R∇F t

t0(r)r
′
〉

〈r ′, C t
t0(r)r

′〉3/2
+
〈∇F t

t0(r)r
′′, R∇F t

t0(r)r
′
〉

〈r ′, C t
t0(r)r

′〉3/2
= κ1 + κ2, (A 6)

where (∇2F t
t0(r)r

′)ij := F t
t0 i,jk
(r)r′k. By denoting the components of r ′′ along the

directions r ′/|r ′| and Rr ′/|r ′| by r ′′
‖

and r ′′
⊥

respectively, and observing that
〈∇F t

t0(r)r
′′

‖
, R∇F t

t0(r)r
′
〉 = 0, the expression for κ2 simplifies to

κ2 =
〈∇F t

t0(r)r
′′

⊥
, R∇F t

t0(r)r
′
〉

〈r ′, C t
t0(r)r

′〉3/2

=
〈r ′′, Rr ′〉
|r ′|2

〈∇F t
t0(r)Rr ′, R∇F t

t0(r)r
′
〉

〈r ′, C t
t0(r)r

′〉3/2
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=
〈r ′′, Rr ′〉
|r ′|2

det[∇F t
t0(r)]|r

′
|
2

〈r ′, C t
t0(r)r

′〉3/2

=
〈r ′′, Rr ′〉 det[∇F t

t0(r)]
〈r ′, C t

t0(r)r
′〉3/2

. (A 7)

The final formula for κ t
t0 is then given by

κ t
t0 =
〈(∇2F t

t0(r)r
′)r ′, R∇F t

t0(r)r
′
〉

〈r ′, C t
t0(r)r

′〉3/2
+
〈r ′′, Rr ′〉 det[∇F t

t0(r)]
〈r ′, C t

t0(r)r
′〉3/2

, (A 8)

which can be also rewritten as

κ t
t0 =
〈(∇2F t

t0(r)r
′)r ′, R∇F t

t0(r)r
′
〉

〈r ′, C t
t0(r)r

′〉3/2
+ κ0 det[∇F t

t0(r)]

(
〈r ′, r ′〉

〈r ′, C t
t0(r)r

′〉

)3/2

, (A 9)

where κ0 := κ t0
t0 denotes the curvature of γ at time t0. In the case of arclength

parametrization of γ (i.e. 〈r ′, r ′〉 ≡ 1), and of incompressible flows (i.e. ∇ · f ≡ 0,
det[∇F t

t0] ≡ 1), (A 9) simplifies to

κ t
t0 =
〈(∇2F t

t0(r)r
′)r ′, R∇F t

t0(r)r
′
〉

〈r ′, C t
t0(r)r

′〉3/2
+

κ0

〈r ′, C t
t0(r)r

′〉3/2
. (A 10)

This completes the proof of (3.6) and (3.8) in Theorem 1.

A.2. Curvature rate along a material curve

By differentiating (A 8) with respect to time ((d/dt)(·) := ˙(·)) and evaluating it at t= t0,
we obtain

κ̇t0(s)= κ̇1(s, t0)+ κ̇2(s, t0), (A 11)

where

κ̇1 =

˙
∇F t

t0 ij,n
r ′nr ′j Ril∇F t

t0 lp
r ′p +∇F t

t0 ij,n
r ′nr ′j Ril

˙
∇F t

t0 lp
r ′p

(r ′kC t
t0km

r ′m)3/2

∣∣∣∣∣∣
t=t0

−
(∇F t

t0 ij,n
r ′nr ′j Ril∇F t

t0 lp
r ′p)3r ′n

˙C t
t0nj

r ′j
2(r ′kC t

t0km
r ′m)5/2

∣∣∣∣∣∣
t=t0

=
∇f ij,n(t0)r ′nr ′j Rilr ′l

(r ′kr ′k)3/2

=
〈(∇2f (t0)r ′)r ′, Rr ′〉
〈r ′, r ′〉3/2

, (A 12a)

κ̇2 =
r ′′i Ripr ′p

˙det[∇F t
t0]

(r ′kC t
t0km

r ′m)3/2

∣∣∣∣∣∣
t=t0

−
3r ′′i Ripr ′p det[∇F t

t0]r
′

n
˙C t
t0nj

r ′j
2(r ′kC t

t0km
r ′m)5/2

∣∣∣∣∣∣
t=t0

=
r ′′i Ripr ′p∇ · f (t0)

(r ′kr ′k)3/2
−

3r ′′i Ripr ′pr ′n2Snj(t0)r ′j
2(r ′kr ′k)5/2
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= κ0∇ · f (t0)− 3κ0
r ′nSnj(t0)r ′j
(r ′kr ′k)

= κ0

[
∇ · f (t0)− 3

〈r ′, S(t0)r ′〉
〈r ′, r ′〉

]
. (A 12b)

In (A 12), we used the following relations:

˙
∇F t

t0 ij,k
|t=t0 =∇f ij,k(t0), ∇F t0

t0 ij,k
= 0, ∇F t0

t0 ij
≡ δij,

˙C t
t0 ij
|t=t0 = 2Sij(t0),

˙det[∇F t
t0]|t=t0 =∇ · f (t0), ∀i, j, k ∈ {1, 2},

}
(A 13)

where δij is the Kronecker delta. Using the velocity gradient decomposition defined in
(2.2)–(2.3), we rewrite κ̇1 as

κ̇1 =
[Sij,n(t0)+W ij,n(t0)]r ′nr ′j Rilr ′l

(r ′kr ′k)3/2

=
Sij,n(t0)r ′nr ′j Rilr ′l −

1
2∇ωl(t0)r ′l Rijr ′j Rilr ′l

(r ′kr ′k)3/2

=
〈(∇S(t0)r ′)r ′, Rr ′〉
〈r ′, r ′〉3/2

−
〈∇ω(t0), r ′〉
2〈r ′, r ′〉1/2

. (A 14)

Substituting (A 12) and (A 14) into (A 11), we obtain the final formula for the
instantaneous curvature rate along γ ,

κ̇t0 =
〈(∇S(r, t0)r ′)r ′, Rr ′〉

〈r ′, r ′〉3/2
−
〈∇ω(r, t0), r ′〉

2〈r ′, r ′〉1/2
+ κ0

[
∇ · f (r, t0)− 3

〈r ′, S(r, t0)r ′〉
〈r ′, r ′〉

]
.

(A 15)
If r(s) is the arclength parametrization of γ and the flow is incompressible, (A 15)
simplifies to

κ̇t0 = 〈(∇S(r, t0)r ′)r ′, Rr ′〉 − 1
2 〈∇ω(r, t0), r ′〉 − 3κ0〈r ′, S(r, t0)r ′〉. (A 16)

This completes the proof of (3.7) and (3.9) in Theorem 1.

Appendix B. Identities to compute κ t
t0 without taking spatial derivatives of F t

t0
numerically

Here we derive an alternative formula for the computation of κ t
t0(γ ) (cf. (3.6)) that

does not require the computation of spatial derivatives of F t
t0 numerically, which is

usually a sensitive procedure. Dropping the spatial dependence on s, we rewrite the
initial value problem governing the curvature evolution along γ as

κ̇t =

[
∇ · f (rt, t)− 3

〈r′t, S(rt, t)r′t〉
〈r′t, r′t〉

]
︸ ︷︷ ︸

a(t)

κt +
〈Rr′t, (∇S(rt, t)r′t)r′t〉

〈r′t, r′t〉3/2
−
〈∇ω(rt, t), r′t〉

2〈r′t, r′t〉1/2︸ ︷︷ ︸
b(t)

,

rt = F t
t0(r),

r ′t =∇F t
t0(r)r

′,

κt0 = κ0,


(B 1)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

TH
-B

ib
lio

th
ek

, o
n 

20
 A

pr
 2

01
8 

at
 1

6:
55

:5
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
20

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.206


80 M. Serra, J. Vétel and G. Haller

which, by the variation of constants formula (Arnold 1973), admits the solution

κ t
t0 = κ0 exp

(∫ t

t0

a(τ ) dτ
)
+ exp

(∫ t

t0

a(τ ) dτ
) ∫ t

t0

b(τ ) exp
(
−

∫ τ

t0

a(τ̃ ) dτ̃
)

dτ .

(B 2)
We recall that the gradient of the flow map ∇F t

t0 is the fundamental matrix solution
of the equation of variations

˙
∇F t

t0(z0)=∇f (F t
t0(z0), t)∇F t

t0(z0). (B 3)

By Liouville’s theorem (Arnold 1973), ∇F t
t0 satisfies the relationship

det∇F t
t0(z0)= exp

(∫ t

t0

∇ · f (F τ
t0(z0), τ ) dτ

)
. (B 4)

By comparing (3.6) and (B 2), and using (B 1) and (B 4), we obtain the following
identities:

〈r ′, C t
t0(r)r

′
〉

〈r ′, r ′〉
= exp

(
2
∫ t

t0

〈r ′τ , S(rτ , τ )r ′τ 〉
〈r ′τ , r ′τ 〉

dτ
)
,

〈(∇2F t
t0r
′)r ′, R∇F t

t0r
′
〉

〈r ′, C t
t0(r)r

′〉3/2
= exp

(∫ t

t0

∇ · f (rτ , τ )− 3
〈r′τ , S(rτ , τ )r′τ 〉
〈r′τ , r′τ 〉

dτ
)

×

∫ t

t0

[
〈Rr ′τ , (∇S(rτ , τ )r ′τ )r ′τ 〉

〈r′τ , r′τ 〉3/2
−
〈∇ω(rτ , τ ), r ′τ 〉

2〈r′τ , r′τ 〉1/2

]
× exp

(
−

∫ τ

t0

∇ · f (rε, ε)− 3
〈r′ε, S(rε, ε)r′ε〉
〈r′ε, r′ε〉

dε
)

dτ .


(B 5)

In the case of incompressible flows, simplified identities can be obtained by
substituting ∇ · f = 0 into (B 4)–(B 5).

Appendix C. Proof of Proposition 1
C.1. The curvature map κ t

t0 and the curvature rate κ̇t0 are independent of
parametrization

We consider two different parametrizations of γ , r(s), s ∈ [s1, s2] ⊂ R and q(τ ), τ ∈
[τ1, τ2] ⊂R, such that

r(s) = q(g(s)), g :R→R,
= q(τ ), τ := g(s). (C 1)

By denoting the differentiation with respect to s and τ by (·)′ and
◦

(·) respectively, and
differentiating the first equation in (C 1) with respect to s, we obtain

r ′ =
◦

qg′,
r′′ =

◦◦

q(g′)2 +
◦

qg′′.

}
(C 2)
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Substituting (C 1)–(C 2) into (A 8), we obtain

κ t
t0(r) =

〈(∇2F t
t0(r)r

′)r ′, R∇F t
t0(r)r

′
〉

〈r ′, C t
t0(r)r

′〉3/2
+
〈r ′′, Rr ′〉 det[∇F t

t0(r)]
〈r ′, C t

t0(r)r
′〉3/2

=
(g′)3〈(∇2F t

t0(q)
◦

q)
◦

q, R∇F t
t0(q)

◦

q〉

(g′)3〈
◦

q, C t
t0(q)

◦

q〉3/2
+
〈
◦◦

q(g′)2 +
◦

qg′′, R
◦

qg′〉 det[∇F t
t0(q)]

(g′)3〈
◦

q, C t
t0(q)

◦

q〉3/2

=
〈(∇2F t

t0(q)
◦

q)
◦

q, R∇F t
t0(q)

◦

q〉

〈
◦

q, C t
t0(q)

◦

q〉3/2
+
(g′)3〈

◦◦

q, R
◦

q〉 det[∇F t
t0(q)]

(g′)3〈
◦

q, C t
t0(q)

◦

q〉3/2

= κ t
t0(q), (C 3)

i.e. the curvature map κ t
t0 is independent of parametrization.

Evaluating (C 3) at t = t0, we obtain that k0(r) := κ t0
t0 (r) = k0(q). Using this result

and plugging (C 1)–(C 2) into (3.7), we obtain that

κ̇t0(r)= κ̇t0(q), (C 4)

i.e. the curvature rate κ̇t0 is independent of parametrization. This completes the proof
of Proposition 1(i).

C.2. The curvature evolution along a material curve is objective
Here we show that the curvature rate κ̇t (cf. (3.7)) is objective, i.e. invariant under all
coordinate changes of the form

z=Q(t)z̃+ b(t), (C 5)

where Q(t) ∈ SO(2) and b(t) ∈ R2 are smooth functions of time. Since the κ̇t is a
scalar quantity, in order for it to be objective (Truesdell & Noll 2004), at every point
it must have the same value independent of the actual coordinates chosen, z or z̃, as
long as they are linked by (C 5). To see this, we check objectivity separately for all
of the terms (κ̇I, κ̇II and κ̇III) in (3.7). In the rest of this section, ˜(·) denotes quantities
expressed as a function of the new z̃ coordinate and (·) the same quantity expressed
in terms of the original z coordinate.

The vectors r ′ and r ′′ and the curvature at the initial time κ0 transform as

r̃′ = Q>(t)r ′, r̃ ′′ =Q>(t)r ′′,

κ̃0 =
〈r̃ ′′, Rr̃′〉√
〈r̃′, r̃′〉

3

=
〈r ′′,Q(t)RQ>(t)r ′〉√
〈Q(t)>r ′,Q>(t)r ′〉

3

=
〈r ′′, Rr ′〉
√
〈r ′, r ′〉3

= κ0.


(C 6)

The rate-of-strain tensor S and spin tensor W introduced in (2.3) transform as

S̃(z̃, t)=Q>(t)S(z, t)Q(t),

W̃ (z̃, t)=Q>(t)W (z, t)Q(t)−Q>(t) ˙Q(t)

}
(C 7)
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(Truesdell & Noll 2004). Therefore, the rate-of-strain tensor is objective, as it
transforms as a linear operator, whereas the spin tensor is not objective. The spin
tensor admits the following equivalent reformulation:

W̃ (z̃, t)=
(
−
ω(z, t)

2
+ωq(t)

)
R, (C 8)

where ω(z, t) denotes the vorticity of the vector field (2.1) and ωq(t) the angular
velocity of the new frame relative to the original one. From (C 8), it follows that

ω̃(z̃, t)=ω(Q(t)z̃+ b(t), t)− 2ωq(t), (C 9)

which shows that vorticity is not objective. Differentiating (C 9) with respect to z̃, we
obtain

∇̃ω̃(z̃, t)=Q>(t)∇ω(z, t), (C 10)

and hence ∇ω(z, t) is objective as it transforms as a linear operator. This result
highlights an important fact. Despite ω(z, t) not being objective because its value
changes depending on the frame (cf. (C 9)), its topology, described by ∇ω(z, t), is
objective.

The divergence of the vector field (2.1) transforms as

∇̃ · f̃ (z̃, t) = Trace[Q>(t)S(z, t)Q(t)]
= Trace[S(z, t)]
= ∇ · f (z, t) (C 11)

and hence is also objective.
The only missing ingredient for evaluation of the objectivity of κ̇t is the matrix

(∇S(r, t)r ′), which represents the derivative of S(r, t) along r(s), i.e. (d/ds)(S(r(s), t)).
Using (C 6) and (C 7), we get

d
ds
(S̃(r̃, t)) =

d
ds

Q>(t)S(Q(t)r̃+ b(t), t)Q(t)

= Q>(t)
d
ds

S(Q(t)r̃+ b(t), t)Q(t)

= Q>(t)
∂S

∂r
∂r
∂ r̃
∂ r̃
∂s

Q(t)

= Q>(t)
∂S

∂r
∂r
∂ r̃
∂ r̃
∂r
∂r
∂s

Q(t)

= Q>(t)
∂S

∂r
∂r
∂s

Q(t)

= Q>(t)
d
ds
(S(r, t))Q(t)=Q>(t)(∇S(r, t)r ′)Q(t). (C 12)

Hence, (∇S(r, t)r ′) is objective as it transforms as a linear operator. Substituting (C 6)–
(C 12) into each term of (3.7), we obtain
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˜̇κI =
〈Rr̃′, (∇̃S̃(r̃, t0)r̃′)r̃′〉

〈r̃′, r̃′〉3/2

=
〈RQ>(t)r ′,Q>(t)(∇S(r, t)r ′)Q(t)Q>(t)r ′〉

〈Q>(t)r ′,Q>(t)r ′〉3/2

=
〈Rr ′, (∇S(r, t0)r ′)r ′〉

〈r ′, r ′〉3/2
= κ̇I, (C 13a)

˜̇κII =
〈∇̃ω̃(r̃, t0), r̃′〉

2〈r̃′, r̃′〉1/2

=
〈Q>(t)∇ω(r, t),Q>(t)r ′〉

2〈Q>(t)r ′,Q>(t)r ′〉1/2

=
〈∇ω(r, t), r ′〉

2〈r ′, r ′〉1/2
= κ̇II, (C 13b)

˜̇κIII = κ̃0

[
∇̃ · f̃ (r̃, t0)− 3

〈r̃′, S̃(r̃, t0)r ′〉
〈r̃′, r̃′〉

]

= κ0

[
∇ · f (r, t0)− 3

〈Q>(t)r ′,Q>(t)S(r, t0)Q(t)Q>(t)r ′〉
〈Q>(t)r ′,Q>(t)r ′〉

]
= κ0

[
∇ · f (r, t0)− 3

〈r ′, S(r, t0)r ′〉
〈r ′, r ′〉

]
= κ̇III. (C 13c)

Therefore, ˜̇κt0 =
˜̇κI + ˜̇κII + ˜̇κIII = κ̇I + κ̇II + κ̇III = κ̇t0 , and hence the curvature rate

is objective. The objectivity of the curvature map κ t
t0 (cf. (3.6)) then follows from

the objectivity of κ̇t, because κ t
t0 is the integral of κ̇t along trajectories of (2.1). This

completes the proof of Proposition 1(ii).

Appendix D. Lagrangian spiking point
Here we derive analytical formulae for the location of the Lagrangian spiking

point, i.e. where the Lagrangian backbone of separation B(t0) connects to the wall.
By definition of B(t0) (cf. (4.6)), the following conditions are satisfied:

∂sκ
t0+T
t0 (B(t0))= 0, η ∈ [0, η1], (D 1)

∂ssκ
t0+T
t0 (B(t0)) < 0, κ t0+T

t0 (B(t0)) > 0, η ∈ (0, η1]. (D 2)

Thus, according to (4.4) and (D 1), the wall and B(t0) are both contained in the zero
level set of ∂sκ

t0+T
t0 (s, η), defined as

Z := {(s, η) ∈ [s1, s2] × [0, η1] : ∂sκ
t0+T
t0 (s, η)= 0} (D 3)

and sketched in figure 24. The magenta curves located at the opposite sides of B(t0)
correspond to the set of minimal negative curvature change sketched in blue in
figure 5(b).

We now derive a condition to identify the set of points Zc ⊂Z where elements of
Z connect transversely to the wall (cf. figure 24).

Using a Taylor expansion of G(s, η) := ∂sκ
t0+T
t0 (s, η) on the wall, together with (4.4),

we obtain

G(s+ δs, δη)= ∂ηG(s, η)|η=0δη + ∂ηsG(s, η)|η=0
δηδs

2
+ ∂ηηG(s, η)|η=0

δ2
η

2
+O(δ3), (D 4)
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84 M. Serra, J. Vétel and G. Haller

FIGURE 24. (Colour online) Magenta curves illustrate the set Z defined by (D 3). The set
Z contains the initial position of the separation profile B(t0) defined by (4.6). Elements of
Z can intersect the wall transversely at the set of points Zc defined by (D 7) and (D 11).

where [δs, δη]
>
:= [δ cos θ, δ sin θ ]>, 0< δ� 1, denotes a small perturbation enclosing

an angle θ ∈ (0,π) with the wall. Therefore, Zc can be defined as the zero set of the
leading-order term in (D 4).

To gain further insight about (D 4), using (4.3), we express the spatial derivatives of
G in terms of Eulerian quantities. Specifically, the function κ t0+T

t0 (s, η) and its spatial
derivatives along the wall can be expressed as

∂siηjκ t0+T
t0 (s, η)|η=0 = ∂siηj

[∫ t0+T

t0

κ̇t(s, η) dt
]
η=0

=

∫ t0+T

t0

∂siηj κ̇t(s, η)|η=0 dt, i, j ∈N0,

(D 5)
where ∂siηj(·) := (∂ i/∂si)(∂ j(·)/∂ηj) and κ̇t is evaluated along trajectories of (2.1),
as described by (B 1). The term ∂siηj κ̇t(s, η), therefore, is generally time-dependent.
Because of the no-slip condition on the wall, however, the convective term in the
material derivative κ̇t is identically zero at η= 0, and hence ∂ηsκ̇t(s, η)|η=0 inherits the
time dependence of the velocity field (2.1). Using (3.7), and assuming a flat no-slip
wall, we obtain

∂sηκ̇t(s, 0)=−∂sssηv(s, 0, t). (D 6)

A similar expression can be obtained for curved boundaries.

D.1. Compressible flows
In the case of compressible flows, the set Zc coincides with the zero set of the
function ∂ηG(s, η)|η=0. Using (D 5)–(D 6), we rewrite Zc as

Zc := {s ∈ [s1, s2] : ∂ηsκ
t0+T
t0 (s, η)|η=0 = 0, η= 0}

=

{
s ∈ [s1, s2] : −

∫ t0+T

t0

∂sssηv(s, 0, t) dt= 0, η= 0
}
, (D 7)

as sketched in figure 25(a).
Of particular interest for us is the spiking point (sp, 0), i.e. the point where the

backbone of separation connects to the wall (cf. figure 24). As explained in § 4.1,
(sp, 0) is a distinguished point on the wall with positive maximal curvature change
in the limit of η→ 0. Using (D 5) and (D 7), we then define the spiking point on the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

TH
-B

ib
lio

th
ek

, o
n 

20
 A

pr
 2

01
8 

at
 1

6:
55

:5
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
20

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.206


Exact theory of material spike formation in flow separation 85

(a) (b)

FIGURE 25. (Colour online) (a) Sketch of the transverse intersection of a zero level set
of G (cf. (D 4)) with the no-slip boundary for the case of general compressible flows
(cf. (D 7)). (b) Sketch of the transverse intersection of a zero level set of G with the
no-slip boundary for the case of incompressible flows (cf. (D 9)).

wall (sp, 0) in terms of both Lagrangian and Eulerian quantities, as the point in Zc
where the curvature change κ t0+T

t0 attains a positive maximum at leading order,


∂ηsκ

t0+T
t0 (sp, 0)= 0

∂ηssκ
t0+T
t0 (sp, 0) < 0

∂ηκ
t0+T
t0 (sp, 0) > 0

⇐⇒



∫ t0+T

t0

∂sssηv(sp, 0, t) dt= 0∫ t0+T

t0

∂ssssηv(sp, 0, t) dt> 0∫ t0+T

t0

∂ssηv(sp, 0, t) dt< 0.

(D 8)

The first condition follows from (D 7), the second condition ensures that (sp, 0) is a
maximum of curvature change and the third one ensures that the curvature change at
(sp, 0) is positive, i.e. such that material lines undergo upwelling-type deformation.

D.2. Incompressible flows
In the case of incompressible flows, by differentiating the continuity equation and
using the no-slip condition on the wall, we obtain

∂sss(∂su(s, η, t)+ ∂ηv(s, η, t))|η=0 = 0 H⇒ ∂sssηv(·, 0, t)≡ 0. (D 9)

Using (D 4), (D 5), (D 6) and (D 9), we obtain

∂ηG(·, η)|η=0 ≡ 0 H⇒ ∂ηsG(·, η)|η=0 ≡ 0 H⇒ G(s+ δs, δη)= ∂ηηG(s, η)|η=0
δ2
η

2
+O(δ3).

(D 10)
Therefore, at leading order, the set Zc coincides with the zero set of the function
∂ηηG(s, η)|η=0, which can be defined as

Zc : = {s ∈ [s1, s2]∂ηηsκ
t0+T
t0 (s, η)|η=0 = 0, η= 0}

=

{
s ∈ [s1, s2] : −

∫ t0+T

t0

∂sssηηv(s, 0, t) dt= 0, η= 0
}
, (D 11)

as sketched in figure 25(b). Using a similar argument to the one adopted for
compressible flows, we then define the spiking point on the wall (sp, 0) in terms
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Asymptotic Lagrangian spiking point: (sp, 0)
∇ · f 6= 0 ∇ · f = 0

∂sssηv
0(sp, 0)= 0

∂ssssηv
0(sp, 0) > 0

∂ssηv
0(sp, 0) < 0


∂sssηηv

0(sp, 0)= 0
∂ssssηηv

0(sp, 0) > 0
∂ssηηv

0(sp, 0) < 0

TABLE 6. Equations determining the asymptotic (T→∞) mean location of the Lagrangian
spiking point on a flat no-slip boundary in the case of velocity fields that admit a finite
asymptotic mean.

of Lagrangian and Eulerian quantities as


∂ηηsκ

t0+T
t0 (sp, 0)= 0

∂ηηssκ
t0+T
t0 (sp, 0) < 0

∂ηηκ
t0+T
t0 (sp, 0) > 0

⇐⇒



∫ t0+T

t0

∂sssηηv(sp, 0, t) dt= 0∫ t0+T

t0

∂ssssηηv(sp, 0, t) dt> 0∫ t0+T

t0

∂ssηηv(sp, 0, t) dt< 0.

(D 12)

Formulae (D 8) and (D 12) allow us to characterize the location of the spiking point
on the wall, and study its dependence on t0 and T in the cases of steady, time-periodic
and generally unsteady flows, as summarized in tables 3 and 4.

D.3. Asymptotic mean location of sp for velocity fields with a well-defined mean
Here we derive explicit formulae for the asymptotic (T→∞) mean location of the
Lagrangian spiking point in the case of unsteady velocity fields that admit a finite
asymptotic mean,

f 0(z)= lim
T→∞

1
T

∫ t0+T

t0

f (z, t) dt. (D 13)

We also assume that spatial derivatives ∂sjηk f , j, k ∈N0 admit a finite asymptotic mean
and that the function

1f (z, t0, T)=
∫ t0+T

t0

[f (z, t)− f 0(z)] dt (D 14)

and its spatial derivatives ∂sjηk1f remain bounded for any t0 and T . Under these
assumptions, we obtain that

lim
T→∞

1
T

∫ t0+T

t0

∂sjηk f (s, η, t) dt = ∂sjηk f 0(s, η)+ lim
T→∞

1
T

∫ t0+T

t0

∂sjηk1f (s, η, t) dt

= ∂sjηk f 0(s, η), (D 15)

where ∂sjηk(·) := (∂ j/∂sj)(∂k(·)/∂ηk).
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Exact theory of material spike formation in flow separation 87

Using (D 15) together with (D 8) and (D 12), we summarize the formulae for the
mean asymptotic location of the Lagrangian spiking point in table 6, where

∂sjηkv0(s, 0)= lim
T→∞

1
T

∫ t0+T

t0

∂sjηkv(s, 0, t) dt, j, k ∈N. (D 16)

It should be noted that in the cases of steady and time-periodic velocity fields, the
formulae in table 6 are equivalent to the ones in tables 3 and 4.

D.3.1. Asymptotic mean location of sp for quasiperiodic velocity fields
Quasiperiodic velocity fields are a special case of those that admit a finite

asymptotic mean, and can be used to approximate many canonical separated flows
that admit a finite number of dominant frequencies in their Fourier spectrum. Here,
we derive explicit formulae for the asymptotic mean location of the Lagrangian
spiking point for this class of flows.

Let ω1, ω2, . . . , ωm be m numbers that are rationally independent, i.e. admit no
vanishing linear combination with rational coefficients. We say that a velocity field
f (z, t) = [u(z, t), v(z, t)] is quasiperiodic in time with frequencies ω1, ω2, . . . , ωm if
we can write

u(z, t)=U(z, ω1t, . . . , ωmt),
v(z, t)= V(z, ω1t, . . . , ωmt),

}
(D 17)

where the functions U(z, φ1, . . . , φm) and V(z, φ1, . . . , φm) are 2π-periodic in each
of the arguments φ1, . . . , φm. Quasiperiodic velocity fields, as well as their spatial
derivatives, can be Fourier expanded in terms of the angular arguments φi; thus, we
can write

u(z, t)= u0(z)+1u(z, t),
v(z, t)= v0(z)+1v(z, t),

}
(D 18)

where

u0(z)=
1

(2π)m

∫ 2π

0
· · ·

∫ 2π

0
U(z, ω1t, . . . , ωmt) dφ1 · · · dφm,

v0(z)=
1

(2π)m

∫ 2π

0
· · ·

∫ 2π

0
V(z, ω1t, . . . , ωmt) dφ1 · · · dφm

 (D 19)

and [1u(z, t), 1v(z, t)] denote the bounded oscillatory part of the velocity. For
quasiperiodic velocity fields, using (D 19), the formulae in table 6 can be computed
as

∂sjηkv0(s, 0) = lim
T→∞

1
T

∫ t0+T

t0

∂sjηkv(s, 0, t) dt, j, k ∈N

=
1

(2π)m

∫ 2π

0
· · ·

∫ 2π

0
∂sjηk V(s, 0, φ1, . . . , φm) dφ1 · · · dφm. (D 20)

Appendix E. Eulerian spiking point

Similarly to the Lagrangian case, here we derive analytical formulae for the location
of the Eulerian spiking point, i.e. where the Eulerian backbone of separation BE(t)
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(cf. (4.8)) connects to the wall. By taking the time derivatives of the sets Z and Zc
defined in appendix D and evaluating them at t= t0, we obtain

ZE := {(s, η) ∈ [s1, s2] × [0, η1] : ∂sκ̇t(s, η)= 0} (E 1)

and
∇ · f 6= 0. ZcE := {s ∈ [s1, s2] : ∂ηsκ̇t(s, η)|η=0 = 0, η= 0},
∇ · f = 0. ZcE := {s ∈ [s1, s2] : ∂ηηsκ̇t(s, η)|η=0 = 0, η= 0},

}
(E 2)

where ZcE denotes the union of points where the set of instantaneous maximum
and minimum curvature rates connects to the wall. Comparing (E 2) with (D 7)
and (D 11), it follows that for steady flows Zc ≡ ZcE, i.e. the set of Lagrangian
maximum and minimum curvature change and the set of instantaneous maximum
and minimum curvature rates connect to the wall at the same locations (see, e.g.,
figure 7). Finally, following the same arguments as used in appendix D, we obtain
the analytic expressions for the Eulerian spiking point spE, summarized in table 5.

Appendix F. Approximate velocity field near the wall
Here we derive an expression for the approximated velocity field in the proximity

of a flat no-slip boundary. Specifically, we focus on the case of incompressible flows,
in which the approximated velocity field can be expressed in terms of only wall-based
measurements (Bewley & Protas 2004). We consider the Navier–Stokes equations

(∂t + f · ∇)f =−
∇p
ρ
+ ν1f , (F 1)

whose components are

ut(z, t)+ ux(z, t)u(z, t)+ uy(z, t)v(z, t)=−
px(z, t)
ρ
+ ν(uxx(z, t)+ uyy(z, t)),

vt(z, t)+ vx(z, t)u(z, t)+ vy(z, t)v(z, t)=−
py(z, t)
ρ
+ ν(vxx(z, t)+ vyy(z, t)),

 (F 2)

where f denotes an unsteady two-dimensional velocity field (cf. (2.1)), p denotes the
pressure field and ν =µ/ρ denotes the kinematic viscosity, which is the ratio of the
dynamic viscosity to the density.

Using the no-slip boundary condition, we obtain

∂xif (x, y, t)|y=0 = 0, ∀i ∈N0, (F 3)

where ∂xi := ∂ i/∂xi. In the case of incompressible flows (∇ · f = 0), by differentiating
the continuity equation, we get

∂xi(ux(z, t)+ vy(z, t))= 0, ∂yi(ux(z, t)+ vy(z, t))= 0, ∀i ∈N0. (F 4a,b)

Using (F 3), the Taylor expansion near the wall can be computed as

u(x, y, t) = a1(x, t)y+ a2(x, t)y2
+ a3(x, t)y3

+O(4)
= u(x, y, t)+O(4),

v(x, y, t) = b1(x, t)y+ b2(x, t)y2
+ b3(x, t)y3

+O(4)
= v(x, y, t)+O(4),

 (F 5)
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Exact theory of material spike formation in flow separation 89

where O(4) := O(|y|4). Following Bewley & Protas (2004), in the case of
incompressible flows, all coefficients of the Taylor expansion (F 5), at any order,
can be expressed as a function of on-wall quantities such as pressure, skin friction,
their temporal derivatives and their spatial derivatives in the wall direction. We recall
here that the skin friction is defined as

τ(x, t) :=µuy(x, 0, t). (F 6)

By differentiating the Navier–Stokes equations (F 2), evaluating the resulting
expression on the wall and using (F 3)–(F 6), we obtain the following relations:

a1(x, t) := uy(x, 0, t)=
τ(x, t)
µ

,

a2(x, t) :=
uyy(x, 0, t)

2
=

px(x, t)
2µ

,

a3(x, t) :=
uyyy(x, 0, t)

6
=
τt(x, t)
6νµ

−
τxx(x, t)

3µ
,

b1(x, t) := vy(x, 0, t)= 0,

b2(x, t) :=
vyy(x, 0, t)

2
=−

τx(x, t)
2µ

,

b3(x, t) :=
vyyy(x, t)

6
=−

pxx(x, t)
6µ

.



(F 7)

Therefore, the approximate velocity field near the wall up to O(3) can be expressed
in terms of wall-based quantities as

f (z, t)=
[

u(z, t)
v(z, t)

]
=


τ(x, t)
µ

y+
px(x, t)

2µ
y2
+

(
τt(x, t)
6νµ

−
τxx(x, t)

3µ

)
y3

−
τx(x, t)

2µ
y2
−

pxx(x, t)
6µ

y3

 . (F 8)

Bewley & Protas (2004) showed that higher-order terms in (F 5) improve the
correlation of the truncated Taylor series expansion with the direct numerical
simulations of a turbulent flow near the wall. However, such polynomial approxima-
tions amplify measurement noise, as they require differentiation of measured
quantities, which in turns decreases the radius of convergence of the Taylor series.
To overcome these limitations, they proposed model-based state estimation techniques
as adjoint-based or Riccati-based methods which use the underlying unsteady
Navier–Stokes equations as a filter. Specifically, relying only on on-wall measured
quantities, they showed numerically that adjoint-based methods significantly improve
the flow reconstruction not only in the vicinity of the wall.

Appendix G. Creeping flow around a rotating cylinder

Klonowska-Prosnak & Prosnak (2001) derived an analytical solution of a creeping
flow around a fixed rotating circular cylinder close to an infinite plane wall moving
at a constant velocity. If u and v denote the velocity components along and normal
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to the wall, the solution is given by the following complex function:

u(ζ )− iv(ζ ) = −
Uw

2 log a

[
2 log

|ϕ|

a
+
µ

2ϕ
(ζ ∗ − ζ )(ϕ − 1)2

]
+ σ(ϕ − 1)2

[
iµζ ∗

2

(
a
ϕ2
+

1
a

)
−

1
ϕ

(
a+

1
a

)
+

1
2a

(
a2

ϕ2
− 1
)]

+ σ

[
a+

1
a
+ i
(

a
ϕ∗
−
ϕ∗

a

)]
, (G 1)

where
i=
√
−1, ζ = x+ iy, ϕ = ϕ(ζ )=

1+ iµζ
1+µζ

, (G 2a−c)

with (·)∗ denoting the complex conjugate operator. The constants a, µ and σ describe
the geometry and kinematics of the cylinder, and are defined as

a=
Rc + yc −

√
y2

c − R2
c

Rc + yc +
√

y2
c − R2

c

, µ=
1√

y2
c − R2

c

, σ =
a

a2 − 1

(
−

Uw

2 log a
+

2Ωa2

µ(a2 − 1)2

)
.

(G 3a−c)
In (G 3), Uw denotes the velocity of the wall and Rc the radius of the cylinder initially
centred at (0, yc) and rotating about its axis with angular velocity Ω . Following the
procedure described by Miron & Vétel (2015), by the linearity of Stokes flows, by
substituting x and u in (G 1) with x− Uwt − (β/ωc) cos(ωct) and u− Uw, we obtain
the velocity field developing close to a rotating cylinder, whose centre moves parallel
to a fixed wall with velocity Uc =U0 + β cos(ωt), where U0 =−Uw.

Appendix H. Flow over a circular cylinder
In their analytical model of the flow over a circular cylinder, Jung et al. (1993)

assumed a stream function in the form

Ψ (x, y, t)= α(x, y)g(x, y, t), (H 1)

with
α(x, y)= 1− exp(−a−1/2((x2

+ y2)1/2 − 1)2). (H 2)

This form of α(x, y) ensures the no-slip condition on the cylinder surface that satisfies
x2
+ y2
= 1. The coefficient a−1/2 represents the width of the boundary layer, and g

in (H 1) models the contributions of the shed vortices and the background flow u0 to
the full flow. Specifically,

g(x, y, t)=−wh1(t)g1(x, y, t)+wh2(t)g2(x, y, t)+ u0ys(x, y). (H 3)

The first two terms in (H 3) describe the alternating creation, evolution and damping
of two vortices of equal strength. The quantities w and hi(t) represent the overall
vortex strength and amplitudes respectively. Because of the alternating nature of the
vortices, we have a constant phase difference of half-period Tp/2 between the strength
of the two vortices, i.e. h2(t)= h1(t − (Tp/2)). To describe the time evolution of the
vortex strengths, we choose

h1(t)=
∣∣∣∣sin

(
πt
Tp

)∣∣∣∣ . (H 4)
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The vortex centres are assumed to move parallel to the x-axis at a constant speed,
satisfying

x1(t)= 1+ L[(t− Tp)mod1], x2(t)= x1

(
t−

Tp

2

)
,

y1(t)=−y2(t)≡ y0.

 (H 5)

The shape of the shed vortices is controlled by the factor

gi(x, y, t)= exp(−R0[(x− xi(t))2 + β2(y− yi(t))2]), (H 6)

where R1/2
0 is the characteristic vortex size and β is an aspect ratio parameter. The last

term in (H 3) represents the contribution of the background flow of uniform velocity
u0. The factor s(x, t) simulates the shielding of the background flow just behind the
cylinder and is of the form

s(x, y)= 1− exp
(
−
(x− 1)2

β2
− y2

)
. (H 7)

As in Jung et al. (1993), we choose a set of parameters for which the model has
been shown to approximate the Navier–Stokes solution for this geometry with Re ≈
250. More specifically, we use the non-dimensional parameter values β= 2, R0= 0.35,
L = 2, a = 1 and y0 = 2. For the background flow velocity, we choose u0 = 14/Tp,
while the average strength of the vortices is taken to be w= 8× 24/π as in Benczik,
Toroczkai & Tél (2002). The above set of parameters leads to a periodic flow of
period Tp= 1.107, as shown by Jung et al. (1993). We show a representative snapshot
of the flow streamlines in figure 16.
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