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We develop a nonlinear theory for separation and attachment on no-slip boundaries of
three-dimensional unsteady flows that have a steady mean component. In such flows, separation and
attachment surfaces turn out to originate from fixed lines on the boundary, even though the surfaces
themselves deform in time. The exact separation geometry is not captured by instantaneous Eulerian
fields associated with the velocity field, but can be determined from a weighted average of the
wall-shear and wall-density fields. To illustrate our results, we locate separation surfaces and
attachment surfaces in an unsteady model flow and in direct numerical simulations of a
time-periodic lid-driven cavity. © 2008 American Institute of Physics. �DOI: 10.1063/1.2988321�

I. INTRODUCTION

In this paper, we derive criteria for flow separation on
no-slip boundaries in unsteady velocity fields with a steady
mean. By unsteady flow with a steady mean, we mean a fluid
velocity field that is the sum of a steady component and
zero-mean oscillations. The time dependence of these oscil-
lations is arbitrary, as long as their asymptotic average is
zero.

Separation in unsteady flows can be defined in different
ways; here we adopt the view of Prandtl, who states that at
the separation location “a fluid-sheet projects itself into the
free flow.” In other words, we seek to identify the location of
material spikes that transport particles from the vicinity of
the boundary to other flow regions.

Material spike formation and associated particle ejection
may take place within a boundary layer �local separation or
separation bubble formation�, out of a boundary layer
�boundary-layer separation�, or even in the absence of a
boundary layer �separation in Stokes flows�. Our objective is
to develop wall-based criteria that predict spike formation in
all these cases regardless of the magnitude of the Reynolds
number. This approach continues the rigorous study of three-
dimensional flow separation initiated by Surana et al.1 for
steady flows.

A. Prior work on three-dimensional
unsteady separation

As opposed to two-dimensional flows that separate at
isolated boundary points, three-dimensional �3D� flows tend
to separate from the boundary along lines, not isolated wall-
shear zeros. This increased complexity makes the detection
of 3D separation a challenging task �see Refs. 2–5, for
reviews�.

In Surana et al.,1 we developed a mathematically exact
theory of 3D separation for steady flows. We identified sepa-

ration lines and angles in terms of the wall-shear and wall-
pressure fields. We also gave a full classification of all ob-
servable separation geometries. Since we assumed steadiness
for the flow, our Lagrangian-based proofs rendered separa-
tion and attachment surfaces that coincided with distin-
guished stream surfaces emanating from the wall.

For unsteady velocity fields, the Lagrangian and Eule-
rian descriptions of separation differ. The wall-shear distri-
bution, a prominent on-wall signature of separation, becomes
time dependent. As a result, classical techniques, such as
critical point theory for autonomous vector fields, become
inapplicable to the analysis of near-wall behavior. In fact,
applying such techniques to instantaneous wall-shear fields
leads to incorrect results, as two-dimensional examples
show.6–8 In general, instantaneous Eulerian descriptions fail
to yield a self-consistent and rigorous approach to unsteady
flow separation.

On the other hand, the Lagrangian approach has been
notably successful in describing 3D unsteady separation in
the boundary-layer equations. Continuing the two-
dimensional work of Shen9 and Van Dommelen and Shen,10

Van Dommelen and Cowley11 derived Lagrangian criteria for
the formation of material spikes, which they attribute to a
finite-time blow-up in Prandtl’s boundary-layer equation.

Even though the above approach has been highly influ-
ential in the boundary-layer literature, linking separation to
singularities in the boundary-layer equations raises as many
questions as it answers. First, rigorous mathematical ex-
amples show that even the steady boundary-layer equations
can display fluid breakaway without any singularity forma-
tion at the breakaway point.12 Second, unsteady boundary-
layer equations can develop singularities without any obvi-
ous connection with separation.13 Third, while material
spikes do form in physical Navier–Stokes flows, singularities
are generally agreed to be absent. Fourth, computing La-
grangian conditions at off-wall locations, as required by La-
grangian boundary-layer-separation theory, appears unrealis-
tic in an experimental implementation.
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An alternative Lagrangian approach to unsteady separa-
tion in Navier–Stokes flows was proposed by Wu et al.,14,15

who viewed separation as a distinguished 3D motion of par-
ticles near the boundary. Working with instantaneous particle
motion, they derived conditions for the simultaneous conver-
gence and upwelling of fluid near general boundaries. These
conditions are physically appealing and give reasonable re-
sults for the prolate spheroid example considered in Ref. 15.
Still, they lack a rigorous mathematical foundation and, in
general, give inaccurate separation locations away from zero-
wall-shear points even for steady flows.1

B. Main results

Here we develop an extension of the results of Surana
et al.1 on steady separation to fixed unsteady separation in
3D flows. By fixed unsteady separation, we mean fluid de-
parture from the boundary near time-independent lines on
the boundary. Such fixed separation lines might seem coun-
terintuitive for an unsteady flow, but turn out to be ubiqui-
tous in flows with a temporal mean component. In such
flows, oscillations of the velocity field around its mean give
rise to well-defined averaged locations where particles break
away from the boundary. The surfaces that these particles
follow, however, have general time dependence.

In nonlinear dynamical system terms, fixed unsteady
flow separation takes place along a nonhyperbolic unstable
manifold emanating from the no-slip boundary.8,16 In 3D,
such an unstable manifold is either a one-dimensional time-
dependent material curve �separation curve� or a two-
dimensional time-dependent material surface �separation
surface�. Both of these material structures collect and eject
particles from the vicinity of the boundary; in backward
time, they both shrink to the boundary. They deform in time,
but their base on the boundary cannot move along the bound-
ary because of the no-slip boundary conditions.

To locate separation curves and surfaces in unsteady
flow with a steady mean, we apply the mathematical theory
of averaging.17 Averaging is applicable here because in ap-
propriate local coordinates, the differential equation for La-
grangian particle motion becomes slowly varying near the
boundary. In these coordinates, averaging theory allows us to
derive mathematically exact criteria for wall-based unstable
manifolds. Despite their unsteadiness, separation curves and
surfaces have a steady base that remains fixed on the no-slip
boundary. We predict these fixed locations by applying the
steady 3D separation criteria of Surana et al.1 to a weighted
average of the wall-shear field. We also obtain leading-order
approximations for the time-varying separation curves and
surfaces near the wall.

The separation theory we derive in this paper is exact in
the following sense:

�1� We specify the class of flows we consider �Sec. II�:
flows with a well-defined steady mean component.

�2� We summarize commonly observed physical properties
of the separation surface that we explicitly use in our
analysis �Sec. III�: local uniqueness, nonzero angle en-
closed with the wall, smoothness, and robustness under
small perturbation �i.e., observability in experiments�.

�3� We derive exact analytical expressions �theorems� for
the location and shape of separation and attachment sur-
faces with the above properties. We give detailed proofs
in Appendices A and D.

We illustrate our analytic predictions on a randomly os-
cillating separation bubble model and on a direct numerical
simulation of a time-periodic lid-driven cavity flow.

II. SETUP AND ASSUMPTIONS

Consider a 3D unsteady velocity field,

v�x,y,z,t� = �u�x,y,z,t�,v�x,y,z,t�,w�x,y,z,t�� , �1�

with a flat stationary boundary at z=0; a treatment of general
curved boundaries is similar.18 Throughout this paper, we
shall assume that v is continuously differentiable.

On the z=0 boundary, the velocity field satisfies the no-
slip boundary condition

u�x,y,0,t� = v�x,y,0,t� = w�x,y,0,t� = 0. �2�

To distinguish the velocity components parallel to the bound-
ary, we let x= �x ,y�, so that

u�x,z,t� = �u�x,y,z,t�,v�x,y,z,t�� ,

w�x,z,t� = w�x,y,z,t� .

We shall denote the wall-tangential spatial gradient by �x
=ex�x+ey�y, where ex and ey are unit vectors along the x and
y axes.

If the velocity field is mass conserving and admits no
sinks or sources on the boundary, then the fluid density �
satisfies the continuity equation

�t� + � · ��v� = 0. �3�

On the z=0 boundary, the no-slip boundary conditions sim-
plify Eq. �3� to the linear differential equation,

�t��x,0,t� + ��x,0,t��zw�x,0,t� = 0

for ��x ,0 , t�; the solution to this equation is

��x,0,t� = ��x,0,t0�e−�t0
t �zw�x,0,s�ds. �4�

Taking the gradient of Eq. �4� gives the wall-tangential
density-gradient evolution,

�x��x,0,t� = �x��x,0,t0�e−�t0
t �zw�x,0,s�ds

− ��x,0,t0�e−�t0
t �zw�x,0,s�ds�

t0

t

�x�zw�x,0,s�ds .

�5�

Assuming that the density and density gradient of the fluid
remain bounded from below and from above for all times,
we obtain from Eqs. �4� and �5� the estimates
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��
t0

t

�zw�x,0,s�ds� � K ,

�6�

��
t0

t

�x�zw�x,0,s�ds� � K

for all t and for some constant K�0. Note that for incom-
pressible flows, we have

�zw�x,0,t� � 0

along the wall; thus Eq. �6� is always satisfied.
Our main assumption is that the velocity field v has a

steady asymptotic mean component

v�x,z� = lim
T→�

1

T
�

t0−T

t0

v�x,z,t�dt , �7�

bounded on the flow domain of interest for any choice of the
initial time t0. Flows in this category include periodic and
quasiperiodic flows, as well as turbulent flows with a steady
mean component. These types of flows are sometimes re-
ferred to as stationary. To avoid ambiguity in terminology,
we consider condition �7� as the precise definition of what
we called “unsteady flow with a steady mean” in the Intro-
duction.

Finally, we assume that the integrated velocity fluctua-
tion

��x,z,t� = �
t0

t

�v�x,z,t� − v�x,z��dt �8�

and its spatial derivatives up to third order are uniformly
bounded in time on the flow domain of interest.

III. SEPARATION AND ATTACHMENT DEFINITIONS

Following Surana et al.,1 we define flow separation as
material ejection from the boundary due to the presence of
distinguished material lines or material surfaces. Specifically,
we say that fixed unsteady separation takes place along the
boundary z=0 if fluid particles near the boundary converge
to a time-dependent material line L�t� or a time-dependent
material surface S�t�, along which they are ejected from the
boundary. In the language of dynamical systems, L�t� is a
one-dimensional unstable manifold �separation curve� of a
boundary point �separation point�; S�t� is a two-dimensional
unstable manifold �separation surface� of a curve of bound-
ary points �separation line�, as shown in Fig. 1.

Note that while L�t� and S�t� will generally deform in
time, their intersections with the boundary �p and �� remain
fixed because of the no-slip boundary conditions �hence the
term fixed unsteady separation�. As we shall see below, this is
the typical type of separation in flows that have a steady
mean.

As in the steady case discussed by Surana et al.,1 we
only consider separation curves and surfaces that are unique,
bounded, smooth, and robust with respect to flow perturba-
tions �see Surana et al.1 for a discussion of these properties�.
Also, following Surana et al.,1 we define fixed unsteady at-
tachment as fixed unsteady separation exhibited by the flow
in backward time �see Fig. 2�. This definition leads to the
notion of an attachment curve �one-dimensional stable mani-
fold� emanating from an attachment point p and an attach-
ment surface �two-dimensional stable manifold� emanating
from an attachment line �.

We stress two points related to our description of sepa-
ration. First, our approach does not distinguish between
small scale recirculation and large scale boundary-layer
separation: Both involve material ejection from the bound-
ary, but take place on different scales.

Second, the thin smoke and dye spikes commonly ob-
served in flow visualization confirm that separation indeed
takes place along unstable manifolds as we assume here. The
question, however, remains: Do these observed spikes �mani-
folds� emanate directly from the wall or from nearby off-wall
locations.

Based on available flow visualization results, we argue
that the spikes typically form along wall-based unstable
manifolds. Such wall-based manifolds have footprints in the
wall-shear field that are commonly observed in numerical
and laboratory experiments on boundary-layer
separation.4,5,19 In steady flow over an infinite moving
boundary20 or around a rotating cylinder,21 however, La-
grangian separation appears to originate off the boundary.
Such off-boundary separation, if indeed exists in physical
flows, is not amenable to the boundary-based invariant mani-
fold approach taken here, but can be captured by other
methods.22

IV. WEAKLY UNSTEADY PARTICLE DYNAMICS
NEAR THE BOUNDARY

In this section, we show that the flow near the boundary
is very close to the flow generated by an appropriately scaled
and averaged version of the velocity v. We first recall that
fluid particles satisfy the 3D kinematic equations of motion,

( )t( )t

p

FIG. 1. �a� Separation curve L�t� emanating from a separation point p. �b�
Separation surface S�t� emanating from a separation line �.

( )t ( )t

p

FIG. 2. �a� Attachment curve L�t� emanating from a attachment point p. �b�
Attachment surface S�t� enacting from a attachment line �.
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ẋ = u�x,y,z,t� ,

ẏ = v�x,y,z,t� , �9�

ż = w�x,y,z,t� ,

or briefly,

ẋ = u�x,z,t�, ż = w�x,z,t� .

Using the no-slip boundary conditions �2�, Eq. �9� can be
rewritten as

ẋ = zA�x,z,t� ,

�10�
ż = zB�x,z,t� ,

where

A�x,z,t� = �
0

1

�zu�x,sz,t�ds ,

�11�

B�x,z,t� = �
0

1

�zw�x,sz,t�ds .

Equation �10� is a preliminary normal form for the flow; we
shall further refine this normal form below.

Note that for incompressible flows, we have

�x · u + �zw = 0, �12�

which implies B�x ,0 , t��0 in Eq. �10� by the boundary con-
ditions �2�. Thus, in the incompressible case, Eq. �10�
becomes

ẋ = zA�x,z,t�, ż = z2C�x,z,t� , �13�

with

C�x,z,t� = �
0

1 �
0

1

�z
2w�x,spz,t�p dp ds . �14�

A. Locally incompressible normal form

It turns out that compressible particle motion can also be
transformed to the form �13� by letting

z = z̃e�t0
t �zw�x,0,��d�. �15�

Indeed, under this transformation, the equations of motion
become

ẋ = z̃A1�x, z̃,t�, ż̃ = z̃2C1�x, z̃,t� , �16�

where

A1�x, z̃,t� = e�t0
t �zw�x,0,��d�A�x, z̃e�t0

t �zw�x,0,��d�,t� ,

C1�x, z̃,t� = e�t0
t B�x,0,��d��zB�x,0,t� + O�z̃�

= 1
2e�t0

t �zw�x,0,��d��z
2w�x,0,t� + O�z̃� .

B. First-order averaged normal form

To focus on the dynamics near the z=0 boundary, we
apply the rescaling z̃=�z̄ with 0���1, which transforms
the particle equations of motion �16� further to

�̇ = �f��,t� + �2g��,t;�� , �17�

where �= �x , z̄�T and

f = 	 z̄A1�x,0,t�
z̄2C1�x,0,t�


 ,

g = 	z̄2��zA1�x,0,t� + O�z̄���

z̄3��zC1�x,0,t� + O�z̄���

 .

For small ��0, Eq. �17� is a slowly varying system to which
the principle of averaging is applicable. More specifically, as
we show in Appendix A, there exists a change in coordinates
�averaging transformation�,

� = � + �w��,t� ,

�18�

w��,t� = �
t0

t

�f��,�� − f����d� ,

under which Eq. �17� becomes

�̇ = �f��� + �2f1��,t� + O��3� , �19�

with

f��� = lim
T→�

1

T
�

t0−T

t0

f��,��d� ,

f1��,t� = ��f��,t�w��,t� + g��,t;0� − ��w��,t�f�	� .

Note that explicit time dependence now only appears in the
O��2� terms of Eq. �19�. Near the wall, therefore, the flow
remains O��2� close to its steady mean when viewed in the �
coordinates.

C. Second-order averaged normal form

Our final change in variables pushes the explicit time
dependence in Eq. �19� to even higher order. Namely, the
second-order averaging transformation

� = � + �2h��,t� ,

�20�

h��,t� = �
t0

t

�f1��,�� − f1����d�

puts Eq. �19� in the form

�̇ = �f��� + �2f1��� + O��3� , �21�

where

f1��� = lim
T→�

1

T
�

t0−T

t0

f1��,��d� , �22�

and only the O��3� terms in Eq. �21� have explicit time
dependence.
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V. FIXED UNSTEADY SEPARATION
AND ATTACHMENT CRITERIA

We shall first use the leading-order steady part of the
second-order averaged normal form �21� to locate separation
and attachment. This can be done based on the results of
Surana et al.1 on steady 3D separation. We then show that
these steady separation and attachment locations persist if we
take the additional O��3� unsteady terms into account in Eq.
�21�. We also obtain leading-order approximations for the
time-varying off-wall part of the separation curves and sur-
faces. The mathematical details of our arguments are rel-
egated to Appendices B and D; here we simply summarize
the results.

A. Steady separation at leading order

The first-order-averaged normal form �19� shows that an
unsteady compressible flow near a no-slip boundary can be
viewed as a small perturbation to the steady velocity field,

v0�x, z̄� = ��z̄��x�,�z̄2C̄�x�� , �23�

where the weighted average of the wall shear,

��x� = lim
T→�

1

T
�

t0−T

t0

e�t0
� �zw�x,0,s�ds�zu�x,0,��d� , �24�

is obtained from the instantaneous wall shear,

��x,t� = �zu�x,0,t� . �25�

Furthermore, the constant C̄ in Eq. �23� is defined as

C̄�x� =
1

2
lim
T→�

1

T
�

t0−T

t0

e�t0
� �zw�x,0,s�ds�z

2w�x,0,��d� , �26�

measuring the weighted average rate of stretching normal to
the boundary.

The particle equations of motion for the velocity field
�23� are given by

ẋ = �z̄��x� ,

�27�
ż̄ = �z̄2C̄�x� .

As in Surana et al.,1 we introduce the rescaled time variable,

s = ��
t0

t

z̄�r�dr , �28�

so that the above equations of motion become

x� = ��x� ,

�29�
z̄� = z̄C̄�x� ,

with prime denoting differentiation with respect to the
rescaled time s.

In the rescaled system �29�, the averaged wall shear gen-
erates a fictitious flow,

x� = ��x� , �30�

on the z=0 boundary. We refer to a trajectory x�s ,x0� of Eq.

�30� starting from x0 at s=0 as an averaged wall-shear tra-
jectory. A connected union of wall-shear trajectories will be
called an averaged wall-shear line, denoted by �.

As shown by Surana et al.,1 steady separation locations
crucially depend on the rate at which wall-shear trajectories
converge to, or diverge from, each other. In the context of the
rescaled averaged flow �30�, these rates are measured by the
averaged normal strain rate field,

S̄��x� = �� · ���x��
̄�
���2

�
x

,

where �x�̄�x� is the wall-tangential gradient of ��x� and � is
the averaged on-wall vorticity field,

��x� = ���x� , �31�

with the notation �a ,b��= �−b ,a�.
With the above quantities at hand, we can apply the re-

sults of Surana et al.1 to locate separation and attachment in
the steady averaged velocity field v0�x , z̄�. Figure 3 shows
the two possible types of separation points p that v0�x , z̄�
may admit; Fig. 4 illustrates the four basic types of separa-
tion lines � that can occur in v0�x , z̄�.

p p

FIG. 3. Different types of separation points and the associated separation
curves in the steady averaged limit �23�: �a� stable foci and �b� stable node.
Under conditions of Theorem 1, time-dependent perturbations of these sepa-
ration curves continue to act as unstable manifolds for p in the original
velocity field v.

��

�

p p

p

q

�
�

FIG. 4. The four basic separation lines and associated separation surfaces in
the averaged steady limit �23�. Under conditions of Theorem 2, time-
dependent perturbations of the separation surface continue to act as unstable
manifolds of � in the full velocity field v.
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B. Criteria for fixed separation and attachment points
in the unsteady flow

As a second step, we shall use techniques from nonlinear
dynamical system theory to show that the above steady sepa-
ration structures have nearby time-dependent counterparts in
the original unsteady velocity field v. We list the final results
below and relegate their detailed proof to Appendix B.

Theorem 1: Suppose that a point p satisfies

��p� = 0, �x · ��p� � 0,

�32�
det �x��p� � 0, C̄�p� � 0.

Then �x ,z�= �p ,0� is a fixed unsteady separation point for
the velocity field v.

By reversing time in the proof of Theorem 1, we find
that if

��p� = 0, �x · ��p� � 0,

�33�
det �x��p� � 0, C̄�p� � 0,

are satisfied, then p is a fixed attachment point.
In summary, we have the following results for the origi-

nal unsteady velocity field v:

�S0� A separation point �p ,0� on the z=0 boundary is either
a stable node or a stable spiral of the time-averaged

wall-shear field �24� with C̄�p��0.
�R0� An attachment point �p ,0� on the z=0 boundary is ei-

ther an unstable node or unstable spiral of the time-

averaged wall-shear field �24� with C̄�p��0.

C. Criteria for fixed separation and attachment lines
in the unsteady flow

We now list our main result for fixed separation lines for
the velocity field v; we prove these results in Appendix B.

Theorem 2: Let � be a bounded wall-shear line of the
time averaged wall-shear field �24�. Assume that at each
point x of �, we have

S̄��x� − C̄�x� � 0, C̄�x� � 0. �34�

Assume further that one of the following holds:

�S1� � originates from a saddle p and ends at a stable
spiral q.

�S2� � originates from a saddle p and ends at a stable node
q. Also, � is tangent to the direction of weaker attrac-
tion at q.

�S3� � originates from a saddle p and spirals onto a stable
limit cycle �.

�S4� � is a stable limit cycle �.

Then � is a fixed separation line for the unsteady veloc-
ity field v.

We prove Theorem 1 in Appendix B 1. By reversing
time in the proof, we obtain a criterion for attachment lines.

Specifically, let � be a bounded wall-shear line of the time-
averaged wall-shear field �24�. Assume that at each point x of
�, we have

S̄��x� − C̄�x� � 0, C̄�x� � 0. �35�

Assume further that one of the following holds:

�R1� � originates from an unstable spiral p and ends at a
saddle q.

�R2� � originates from a unstable node p and ends at a
saddle q. Also, � is tangent to direction of weaker re-
pulsion at p.

�R3� � spirals off an unstable limit cycle � and ends at a
saddle q.

�R4� � is a unstable limit cycle �.

Then � is a fixed attachment line for the unsteady veloc-
ity field v.

The time-averaged wall-shear zeros p and q, as well as
the limit cycle � featured above, must be nondegenerate:
they must attract or repel nearby time averaged wall-shear
trajectories exponentially in the rescaled time s �28�. For the
details of these nondegeneracy conditions, we refer to Surana
et al.1

D. Fixed unsteady separation at corners

The above nondegeneracy conditions always fail at the
intersection of the wall with another vertical boundary. Since
one of the examples considered in this paper involves such a
situation, we briefly outline below how the above conditions
must be modified to apply in this degenerate case.

Consider, for simplicity, two no-slip boundaries given by
x=0 and z=0, intersecting in a corner that is just the y axis
itself. As we show in Appendix C, the steady averaged nor-
mal form in this case takes the form

ẋ̄ = x̄2z̄�̄1�x̄,y� ,

ẏ = x̄z̄�̄2�x̄,y� , �36�

ż̄ = x̄z̄2�̄3�x̄,y� ,

where

�̄1�x̄,y� = lim
T→�

1

T
�

t0−T

t0

e�t0
t x̄C�x̄,y,0,��d��xxz

3 u�0,y,0,t�dt ,

�̄2�x̄,y� = lim
T→�

1

T
�

t0−T

t0

e�t0
t x̄C�x̄,y,0,��d��xz

2 v�0,y,0,t�dt ,

�̄3�x̄,y� = lim
T→�

1

T
�

t0−T

t0

e�t0
t x̄C�x̄,y,0,��d��xzz

3 w�0,y,0,t�dt .

With this notation, the wall-shear field � �24� can be written
as

� = �x̄2�̄1, x̄�̄2� . �37�
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Let � be an averaged wall-shear trajectory of Eq. �37�
that terminates in a point p= �0, p� of the y=0 corner of the
z=0 plane. Based on the analysis of Surana et al.,1 we con-
clude the following:

�Sc1� p satisfies

�̄2�p� = 0,

and can only be either a saddle or a node of the �̄
vector field.

�Sc2� p is a nondegenerate node within the z=0 plane if

��̄1�p� + �y�̄2�p��2 � 4�̄1�p��y�̄2�p� � 0, �38�

whereas p is a nondegenerate saddle within the z=0
plane if

�̄1�p��y�̄2�p� � 0. �39�

�Sc3� For separation to take place along �, the leading-order
stretching rate off the z=0 plane at the point p must
satisfy

�̄3�p� � 0,

and we must also have

S̄��x� − C̄�x� � 0, C̄�x� � 0, �40�

for all points x�p of �.

E. Separation- and attachment-slope formulas

A separation curve L�t� is a time-dependent material line
emanating from the separation point p, it can locally be rep-
resented as

x = p + zg0�t� + O�z2� ,

where g0�t� denotes the time-dependent slope of L�t�.
For a separation surface S�t� emanating from a fixed

separation line �, we define the separation angle ��x0 , t� at a
point x0 of � as follows: ��x0 , t� is the angle between the
wall normal and the tangent of S�t� at x0 �see Fig. 5�.

If we use the first-order averaged normal form �19� to
compute g0�t� or ��x0 , t�, we always obtain zero values for

both. We can, however, use the second-order averaged nor-
mal form �21� to obtain a more refined approximation for the
separation slope. Specifically, as we show in Appendix D, we
obtain that at time t0, the slope of a separation curve ema-
nating from p is given by

g0�t0� = − �P�p��−1Q�p� , �41�

where

P�x� = lim
T→�

1

T
�

t0−T

t0

P�x,�,t0�d� ,

Q�x� = lim
T→�

1

T
�

t0−T

t0

Q�x,�,t0� , �42�

with

P�x,�,t0� = e�t0
� �zw�x,0,s�ds��x�zu�x,0,�� + �zu�x,0,��

�
�
t0

�

�x�zw�x,0,s�ds�T�
−

1

2
e�t0

� �zw�x,0,s�dsI�z
2w�x,0,�� ,

Q�x,�,t0� =
1

2
e2�t0

� �zw�x,0,s�ds�z
2u�x,0,��

+ P�x,�,t0��
t0

�

e�t0
p �zw�x,0,s�ds�zu�x,0,p�dp .

The above slope formula is equally valid for attachment
curves by a time-reversal argument.

We also show in Appendix D that at time t0, the slope of
a separation surface at a boundary point x0 satisfies

tan���x0,t0�� = �
−�

0

E�q��R · �

���
�

x=x�q,x0�
dq , �43�

where

E�q� = e�0
q�C̄�x�r,x0��−S̄��r��dr, �44�

and x�q ,x0� is a trajectory on the separation line � satisfying
the differential equation �30�. Furthermore, the function R in
the formula �43� is defined as

R�x,t0� = lim
T→�

1

T
�

t0−T

t0

R�x,�,t0�d� ,

where

R�x,�,t0� =
1

2
e2�t0

� �zw�x,0,s�ds�z
2u�x,0,�� + P�x,�,t0��

t0

�

�e�t0
p �zw�x,0,s�ds�zu�x,0,p� − �̄�x��dp

+ ��
t0

� 
e�t0
p �zw�x,0,s�ds
�x�zu�x,0,p� + �zu�x,0,p�
�

t0

p

�x�zw�x,0,s�ds�T� − �x�̄�x��dp��̄�x� .

,t

�

�

( )t

�

FIG. 5. Definition of the separation angle ��x0 , t�.
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Attachment slopes obey a similar formula with the limit in
the improper integral taken in forward time,

tan���x0,t0�� = − �
0

+�

E�q��R · 
̄

���
�

x=x�q,x0�
dq . �45�

Note that the computation of above separation/
attachment criteria requires the knowledge of various wall
normal derivatives, which may be difficult to obtain directly
in experiments. By definition, the �zu�x ,0 , t� is related to
time-dependent wall-shear stress �s as

�zu�x,0,t� = ��x,t� =
1



�s�x,t� , �46�

where 
 is the dynamic viscosity of the fluid. Restriction of
continuity equation on the wall �Eq. �4�� leads to

e−�t0
t �zw�x,0,s�ds =

��x,0,t�
��x,0,t0�

, �47�

while restriction of the Navier–Stokes equation yields

�z
2u�x,0,t� =

1



�xp�x,0,t� .

Hence, �zw�x ,0 , t� and �z
2u�x ,0 , t� can be obtained from on

wall measurements of density and pressure. For incompress-
ible flows, we have �zw�x ,0 , t��0 and

�z
2w�x,0,t� = − �x · ��x,t� . �48�

Hence, for incompressible Navier–Stokes flows, the formu-
las �41�, �43�, and �45� can be expressed only in terms of the
wall shear, the wall pressure, and their derivatives �see
Surana et al.1 for details�.

F. Algorithm for locating separation and attachment

The above results lead to the following algorithm for
locating separation and attachment in unsteady flows with a
steady mean component �see Surana et al.23 for details�:

�1� For the time averaged wall-shear field ��x� �Eq. �24��,
find all nondegenerate zeros pi and limit cycles � j. The
zeros and limit cycle should satisfy nondegeneracy con-
dition, specifically, a nondegenerate node p satisfies

��x · ��p��2 � 4 det �x��p� � 0, �49�

a nondegenerate saddle p satisfies

det �x��p� � 0, �50�

a nondegenerate spiral p satisfies

0 � ��x · ��p��2 � 4 det �x��p� , �51�

and a nondegenerate limit cycle � satisfies

�
�

�� · ��x� ��
���2

�
x=x�s,x0�

ds � 0. �52�

�2� For each nondegenerate wall-shear saddle pk, find its
stable and unstable manifolds in the z=0 plane. The
manifold Wu�pk� is obtained numerically by advecting a
small line segment—initially tangent to the unstable ei-

genvector of pk—using the flow of ẋ=��x�. In other
words, we take an initial condition on the unstable ei-
genvector of pk sufficiently close to pk and solve the
system ẋ=��x� for that initial condition. The manifold
Ws�pk� is obtained by backward advecting a small line
segment—initially tangent to the stable eigenvector of
p—using the flow of ẋ=��x�.

�3� Identify separation and attachment points using the cri-
teria �S0� and �R0�.

�4� Identify separation and attachment lines from the criteria
�S1�–�S4� and �R1�–�R4�. At corners, use �Sc1�–�Sc3�
and its counterpart �Rc1�–�Rc3�.

�5� Compute the slope of separation and attachment curves
at current time t0, using Eq. �41�.

�6� Compute first-order approximations at current time t0 for
attachment and separation surfaces from the angle for-
mula in Eq. �43� or �45�.

VI. AN ANALYTIC EXAMPLE: RANDOMLY VARYING
SEPARATION BUBBLE

In this section, we analyze a randomized version of the
steady incompressible separation bubble flow model studied
by Surana et al.1 The velocity field for this flow is given by

u = z
	 x

a

2

+ 	 y

b

2

− 1�
+ z2
� + �x + 	 c

6
−

2

3a2 −
1

3b2
z� ,

v = − yz�cx + d + �r�t�� + z2�� + �y� , �53�

w =
d + �r�t�

2
z2 + 
 c

2
−

1

a2�xz2 −
2�

3
z3,

where r�t� is a zero-mean random variable with normal dis-
tribution. This model is derived from the Navier–Stokes
equations by using the perturbative procedure of Perry and
Chong24 and is dynamically consistent up to cubic order in
the spatial variables near the no-slip boundary. Physically,
the velocity field models the loss of stability of the steady
separation bubble that develops random oscillations. As we
show below, the separation pattern we identify in this flow is
commonly observed over moving vehicles.25

Because r�t� has zero mean, its integral,

F�t� = F�t0� + �
t0

t

r���d� , �54�

is bounded, leading to

lim
T→�

1

T
�

t0−T

t0

r�t�dt = 0. �55�

Thus, the averaged velocity field is given by the �=0 limit of
Eq. �53�, which is bounded on bounded sets. Also, the
function

107101-8 Surana et al. Phys. Fluids 20, 107101 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



��x,z,t� = �F�t�� 0

− yz

z2/2
�

and its spatial derivatives are bounded on bounded sets. All
the assumptions of Sec. II are therefore satisfied.

We obtain the averaged wall-shear and vertical strain
coefficient in the form

��x� = � x2

a2 +
y2

b2 − 1

− ycx − yd
�, C̄�x� =

d

2
+ 	 c

2
−

1

a2
x . �56�

With these quantities at hand, we can verify the following
assertions:

�i� For d�ac, the vector field ��x� admits four zeros,

p1 = 	− a

0

, p2 = 	a

0

 ,

p3 = � − d/c

− b�1 − 	 d

ac

2 � ,

p4 = � − d/c

b�1 − 	 d

ac

2 � ,

which can be classified as follows �cf. Surana et al.1�:

�1� p1 is a saddle, since det �x��p1�=2a�d−ac��0,
with

C̄�p1� =
d − ac

2
+

1

a
. �57�

�2� p2 is also a saddle, as det �x��p2�=−2a�d+ac�
�0, with

C̄�p2� =
d + ac

2
−

1

a
. �58�

�3� p3 and p4 are stable foci because

det �x��p3,4� =
2

c

1 − 	 d

ac

2� � 0,

�x · ��p3,4� = −
2d

ca2 � 0, �59�

det �x��p3,4� � ��x · �̄�p3,4��2/4

hold with

C̄�p3,4� =
d

a2c
� 0. �60�

Therefore, by Theorem 1, p3 and p4 are separa-
tion points.

�ii� Based on the above inequalities, we conclude that the
union of the two branches of the unstable manifold
Wu�p1� of the saddle p1 is a separation line candidate.
Moreover, the two conditions in Eq. �34� are satisfied
for this separation line, as shown in Fig. 6�b�. Hence,
by Theorem 2, fixed separation occurs along Wu�p1�.

The slopes of the separation profiles at the separation
points p3 and p4 are now given by

FIG. 6. �Color� �a� Averaged wall-shear field for random bubble flow with parameters a=1, b=1, c=1, d= 1
2 , �=1, �=0, �=1, and �=5. �b� The blue curve

represents S̄��x�s��− C̄��x�s��� and the red one is C̄��x�s���, where x�s� denotes the branch of Wu�p1� connecting to p3.
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g0�p3,t� = − � −
3d

ca2 −
2

b
�1 − 	 d

ac

2

cb�1 − 	 d

ac

2

−
d

ca2
�

−1

� �	�

�

 + �p3 + �� 2	1 − 	 d

ac

2


bd

ca2�1 − 	 d

ac

2�F�t�� ,

FIG. 7. �Color� Fixed separation exhibited by fluid particles in the random separation bubble flow. The pictures correspond to the increasing sequence of times
t=55, 103, 135, 185, 215, and 249.
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g0�p4,t� = − � −
3d

ca2

2

b
�1 − 	 d

ac

2

− cb�1 − 	 d

ac

2

−
d

ca2
�

−1

� �	�

�

 + �p4 + �� 2	1 − 	 d

ac

2


−
bd

ca2�1 − 	 d

ac

2�F�t�� ,

respectively. The separation line in this example is the union
of two branches of the unstable manifold Wu�p1� of p1. We
compute the separation slope along Wu�p1� numerically us-
ing formula �43�.

In our numerical simulations of this model, we set the
standard deviation of r�t� equal to 0.2. We sampled r�t� at
multiples of �T=0.2 and used a cubic spline interpolation to
obtain velocity values in Eq. �53� for intermediate times. We
show the corresponding numerical simulation of fluid par-
ticle motion in Fig. 7. Despite the drastic changes in the
instantaneous wall-shear topology, the separation occurs at a
fixed location along the separation surface predicted by our
theory.

VII. TIME-PERIODIC LID-DRIVEN CAVITY FLOW

We now turn to the direct numerical simulation of a
time-periodic lid-driven cavity, a classic benchmark problem
with complex separation and attachment topologies.23 Be-
yond their technological importance, cavity flows are of in-
dependent scientific interest as they display almost all 3D
fluids phenomena in the simplest of geometrical settings.26

The nondimensionalized computational model �Fig. 8�
consists of a cube with sides L=1. The top wall in the
z-direction is driven at a time-periodic velocity U�t�=Um

+0.7 sin t in the x-direction with a mean velocity Um=0.3.
The velocity distribution on the moving top wall is tapered to
zero toward the sides according to a parabolic profile; this is
to avoid velocity singularities at these locations. For details
of the numerical methodology used in our simulation, we
refer the reader to Surana et al.,23 where the same cavity was
driven at a constant velocity U�t��Um=1.0.

A. Separation and attachment analyses

To analyze the time-averaged wall-shear field � on each
wall shown in Fig. 9, we follow the steps described in the
Sec. V F �details can be found in Surana et al.23�. Through
these steps, we identify all separation and attachment points
and curves and check their nondegeneracy. For brevity, we
only show the final result of this analysis in Fig. 9. For
separation patterns involving corner points, we have used the
approach sketched in Sec. V D, described in detail by Surana
et al.23 We note that by symmetry of the flow, walls 1 and 2
admit identical wall-shear fields and corresponding separa-
tion patterns.

Note that wall 5 is not fixed and hence was analyzed in
a frame comoving with it. The moving coordinate system
leaves the flow domain, but nearby particle paths reveal that
there is no separation or attachment on the moving wall de-
spite the presence of zeros in the corresponding wall-shear
field �see Fig. 9�.

Figure 10 shows the local analytic predictions for the
time-dependent separation �green� and attachment �blue� sur-
faces on walls 1, 3, 4, and 6, respectively. We have used the
slope formulas �43� and �45� to obtain these approximate
surfaces.

In Fig. 10, black curves represent the time-dependent
wall-shear trajectories �see also Fig. 11�. It is evident that,
despite the large variations in the topology of the time-
dependent wall-shear field, the separation and attachment oc-
cur at fixed locations. The particle paths shown in red and
cyan validate this prediction.

VIII. CONCLUSIONS

In this paper, we have used nonlinear dynamical system
techniques to give an exact treatment of fixed unsteady sepa-
ration in 3D flows with a steady mean component. We have
derived conditions under which time-dependent but
boundary-fixed versions of the four basic separation patterns
found in steady flows �see Surana et al.1� arise. We have also
derived exact first-order approximations to time-dependent
separation curves and separation surfaces.

Our results cover separation near corners formed by no-
slip boundaries and apply to curved moving boundaries after
the transformations described by Surana et al.1 For Navier–
Stokes flows, the separation criteria and formulas obtained
here can be expressed in terms of the wall shear and wall
pressure; for details, we refer the reader to Surana et al.1

We have illustrated our fixed unsteady separation criteria
on time-dependent versions of analytic flow models derived
by Surana et al.1 and on a time-periodic lid-driven cavityFIG. 8. Geometry of the cavity with a periodically driven lid.
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flow. Separation over moving walls will be treated else-
where.

Additional work is needed to characterize separation in
turbulent flows with a time-varying mean component. An

example of such a flow is the velocity field around the wing
of a maneuvering aircraft: The fast turbulent oscillations av-
erage out in the flow, but the slower maneuvering component
of the motion is unsteady and its temporal average is typi-

FIG. 9. �Color� Time averaged wall-shear fields on walls 1, 4, 5, and 6 for the time-periodic lid-driven cavity flow. We also indicate special averaged
wall-shear lines �stable and unstable manifolds of the saddles� connecting averaged wall-shear zeros. Among these, the solid lines turn out to be actual
separation lines �green� or attachment lines �blue�.
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cally nonzero. If the time scale of the mean component is
sufficiently far from that of the oscillatory component, the
separation location is no longer fixed: the flow displays mov-
ing separation. Moving separation turns out to occur along

finite-time unstable manifolds.8 Such finite-time manifolds
can be located by extending the averaging techniques used in
the present paper to flows with a slowly varying mean
component.22

FIG. 10. �Color� Local approximation to the time-dependent separation and attachment surfaces which appear as green and blue, respectively, for different
walls of the cavity. These predictions are validated by particle paths which have been colored red and cyan. The subplots �a� and �b� show wall 1, �c� and �d�
show wall 3, �e� and �f� show wall 4, and �g� and �h� show wall 6.
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APPENDIX A: AVERAGED EQUATIONS

To derive the first-order averaged equation �19� from Eq.
�17�, we introduce the near-identity change of variables,

� = � + �w��,t� ,

leading to

�̇ = �̇ + ���w��,t��̇ + ��tw��,t�

= �f�� + �w�	,t�,t� + �2g�� + �w��,t�,t;��

= �f��,t� + �2���f��,t�w��,t� + g��,t;0�� + O��3� .

Rearranging gives

�̇ = �I + ���w��,t��−1���f��,t� − �tw��,t��

+ �2���f��,t�w��,t� + g�	,t;0�� + O��3�� .

For small �, we have the expansion

�I + ���w�	,t��−1 = I − ���w��,t� + O��2� ,

which gives

�̇ = ��f��,t� − �tw��,t�� + �2���f��,t�w��,t� + g��,t;0�

+ ��w��,t��tw��,t� − ��w��,t�f��,t�� + O��3� .

Choosing

w��,t� = �
t0

t

�f��,t� − f����d� ,

f��� = lim
T→�

1

T
�

t0−T

t0

f��,��d�

for a given t0, we obtain the first-order averaged normal
form,

�̇ = �f��� + �2f1��,t� + O��3� ,

where

f1��,t� = ��f��,t�w��,t� − ��w��,t�f��,t�

+ ��w��,t��tw��,t� + g��,t;0�

= ��f��,t�w��,t� + g��,t;0� − ��w��,t�f��� .

With �= �q , p� and

��q� = lim
T→�

1

T
�

t0−T

t0

A1�q,0,��d� ,

��q,t;t0� = �
t0

t

�A1�q,0,t� − ��q��d� ,

C̄�q� = lim
T→�

1

T
�

t0−T

t0

C1�q,0,��d� ,

FIG. 11. �Color� Instantaneous wall-
shear field �shown in red� on wall 4.
We also indicate special averaged
wall-shear lines �stable and unstable
manifolds of the saddles� connecting
averaged wall-shear zeros. Among
these, the solid lines turn out to be ac-
tual separation lines �shown in green�.
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��q,t;t0� = �
t0

t

�C1�q,0,t� − C̄�q��d� ,

we can express f as

f��� = 	 p��q�

p2C̄�q�

 .

Similarly we can express f1 as

f1��,t� = 	p2F�q,t�
p3G�q,t�


 ,

where

F�q,t� = ��xA1�q,0,t� − C̄I�� − �x�� + �z̃A1�q,0,t�

+ A1�q,0,t�� ,

G�q,t� = 2�C1�q,0,t� − C̄� − �x� · �� + �z̃C1�q,0,t�

+ �xC1�q,0,t� · � ,

with · denoting the standard inner product.
The second-order averaged form is obtained in a similar

manner. Specifically, we eliminate the time dependence in f1

by introducing the change of variables,

� = � + �2h��,t� ,

h��,t� = �
t0

t

�f1��,t� − f1����d� .

We follow the same procedure as above to obtain

�̇ = �f��� + �2f1��� + O��3� , �A1�

where

f1��� = lim
T→�

1

T
�

t0−T

t0

f1��,��d� = 	s2F̄�r�

s3Ḡ�r�

 ,

with �= �r ,s� and

F = lim
T→�

1

T
�

t0−T

t0

F�r,��d� ,

Ḡ = lim
T→�

1

T
�

t0−T

t0

G�r,��d� .

In component form, we can rewrite Eq. �A1� as

ṙ = �s���r� + s�F�r�� + O��3� ,

�A2�
ṡ = �s2�C̄�r� + s�Ḡ�r�� + O��3� .

APPENDIX B: PERSISTENCE OF SEPARATION
PATTERNS IN THE FULL FLOW

In this appendix, we prove Theorem 1 of Sec. V B and
Theorem 2 of Sec. V C. The proof relies on topological in-
variant manifold techniques that we apply on a case-by-case
basis.

1. Persistence of separation curves: Node and spiral

For system �27�, the point �p ,0� is a separation point if
and only if1

��p� = 0, �x · ��p� � 0,

�B1�
det �x��p� � 0, C̄�p� � 0.

Here we show that under the same conditions, the unstable
manifold emanating from p persists in the full system �19�.
This result is not obvious because the no-slip boundary con-
ditions make the unstable manifold degenerate �nonhyper-
bolic�, and hence its survival under small perturbations is not
guaranteed by classic dynamical system results.

Recall that the first-order averaged normal form �19� in
the component form �= �q , p� is given by

q̇ = �p��q� + �2p2n1�q,p,�,t� ,

�B2�
ṗ = �p2C̄�q� + �2p3n2�q,p,�,t� ,

where the O��2� terms are bounded by our assumptions. By
making the change of coordinates q→q−x0, where x0 is any
point on the boundary, we transform the first-order averaged
equations �B2� to the form

q̇ = �p��x0� + �p�x��x0� · q + �p�m1�q,p,�,t�q1
2

+ m2�q,p,�,t�q1q2 + m3�q,p,�,t�q2
2�

+ �2p2m4�q,p,�,t� ,

�B3�
ṗ = �p2C̄�x0� + �2p3m5�q,p,�,t� + �p2q · m6�q,p,�,t� ,

where mi are appropriate smooth functions that are uni-
formly bounded in their arguments, notably in t.

Choosing x0=p in Eq. �B3�, we obtain

q̇ = �p�x��p� · q + �p�m1q1
2 + m2q1q2 + m3q2

2� + �2p2m4,

�B4�
ṗ = �p2C̄�p� + �2p3m5 + �p2q · m6

as transformed equations of motion for fluid particles near p.
Consider the solid cone

Q = ��q,p���q� � �p, 0 � p � �� ,

where � and � are positive constants to be selected below
�Fig. 12�. The lateral surface L of this cone is

L = ��q,p� � Q��q� = �p� , �B5�

which can be parametrized by q1=�p cos���, q2=�p sin���,
where �� �0,2�� and �=tan��� with � denoting the half-
angle of the cone. The outward unit normal n to Q can be
written as

n =
1

�1 + �2�cos���
sin���
− �

� . �B6�

Finally, the top disk D of the cone can be described as

D = ��q,p� � Q�p = �� . �B7�
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Restricted to the disk D, the particle equations of motion
become

ṗ�p=� = ��2�C̄�p� + ��m5 + q · m6�

���2�C̄�p� − �p�m5� − �q� · �m6�� � ��2 C̄�p�
2

� 0,

provided that we choose � and � appropriately small. There-
fore, solutions intersecting the D leave Q immediately if

C̄�p��0 and � and � are small enough.
Now consider the L boundary of the cone Q, for which

q=�pe, where e= �cos � , sin ��T, and hence

q̇�q=�pe = �p2���x��p�e + p�2�m1 cos2���

+ m2 cos���sin��� + m3 sin2���� + �m4� ,

ṗ�q=�pe = �p2�C̄�p� + �pm5 + �pe · m6� .

The flow enters the cone on this surface, provided

n · �q̇, ṗ� � 0 �B8�

everywhere on the surface. This is the case if

�ṗ��pe � q̇��pe · e for any � and 0 � p � � ,

or equivalently,

��C̄�p� − e · �x��p�e� + ��pm5 − �m4 · e

− p�2�m1 · e cos2��� + m3 · e sin2����

+ p�2�e · m6 − m2 · e cos���sin���� � 0

for any � and for all 0� p��. By choosing �=1, and setting
� and � sufficiently small, we can make the above inequality
satisfied provided that

C̄�p� − �max��x��p�� � 0, �B9�

where �max��x��p�� is the maximum singular value of the
Jacobian of the wall-shear field evaluated at the separation
point p. The second and third inequalities in Eq. �B1� imply
�max��x��p���0. This, along with the last inequality in Eq.
�B1�, implies that condition �B9� is always satisfied. From

this we conclude that solutions intersecting the L boundary
of the cone Q enter Q immediately.

a. Solutions staying in Q in backward time
converge to p

We next examine the asymptotic behavior of solutions
staying in the cone for all backward times, from which we
shall later conclude the existence of an unstable manifold
for p.

Consider an initial position �q0 , p0��Q at t0 and denote
the trajectory starting from this initial position by �q�t� , p�t��.
Integration of

ṗ�t� = �p�t�2�C̄�p� + �pm5 + q · m6��q�t�,p�t�� �B10�

gives

p�t� =
p0

1 + �p0�t
t0�C̄�p� + �p���m5 + q · m6�d�

. �B11�

If the trajectory starting from �q0 , p0� stays in Q for all back-
ward times, Eq. �B11� holds for all t� t0. Choosing � and �
appropriately small then leads to the estimate

p�t� �
p0

1 + �p0�t
t0�C̄�p� − �p�m5� − �q� · �m6��d�

�
p0

1 +
�p0

2
C̄�p��t0 − t�

.

This allows us to conclude that

lim
t→−�

p�t� = 0.

In other words, trajectories that never leave Q in backward
time will necessarily converge to the p=0 boundary of the
cone Q. By the definition of Q, however, this convergence in
the p direction implies

lim
t→−�

q�t� = 0.

b. All solutions leave Q in forward time

For any p0�0, consider an initial position �q0 , p0��Q
at time t0; denote the trajectory starting from this initial po-
sition by �q�t� , p�t��. In forward time, the trajectory cannot
leave the cone through L. We show that the p coordinate
grows and reaches � in a uniform finite time for any given
p0�0. Hence, the trajectory must exit the cone through D.

By our discussion in Appendix B 1 a, along the trajec-
tory starting from �q0 , p0�, we have

p�t� �
p0

1 − �p0�t0
t �C̄�p� − �p�m5� − �q� · �m6��d�

�
p0

1 − �p0
C̄�p�

2
�t − t0�

,

which holds for t� t0 while the trajectory stays in Q in for-

p

q1

L

D

q2

p

Q

FIG. 12. Geometry of the set Q.
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ward time. Then, if p0�0, then the relation p�t��� is vio-
lated at times

t � t0 +
2

�C̄�p�

 1

p0
−

1

�
� . �B12�

Thus, the trajectory has to leave the cone through D.

c. There exist solutions that stay in Q
for all backward times

To prove that there are solutions that stay in Q for all
backward times, we follow the argument developed by
Haller.27 In the extended phase space of the �q , p , t� vari-
ables, let

� = Q � R, L = L � R, D = D � R . �B13�

Consider an infinite sequence of closed curves �Cn�n=1
� with

Cn�L such that each Cn encircles the p axis and
limn→� Cn=0. In the extended phase space, each family of
circles Cn appears as an infinite cylinder,

Cn = ��q,p,t��q � Cn,t � R� , �B14�

as shown in Fig. 13.
By our discussion in Appendix B 1 b above, we con-

clude that there exists a finite time Tn�0 �B12�, such that at
time t+Tn, all solutions �q , p , t� starting from the cylinder Cn

are outside Q. At time Tn, the image of the cylinder Cn under
the flow map is En, as shown in the Fig. 13. All trajectories
evolving from Cn in forward time intersect the boundary of D
forming another cylinder Dn, as shown in Fig. 13. Similarly,
the cylinder Cn+1 gives rise to a cylinder Dn+1�Dn on the
boundary of D. By construction, any solutions starting from
Dn \Dn+1 exit C somewhere between the circles Cn and Cn+1

in backward time. The infinite sequence of cylinders,
D1	D2	¯, is a nested sequence of nonempty closed set,
and hence

D� = 
n�1Dn �B15�

is a nonempty curve by Cantor’s theorem. Observe that a
point �q� , p� , t���D� will never exit Q in backward time
because there is no index N for which �q� , p� , t��
�DN \DN+1. For any time t�, therefore, we have found an

initial condition �q� , p�� such that the corresponding solution
�q��t� , p��t�� stays in Q for all t� t�.

d. Existence of unstable manifold

From Appendix B 1 a above, we obtain that �q��t� , p��t��
converges to the origin �the tip of the cone Q� in backward
time. Thus, we have shown that there is a nonempty set of
initial fluid particle positions W� that stay in Q for all back-
ward times. By definition, W� is an invariant set that is nec-
essarily smooth in t because it is composed of fluid trajecto-
ries that are smooth in t. We, therefore, conclude that all
trajectories in W� converge to p=q=0 in backward time,
thus W� is an unstable manifold for �p ,0�.

By reversing the time direction in all the above argu-
ments, we conclude the persistence of an attachment profile
�stable manifold� under the conditions

��p� = 0, �x · ��p� � 0,

det �x��p� � 0, C̄�p� � 0,

and hence Eq. �33� follows.

2. Persistence of separation surfaces: Saddle
connections and limit cycles

Consider a bounded wall-shear line � of the time aver-
aged wall-shear field �. As shown by Surana et al.,1 � is the
separation line for the averaged steady velocity fields if the
following is satisfied:

�1� � originates from a saddle p with C̄�p��0 and ends at a

stable spiral q with C̄�q��0.
�2� � originates from a saddle p with C̄�p��0 and ends at a

stable node q with C̄�q��0. Also, � is tangent to the
direction of weaker attraction at q.

�3� � originates from a saddle p with C̄�p��0 and spirals

onto a stable limit cycle � with ��C̄ds�0.
�4� � is a stable limit cycle with ��C̄ds�0.

Similarly, � is an attachment line if the following is
satisfied:

�1� � originates at a unstable spiral p with C̄�p��0 and

ends at a saddle q with C̄�q��0.
�2� � originates at a unstable node p with C̄�p��0 and ends

at a saddle q with C̄�q��0. Also, � is tangent to the
direction of weaker repulsion at p.

�3� � spirals off from an unstable limit cycle � with

��C̄ds�0 and ends at a saddle q with C̄�q��0.
�4� � is a unstable limit cycle with ��C̄ds�0.

Below we show that under the stronger pointwise
assumptions,

S̄��x� − C̄�x� � 0, C̄�x� � 0, �B16�

on all points x in �, the four basic separation patterns �1�–�4�
inferred based on the steady limit �27� persist in the full flow
�19�. Under the assumptions

p

q1
q2

FIG. 13. The cylinders Cn and Dn are shown schematically in the extended
phase space.
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S̄��x� − C̄�x� � 0, C̄�x� � 0, ∀ x � � , �B17�

a similar conclusion holds for the four basic attachment pat-
terns �1�–�4�, leading to the results discussed in Sec. V C.

The proof of above results relies on Wasewsky principle,
which we recall briefly for convenience following the formu-
lation given by Conley.28

a. The Wasewsky principle

Suppose � is an open set in Rn, f :�→Rn is a continu-
ous map and let

�:x0 � x�t;x0�

�with x�0;x0�=x0� be the flow map of the ordinary differen-
tial equation,

ẋ = f�x� . �B18�

We shall denote the closure of W in � by W̄ and define

��x,I� = ���x,t��t � I� ,

where I�R.
Let W�� be any set and consider the sets

Wev = �x � W� ∃ t � 0,s . t . ��x,t� � W� ,

Wim = �x � W���x,�0,t�� � W, ∀ t � 0� .

W is called a forward time Wasewsky set if the following
conditions are satisfied:

�1� If x�W and ��x , �0, t���W̄, then ��x , �0, t���W.
�2� Wim is closed relative to Wev.

The Wasewsky principle states the following: If W is a
Wasewsky set then Wim is a strong deformation retract of Wev

and Wev is open relative to W.
An important quantity introduced in the proof of the

above result is the time map � :Wev→R, defined as

��x� = sup�t � 0����0,t�,x� � W� .

By the definition of Wev, ��x� is finite, and by continuity of

the flow, we have ��x , �0,��x����W̄. Thus, by property �1�
above, we have ��x ,��x���W. Now from the definition of
�, ����x� ,x��Wim and ��x�=0 for x�Wim. This leads to the
following corollary.

Corollary: The Wasewsky map � :Wev→Wim defined as

��x� = ��x,��x�� �B19�

is continuous. It is this last corollary of the Wasewsky prin-
ciple that we shall use below in our arguments.

b. Transformed equations of motion

We begin our persistence proof by introducing new co-
ordinates along a separation line � identified from the first-
order averaged normal form. At any point x=x�s ,x0���, the
unit tangent t�s� and the unit normal n�s� to � are given by

t�s� = � �

���
�

x�s,x0�
, n�s� = � �

���
�

x�s,x0�
, �B20�

respectively, where x�s ,x0� is the wall-shear trajectory with
x�0,x0�=x0. Let �x�sp� ,y�sp���x�s ,x0�. We change coordi-
nates through

	q

p

 = Tp��1

�2

�3
� , �B21�

with

Tp = 	t�sp� n�sp� 0

0 0 1

 , �B22�

to obtain from Eq. �B3� the new equations of particle motion

�̇1 = ��3���x�sp�,y�sp��� + ��3�1S̄���x�sp�,y�sp���

+ ��3�2S̄����x�sp�,y�sp���

+ ��3�h1��,�,t��1
2 + h2��,�,t��1�2 + h3��,�,t��2

2�

+ �2�3
2h4��,�,t� , �B23�

�̇2 = ��3�1S̄���x�sp�,y�sp��� + ��3�2S̄���x�sp�,y�sp���

+ ��3�h5��,�,t��1
2 + h6��,�,t��1�2 + h7��,�,t��2

2�

+ �2�3
2h8��,�,t� , �B24�

�̇3 = ��3
2�C̄�x�sp�,y�sp�� + ��3h9��,�,t� + �1h10��,�,t�

+ �2h11��,�,t�� . �B25�

In the above equations, hi�� ,� , t� are appropriate smooth and
bounded functions in all the arguments and

S̄��x�sp�,y�sp�� = �t,�x�t��x=�x�sp�,y�sp��,

S̄��x�sp�,y�sp�� = �n,�x�n��x=�x�sp�,y�sp��,

S̄���x�sp�,y�sp�� = �t,�x�n��x=�x�sp�,y�sp��,

S̄��x�sp�,y�sp�� = �n,�x�t��x=�x�sp�,y�sp��.

c. Persistence of separation surface
near a saddle

Consider a nondegenerate saddle �p ,0� of the time-
averaged wall-shear field; it will satisfy

��p� = 0, det �x��p� � 0, C̄�p� � 0.

Let x1�s� ,s�I1= �−s− ,0� and x2�s� ,s�I2= �0,s+� be the
two branches of the unstable manifold in the vicinity of p
such that x1�0�=x2�0�=p, where s−�0 and s+�0 are to be
chosen later. Define
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�v = x1�s� � x2�s�, s � I = I1 � I2,

which is just a subset of the separation line in the vicinity of
p. We construct a cone section along � parametrized by sp

�I as follows:

Qsp
= ���1,�2,�3���1 = 0, ��2� � �3,0 � �3 � ��sp�� ,

where ��s� is a positive continuous function to be selected
below �see Fig. 14�. The lateral side Lsp

of Qsp
is given by

Lsp
= ���1,�2,�3� � Qsp

���2� = �3� .

The top of the cone will be denoted by Dsp
,

Dsp
= ���1,�2,�3� � Qsp

��3 = ��sp�� .

Along the boundary Dsp
of the cone, the inequality

�̇3����Dsp
� = ��2�sp��C̄�x�sp�,y�sp�� + ���sp�h9 + �2h11�

� ��2�sp�
C̄�x�sp�,y�sp��

2
� 0 �B26�

holds, provided that we choose � and ��sp� sufficiently small
�using �2�Qsp

, which implies ��2���3�. Therefore, solu-
tions intersecting the Dsp

boundary of Qsp
leave Qsp

imme-
diately.

The flow enters Qsp
along the Lsp

boundary if

�̇2����Lsp
� − �̇3����Lsp

� � 0. �B27�

Since

�̇2����Lsp
� = ��3

2�S̄��x�sp�,y�sp�� + �3h7 + �h8� ,

�̇3����Lsp
� = ��3

2�C̄�x�sp�,y�sp�� + ��3h9 + �3h11�

for Eq. �B27� to be true, we must have

�S̄��x�sp�,y�sp�� − C̄�x�sp�,y�sp��� + �3f1 + �f2 � 0,

�B28�

where f i��3 ,� , t� , i=1,2 are smooth bounded functions.

Since S̄��x�sp� ,y�sp��− C̄�x�sp� ,y�sp���0, the inequality
�B28� can be satisfied by choosing � and ��sp� sufficiently
small as before. Since I is compact, we can choose

��s� � min
sp�I

��sp� = � ,

so that inequalities �B26� and �B28� are satisfied for all
sp�I.

We define a cone bundle � along � by letting

� = �
s�I

Qs.

The boundary of � is formed by the following sets �see
Fig. 14�:

D = �
s�I

Ds, L = �
s�I

Ls,

�B29�
S+ = Qs+

, S− = Qs−
.

The flow exits � along, say, S+ provided

�̇1���S+
= ��3������s+���

+ �2S̄����x�sp�,y�sp��� + �2
2h3 + ��3h4� � 0.

This last inequality can be satisfied by choosing � suffi-
ciently small. Similar conclusion holds for S−.

From the above analysis, we conclude that solutions in-
tersecting the L−� boundary of � enter � immediately, and
those that intersect D and the S� boundary leave � immedi-
ately.

We now fix the origin of our coordinate system at p, so
that in �x�sp� ,y�sp��=p in the equations of motion
�B23�–�B25�.

Solutions staying in � in backward time converge to � .
Consider an initial position ��10,�20,�30��� at t0 and de-
note the trajectory emanating from this initial position by
��1�t� ,�2�t� ,�3�t��. Integration of

�̇3 = ��3
2�C̄�p� + ��3h9 + �1h10 + �2h11�

along the trajectory gives

�30

�3�t�
= 1 + ��30�

t

t0

�C̄�p� + ��3h9 + �1h10 + �2h11�d� .

�B30�

Since the trajectory stays in � for all backward times, Eq.
�B30� holds for all t� t0. By choosing s− and s+ sufficiently
small, we can bound �1�t� and �2�t� to arbitrary small values
leading to the estimate

1 + ��30�
t

t0

�C̄�p� + ��3h9 + �1h10 + �2h11�d�

� 1 + ��30�
t

t0 C̄�p�
2

d� . �B31�

Then Eqs. �B30� and �B31� imply

�3�t� �
�30

1 + ��30
C̄�p�

2
�t0 − t�

.

This allows us to conclude that

S
+

D

S
-

L

p

t

FIG. 14. �Color online� Wasewsky set near a saddle.

107101-19 An exact theory of three-dimensional fixed separation Phys. Fluids 20, 107101 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



lim
t→−�

�3�t� = 0.

In other words, trajectories that never leave � in backward
time will necessarily converge to the �3=0 boundary of the
cone �.

There exists solutions that stay in � for all backward
times . We now show that there are nonzero solutions that
stay in � for all t� t0. We first note that the set

� = ���,t��� � �,t � R� �B32�

has the following properties:

�i� On the boundary component

��1 = ���,t� � ��� � D � S+ � S−� �B33�

of �, the vector field ��̇ , ṫ� points strictly inward in
backward time.

�ii� On the boundary component

��2 = ���,t� � ��� � L − �v� �B34�

of �, the vector field ��̇ , ṫ� points strictly outward in
backward time.

�iii� The remaining boundary component ��3=�−��1

−��2 of � is just the invariant piece of the plane
��v , t� in the �� , t� space.

�iv� As a consequence of �i�–�iii�, the set of points imme-
diately leaving � in backward time is Wim=��2.

�v� Let Wev denote the set of points eventually leaving �
in backward time. By definition, Wim�Wev. Because
��3 is not in Wev, we conclude that Wim is relatively
closed in Wev, i.e., any Cauchy sequence in Wim that
does not have a limit in Wim will not have a limit Wev

either.
�vi� � is a closed set in the �� , t� space.

The properties �iv�–�vi� of � are the defining properties
of a backward time Wasewsky set �see Appendix B 2 a�.
Recall that for any Wasewsky set, the Wasewsky map given
by Eq. �B19� is continuous.

Suppose now that all nonzero solutions leave � eventu-
ally in backward time. Then Wev=�−��3, and hence ���
−��3�=��2. But a continuous map � cannot map a con-
nected set �−��3 into a disconnected set ��2, thus we
obtain a contradiction. Therefore, there exist solutions that
stay in � for all backward times, and these solutions con-
verge to the �=0 as t→−�. This proves the existence of the
unstable manifold Wu�t� for �v.

The unstable manifold Wu�t� cannot be one dimensional
because that would make Wev a connected set, thereby vio-
lating the continuity of the Wasewsky map �B19�. But Wu�t�
cannot be 3D either because that would violate the local
volume-preserving property of the flow map �infinitesimal
volumes tangent to Wu�t� at the wall would shrink to zero in
backward time, violating local incompressibility at the wall�.
Thus, Wu�t� must be a connected two-dimensional set de-
pending smoothly on t.

d. Persistence of separation surfaces based
at limit cycles

Let the trajectory x�s ,x0� be contained in a limit cycle
��s� of the averaged wall-shear field; assume that ��s� has
period T. Following the construction in Appendix B 2 c, we
define a cone section along ��s�,

Qsp
= ���1,�2,�3���1 = 0, ��2� � �3, 0 � �3 � ��sp�� ,

where ��s� is a positive continuous functions to be selected
below �Fig. 15�. The lateral side Lsp

of this cone is

Lsp
= ���1,�2,�3� � Qsp

���2� = �3� ,

and the top Dsp
is given by

Dsp
= ���1,�2,�3� � Qsp

��3 = ��sp�� .

Based on an argument similar to the one given in Ap-
pendix B 2 c, we conclude that there exists ��sp��0 and �
sufficiently small such that

�̇3����Dsp
� � 0

and

�̇2����Lsp
� − �̇3����Lsp

� � 0 �B35�

for all sp. Choosing

��s� � min
sp�I

��sp� = � ,

we define a cone bundle � on ��s�,

� = �
s�I

Qs.

Again, the boundary of � is formed by the following sets:

D = �
s�I

Ds, L = �
s�I

Ls. �B36�

With these ingredients, an estimate similar to the one
used in Appendix B 2 c shows that solutions staying in � in
backward time converge to �. We can then again invoke the
Wasewsky principle to conclude that there exist solutions
that stay in � forever in backward time. Then, following the
arguments given in Appendix B 2 c, we again conclude the
existence of a two-dimensional unstable manifold for �.

D L

�

t

FIG. 15. �Color online� Wasewski set for a limit cycle.
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APPENDIX C: SEPARATION AT CORNERS

If the flow admits a corner at the intersection of the z
=0 and x=0 planes, then by the no-slip condition along these
two planes, the velocity field can be written as

v�x,z,t� = �xzA,xzB,xzC� , �C1�

where

A�x,z,t� = �
0

1 �
0

1

�xz
2 u�rx,y,sz,t�drds ,

B�x,z,t� = �
0

1 �
0

1

�xz
2 v�rx,y,sz,t�drds ,

C�x,z,t� = �
0

1 �
0

1

�xz
2 w�rx,y,sz,t�drds .

After the change of coordinates

x = x̄Ex�y, z̄,t� ,

z = z̄Ez�x̄,y,t� ,

Ex�y, z̄,t� = e�t0
t z̄Ez�x̄,y,��A�0,y,z̄Ez�x̄,y,��d��,

Ez�x̄,y,t� = e�t0
t x̄Ex�y,z̄,��C�x̄Ex�y,z̄,��,y,0,��d�,

the x-component of the equations of motion becomes

ẋ = �ẋ̄ + x̄z̄EzA�0,y, z̄Ez��Ex

= x̄z̄ExEzA�x̄Ex�y, z̄,t�,y, z̄Ez�x̄,y,t�,t� ,

or equivalently,

ẋ̄ = x̄z̄Ez�A�x̃Ex�y, z̄,t�,y, z̄Ez�x̃,y,t�,t� − A�0,y, z̄Ez��

= x̄2z̄ExEz��xA�0,y, z̄Ez�x̄,y,t�,t� + O�x̄�� .

The z̄-component of the equations of motion is similar, with
the role of x̄ and z̄ interchanged. The full set of transformed
equations of motion is of the form

ẋ̄ = x̄2z̄A1�x̄,y, z̄,t� ,

ẏ = x̄z̄B1�x̄,y, z̄,t� ,

ż̄ = x̄z̄2C1�x̄,y, z̄,t� ,

where

A1�x̄,y, z̄,t� = ExEz��xA�0,y, z̃Ez� + O�x̄�� ,

B1�x̄,y, z̄,t� = ExEzB�x̄Ex,y, z̄Ez,t� ,

C1�z̄,y, z̄,t� = ExEz��zC�x̄Ex,y,0,t� + O�z̄�� .

Rescaling z̄→�z̄ in order to focus on the dynamics near the
z=0 boundary, we obtain

�̇ = �f��,t� + �2g��,t;�� , �C2�

where �= �x̄ ,y , z̄� and

f = � x̄2z̄A1�x̄,y,0,t�
x̄z̄B1�x̄,y,0,t�
x̄z̄2C1�x̄,y,0,t�

� ,

g = �x̄2z̄2��z̃A1�0,y,0,t� + O��z̄2��

x̄z̄2��z̃B1�x̄,y,0,t� + O��z̄2��

x̄z̄3��z̃C1�x̄,y,0,t� + O��z̄2��
� .

We isolate the mean of f via the averaging transformation,

� = � + �w��,t� ,

w��,t� = �
t0

t

�f�	,�� − f����d� , �C3�

f��� = lim
T→�

1

T
�

t0−T

t0

f��,��d� ,

which transform Eq. �C2� to the first-order averaged normal
form,

�̇ = �f��� + O��2� , �C4�

which is analogous to Eq. �19�. The steady limit of Eq. �C4�
in component form is then given by Eq. �36�.

APPENDIX D: REFINED SEPARATION SLOPE
ESTIMATE

In order to obtain a refined estimate for the slope of
separation curves and surfaces, we apply the slope formulas
for steady separation derived by Surana et al.1 to the steady
limit,

ṙ = �s���r� + s�F�r�� ,

�D1�
ṡ = �s2�C̄�r� + s�Ḡ�r�� ,

of the second-order averaged system �A2�. First note that at
t= t0, we have z= z̄, therefore

�r,s� = �q,p� + O��2� = �x,z/�� + O��� .

In the �x ,z� coordinates, therefore, the slope of a separation
or attachment curve at the point �p ,0� is given by

g0 = − ��x��p� − IC̄�p��−1F�p� . �D2�

Note that

lim
T→�

1

T
�

t0−T

t0

A1�q,0,���d�

= lim
T→�

1

T�����t0−T
t0 − �

t0−T

t0

��C1�q,0,�� − C̄�d��
= − lim

T→�

1

T��t0−T

t0

��C1�q,0,�� − C̄�d�� ,

where we have used ��p�=0 and the uniform boundedness of

� and �. We thus obtain the following simplified form of F̄
at the separation point:
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F�p� = lim
T→�

1

T
�

t0−T

t0 ��z̃A1�q,0,t� + ��xA1�p,0,��

− C1�p,0,��I��
t0

�

A1�p,0,s�ds�d� .

Substituting this relation into Eq. �D2�, we obtain the desired
separation slope formula �41�.

Applying the results of Surana et al.1 to the steady flow
�D1�, we obtain that the slope of the separation surface at a
point x0 of a separation line � at time t0 is given by

tan���x0,t0�� = − lim
s→−�

�
0

s

E�q��F · �

���
�

x=x�q,x0�
dq , �D3�

where the exponential E�q� is defined by Eq. �44�. Similarly,
an attachment surface’s slope satisfies

tan���x0,t0�� = − lim
s→�

�
0

s

E�q��F · �

���
�

x=x�q,x0�
dq . �D4�

The quantity F ·� appearing in the above slope formulas can
be further simplified to

F · � = lim
T→�

1

T
�

t0−T

t0

F�r,�� · �d�

= lim
T→�

1

T
�

t0−T

t0

�� · ���xA1 − C̄I��� + �A1 · �

+ �z̃A1 · 
̄ − � · ��x����d� .

Note that

lim
T→�

1

T
�

t0−T

t0

�A1�q,0,�� · �d�

= lim
T→�

1

T���� · ��t0−T
t0

− �
t0−T

t0

�C1�q,0,�� − C̄�� · �d��
= − lim

T→�

1

T��t0−T

t0

�C1�q,0,�� − C̄�� · �d�� , �D5�

where we have used the identity � ·�=0; we have also used
the uniform boundedness of � and �. As a consequence, we
obtain

F · � = lim
T→�

1

T
�

t0−T

t0

F�r,�� · �d�

= lim
T→�

1

T
�

t0−T

t0 ��z̃A1 · � + 
̄ · 	��xA1 − C1I�

�� t0
� �A1 − ��dp
 − � · 	�

t0

�

��xA1 − �x��dp�
�d� ,

�D6�

which makes Eqs. �D3� and �D4� equivalent to the slope
formulas given in Eqs. �43� and �45�.
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