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Finding finite-time invariant manifolds in two-dimensional velocity fields
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For two-dimensional velocity fields defined on finite time intervals, we derive an analytic condition
that can be used to determine numerically the locatiomroformly hyperbolictrajectories. The
conditions of our main theorem will be satisfied for typical velocity fields in fluid dynamics where
the deformation rate of coherent structures is slower than individual particle speeds. We also
propose and test a simple numerical algorithm that isolates uniformly finite-time hyperbolic sets in
such velocity fields. Uniformly hyperbolic sets serve as the key building blocks of Lagrangian
mixing geometry in  applications. @000 American Institute of  Physics.
[S1054-150M0)00501-7

Typical time-dependent velocity fields in fluid mechanics flow, even though its building blocks are typically difficult to
are well-known to exhibit intense mixing of particles. For  isolate.

special time dependences, such as periodic, quasiperiodic, The identification of regions that behave like hyperbolic
or adiabatic, dynamical systems theory has been success- sets(isolating neighborhoodsare in principle also possible
ful in locating the geometric structures, stable and un-  using topological methods. A step in this direction has been
stable manifolds, that are responsible for global mixing. taken by Mischaikowet al,'* who established numerical
At the same time, there has been no systematic tool to methods for the topological detection of chaotic invariant
extract similar geometric structures for general fluid  sets in experimental data sets.

flows given for finite times. In this paper we give analytic An analytic result on the location of finite-time hyper-
results that can be used to identify the most important  bolic trajectories in velocity fields of the form

building blocks of mixing: Uniformly finite-time hyper-

bOlIC. trajectories and their local stable apd unstable x=u(x,t), xeR2 tt[toty],

manifolds. The results apply to any numerically or ex-
perimentally generated two-dimensional velocity field
and do not assume special features of the floe.g., in-
compressibility or the presence of stagnation points

can be found in Haller and Pofewhere time-dependent
stagnation points of the velocity field were considered as first
approximations for finite-time hyperbolic trajectories. Under
a set of conditions, these stagnation points do imply the ex-
|. INTRODUCTION istence of nearby hyperbolic solutions. The method has been
_ L o ) very efficient in creating mathematically rigorous mixing
Hyperbolic or finite-time hyperbolic invariant sets are gmpjates in eddy—jet interaction problerfsee Haller and
well known to_act as organizing centers for mixing and tr‘_”‘”SPojeﬁ and Poje and Hall&?). The limitation of this approach
portin dynamical systems. While the vector fields associated jis heavy reliance on the existence of stagnation points. In
with near-integrable, adiabatic, or relatively slow flows do 5iher words, only hyperbolic orbits with velocities very close
provide clues about the location of their hyperbolic sets, th§, the velocity of the reference frame can be detected in this
detection of such sets in general time-dependent flows stillchion.
presents.g great _chlalle'nge. A statistical approach to locating Lagrangian coherent
Traditionally f|n|te-t|m'e(or. local Lyapynov ex'por?en'ts structures is suggested by Mezind Wiggins who compute
have been employed to pinpoint hyperbolic behavior in time-erage velocities for a grid of initial conditions for finite

dependent velocity fields. This typically involves the numeri- a5 "The resulting patchiness plots reveal regions of initial
cal solution of the variational equation associated with a trazqnditions with similar finite-time  statistics. As shown

jectory of interest which is then used to obtain a finite—timethrough examples in Pojet al,'® on certain time intervals
approximation for the(infinite-time) Lyapunov exponents. e poundaries of such regions approximate finite-time in-
Such an estimation of Lyapunov exponents requires gredfariant manifolds. Thus, patchiness plots offer a type of
care and a thorough understanding of all the errors mvolvededge detection” that is a useful first step in the exploration
(see Abarbandl. The resulting distribution of exponents is of the global flow geometry.

typically a fuzzy set, which approximates the set of all stable  An ternative numerical method for the global detection
and unstable manifolds present in the flow. Such a picturgy hyperbolic structures in two-dimensional velocity fields
provides a first step in the study of hyperbolic behavior in the, 55 heen proposed recently by BowndrHis finite strain

maptechnique approximates stable manifolds by finding the
3E|ectronic mail: haller@cfm.brown.edu local maxima of the function
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unstable manifolds until their first few intersections are
found. In this fashion, a clear picture of mixing emerges
which is not obstructed by the tangling of global stable and
unstable manifolds.

The above example is special because of its periodic
time dependence. In the general aperiodic and finite-time
case, Poincarenaps are not available, and hence it is even
more important to have a clear template of the “cores” of
the mixing geometry. In addition, one would like to know
exactly what one finds; when it comes to clarifying the de-
tails in mixing in a given problem, it is desirable to have an
algorithm with a strong mathematical foundation. In such a
case one can exclude the possibility that the results are only
due to some finite-time numerical anomaly. Finally, one ide-
FIG. 1. Mixing geometry on a Poincaection of the Duffing oscillator ally wants to use an algorithm which is not sensitive to the
with small periodic forcing. choice of the time interval and the location of stable and

unstable manifolds become clearer as time increases.

IX(T;X0) =X(T;y)| B. Main results

St(Xg) = max oYl , ] )
yeGy, oY In this paper we prove an analytic result that can be used

) ) ) to locate uniformly finite-time hyperbolic sets and their lo-
wherex(t,xo) denotes a solution at timie=[to,to+ T] wWith 315 staple and unstable manifolds in two-dimensional time-
initial conditionxg, andGX0 denotes the set of nearest neigh- dependent velocity fields. Our main theorem will apply to
bors of the pointx, on the grid of initial conditions. This  typical oceanic or atmospheric flows where the deformation
method avoids solving variational equations and gives googate of coherent structures is slower than typical particle
approximations for global stable manifolds in several teskpeeds. The conditions of the theorem are formulated in
cases. At the same time, since it effectively detects locajlerms of the eigenvectors and eigenvalues of the Jacobian of
extrema of strain, it does not necessarily imply the existencene vector field along trajectories.
of nearby hyperbolic sets, as simple examples show. In ad- Based on our main theorem, we also propose a simple
dition, the detection of invariant manifolds will depend ON numerical scheme that gives a first approximation for uni-
the optimal choice ofl’ which is not knowna priori. Nev-  formly hyperbolic structures in two-dimensional fluid flows.
ertheless, for typical mixing geometries and for appropriatelyin particular, such structures and their local stable manifolds

chosenT regimes, the algorithm provides a useful templateyijl| appear as local maxima of the scalar field

for global invariant manifolds.
dr(xp)= max {t|detDu(x(7;Xq),7)<0, to=r<t}.
te[tg,tg+T]

A. Building blocks of a mixing template In words,d+(Xg) is the maximal time for the initial condition

It is important to realize that in order to understand thethat it spends in a domain where the determinant of the Jaco-
global geometry of mixing, one only needs a “sharp” tem- bian of the velocity field is strictly negative. If
plate of the most influential finite-time hyperbolic sets. MoredetD,u(X(ty;Xg).tg)=0, then by definitiond+(xy) =0 for any
concretely, finite-time Lyapunov exponents and finite strainT.
maps approximate the set of all global stable and unstable An advantage of this algorithm is that a contour plot of
manifolds that could be more accurately reproduced numerid; produces sharper and sharper images of local stable mani-
cally if one knew the exact location of some organizing or-folds and hence is not sensitive to the choicel ofAnother
bits with “strong” or, uniform, hyperbolicity. Locating the important computational advantage is that one does not have
organizing centers of a mixing template is in fact essentiato iterate the whole grid of initial conditions for all times up
since a convoluted set of global stable and unstable mante T. In fact, the number of particles to follow decays rapidly
folds is of no immediate help if one wants to understandas for most of them dé@,u(t(7;xy),t) turns positive at some
interaction among various regions or quantify mixing rates. point, and hencel;(X,) is obtained without increasing the

As an example, consider the Poincanap of the ordi- time of iteration to T. The particles that exhibit
nary Duffing equation with small forcing. The mixing geom- detD,u(x(t;%o),t)<<0 for long times are those that are on, or
etry in this problem is completely governed by the stable angsymptotic to, a uniformly finite-time hyperbolic trajectory,
unstable manifolds of the unique uniformly hyperbolic fixedas our main theorem shows for flows with Eulerian time
point near the originsee Fig. 1 Therefore, instead of ob- scales below Lagrangian time scales. The local unstable
taining fuzzy global approximations for these manifolds bymanifolds can be obtained from a backward-time calculation
using any of the methods described above, one could focusf d+(xg). If needed, one can refine the first approximation
on obtaining a good approximation of the local stable andoroduced by this algorithm by checking the remaining in-
unstable manifolds shown in bold in the figure. Once thesequalities of Theorem 1. After this refinement, the simple
sets are found, one can simply iterate the global stable analgorithm we sketched above becomes a rigorous, computer-
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assisted analytical criterion. In the numerical example treatedmooth, two-dimensional set of initial conditiongg(tg)
in this paper such a refinement is not necessary, but in owsuch that all the corresponding motioxd;ty,xo) approach
current numerical experiments on two-dimensional turbulenk(t) at a fixed exponential rate as longtas[ty, T]. A simi-

velocity fields the refinement is important to implemésee
Haller and Yuaf).

Once the uniformly hyperbolic invariant sets are located,

lar definition applies for finite-time unstable manifoldsee
Haller and Pojé for more details
Our first main result, a set of sufficient criteria for hy-

one can compute their global stable manifolds gradually usperbolicity and uniform finite-time hyperbolicity, can now be
ing, e.g., the straddling technique of You, Kostelich, andstated as follows.

Yorke!® as implemented for discrete velocity fields by

Theorem 1 Suppose that for a solution(®) of (1) and

Miller et al® This approach, therefore, enables one to buildfor all t e[tg,to+ T],

systematically a global geometric template for mixing, find-
ing first the core structures, then developing their stable and detD, u(x(t),t)<0 \fz,B[
unstable sets to the extent needed for transport calculations. X ’ ’

Il. THE MAIN THEOREMS
Consider a two-dimensional velocity field

x=u(x,t), xeR?

D

whereu is at least a clas€? function of its variables. As-
sume that a solutior(t) of this system is known. The Jaco-
bian of the velocity field along a solutiot{(t) is given by the
time-dependent matriXD,u(x(t),t). We assume that on
some finite time intervdlty,to+T], we have deb,u(x(t),t)
<0, i.e., Dyu(x(t),t) has real eigenvalues-A,(t)<O

<\,(t). [Since we did not assume incompressibility for

u(x,t), in general we hava;#\,.] We will need the quan-
tities

min N\ (t),
[to.to+T]

k=1,2, 2

N min=

J’_

<a.

(6)

)\1 min )\2 min

Then

(i) x(t) admits two-dimensional finite-time stable and
unstable manifolds in the spa¢g,t) for te[tq,to+T].

(i) If, in addition, for all te[ty,to+T]

ﬁ<g \/2)\1 min}\2 min »
232

N (D)>y+ m)\z(t), (7)
2 2

No(t)>y+ b Aq(1),

2
QN1 min 2 min

then Xt) is uniformly finite-time hyperbolic oftg,t,
+T].
Roughly speaking, our next result states that for flows

which measure the minima of the norm of the eigenvalueswhere the rate of change of coherent structures stays below a

We also define the eigenvectagt) ande,(t) correspond-

ing to —\4(t) and\,(t), and we assume that they are nor-

malized suche,(t)|=1 and are chosen such thg{t) de-
pends smoothly o We denote the angle betweey(t) and
e,(t) by «(t) and note that sir(t)#0.

Throughout this paper, for matricése R2*2, we shall
use the notatioA|= \/E?’jzllAijF. With this notation, the
matrix of eigenvectord/ (t)=[e,(t),e,(t)] e R?*? satisfies

IM|=v2, |detM|=|sink(t)|. ©)
We note thaM (t) is a differentiable function of under our
assumptions.

We now introduce the quantities

a= min |sink(t)], B= max M), (4

teltg,to+T] teltg,tg+T]

which are upper bounds on the norm Mf /v2 and M,
respectively. Finally, we define

_ ‘/218[ a’z)\l minh 2 min+‘/§a:8()\l mint N2 min) + 2,82]

3
@°N 1 min 2 min

Y
)

In the following we will use the notion ofinite-time
stable and unstable manifolddor a given particle motion

X(t). By these manifolds we mean two-dimensional surfaces

in the three-dimensional space of the,t) variables that
contain motions asymptotic tq(t). More precisely, a finite-

time stable manifold fox(t) on the time interva[io,T] isa

critical limit, detD,u(x(t),t)<0 is also a necessary condition
for x(t) to be uniformly hyperbolic.

Theorem 2 Suppose that a solution(®) of (1) is uni-
formly hyperbolic on the time intervat,,to+T]. Let P(t)
be a smooth matrix that contains unit vectors that are tan-
gent to the & constslice of finite-time stable and unstable
manifolds of Xt), and assume that

|detP(t)||detP(t)| +2v2| P(t)|| D u(x(t),t)|

<|detD,u(x(t),t)||detP(t)|?. (8)

Then we haveletD,u(x(t),t)<0.
The proofs of Theorems 1 and 2 will be given in Sec. VI.

lll. FINDING STABLE AND UNSTABLE MANIFOLDS IN
APPLICATIONS

In this section we give some intuition for the conditions
of Theorems 1 and 2. We also discuss sharper versions of the
theorems as well as a numerical algorithm that locates can-
didates for uniformly hyperbolic trajectories.

A. Physical interpretation of Theorems 1 and 2

The conditions of Theorem 1 have the following mean-
ing. The first inequality in Eq(6) requires “instantaneous
hyperbolicity”” along the solutiorx(t). This becomes trans-
parent after one notes that alor(t)
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d It can be seen from the inequalit2l) in the proof of
DFP(x(1)=1 +hﬁDFP(X(t))|h=O+ O(h?) Theorem 1 that the second condition in E8).can be sharp-
ened to
=1+hD,u(x(t),t)+O(h?),

. 1 1
and hence if—\y(t) and \,(t) are the eigenvalues of max [M~i(t)] max ||M(t)||[)\ — l<1,
; h : teltg,to+T] teltg,tg+T] 1min 2min
D,u(x(t),t), then the eigenvalues &fF'(x(t)) can be writ- 0-%0 0o
2 2
tendas l_dh,)‘l(t,) +I§9(h6) and 1+h}‘hZ(t);:O‘(‘E )I' Th(a',sgc— where ||-|| refers to the operator norni.e., for any B
ond condition in Eq.6) ensures that t e “Eulerian time c R2*2 ||B||=suqx|:1(|Bx|/|x|) with xe R?). In fact, the
scales along(t) (measured byB) are sufficiently well sepa-
rated from the Lagrangian time scaléseasured byw). If
the strength of instantaneous hyperbolicitpeasured by )
Nk min) IS stronger, then (M min) + (1, min) is @ smaller max ||[M~Y(t)M(t)
quantity and hence the Eulerian and Lagrangian time scales t<[to.to*T]
are allowed to be closer to each other. Finally, the conditions
in Eq. (7) require an even more pronounced separation ot. The numerical algorithm

Eulerian and Lagrangian time scales alot{g) in order to h ¢ Th . fici diti
ensure uniform hyperbolicity. The statement of Theorem 1 gives a sufficient condition

While detD,u(x(t)t)<0 by itself is often used in fluid to locate unjformly finite-time hyperbplic trajectqrieg. By
mechanics to identify hyperbolic regions in a figsee, e.g., Theorem 2, if the coherent structur_es in the velocity field .d_o
WeissS Elhmadi et al,* and the references thergirthe not change fast compared to particle speeds, the condition
second condition in E(6) is essential fox(t) to be hyper- dethu(x(_t),t)<_O becomes necessary fx(rt)_to be uniformly
bolic for the following reason. The linear stability oft) on  NYPerbolic. This suggests the following simple procedure: 1.
the time interva[to,to+T] is determined by the stability of Cons_l(_:ler a grid of |n_|t|al_ conditions 2. Integrate each !nltlal
the origin in the variational equation condlt_lon Xo forward in time as long as dBtu(x(t;xg),t) is

negative. 3. If deD,u(x(t;xg),t)<<0 for te[ty,to+T], then

y=D,u(x(t),t)y. X(t;Xo) is a candidate for a uniformly hyperbolic trajectory;

check the remaining conditions of Theorem 2 to ascertain
In general, the stability of such a time-dependent linear systhis.
tem cannot be inferred from the eigenvaluedDgti(x(t),t) The above “naive” algorithm would be very sensitive to
as numerous classic counterexamples skewe, e.g., Hafe  numerical errors by the underlying instability of the uni-
or Verhulst?). However, all these counterexamples are baseformly hyperbolic sets that it intends to seek out. Indeed, the
on the idea of introducing fast enough changes in the eigerbest one can hope for when one picks an arbitrary grid of
vectors of D,u(x(t),t) ast increases, thereby destroying initial conditions is to stay very close to the local stable
correlations between instantaneous hyperbolicity and actuahanifold of a uniformly hyperbolic trajectory for a long
stability in phase space alongt). In contrast, typical ve- time. For this reason, the following algorithm works signifi-
locity fields in fluid mechanics do display a sufficient sepa-cantly better in practice: 1. Consider a grid of initial condi-
ration of Eulerian and Lagrangian time scales so that formutions. 2. Integrate each initial conditiog forward in time as
las (6) and (7) hold for uniformly hyperbolic sets. long as deD,u(x(t;xy),t) is negative. 3. Letd{(Xq) €[0,T]

All this is made rigorous by Theorem 2, which essen-denote the time for which d&u(x(t;x,),t) stays negative
tially says that in flows where coherent structures do nofd(x,)=0 will hold for initial conditions for which
change very fadii.e., the elements of the matrix are small ~ detD,u(X(to;Xo),t))>0]. 4. Local extrema of the scalar field
numbers compared to the product of the eigenvalues ofit(Xo) are candidates for the=t, slices of local stable
D,u(x(t),t)], a uniformly hyperbolic trajectoryk(t) will manifolds.
necessarily satisfy d&tu(x(t),t))<0. This second theorem is In principle, the above procedure should give the same
not meant to be a quantitative result as the estimates in itesult in forward and backward time. In practice, as is well
proof are far from being optimal. Rather, it serves as a theknown, local stable and unstable manifolds behave differ-
oretical underpinning for our numerical algorithm below. In ently under numerical iterations. For this reason, performing
particular, it guarantees thatrong enough uniformly hyper- the above algorithm first in forward time starting from
bolic sets can be found in typical fluid mechanical vector=ty will rendert=t, slices of the local stable manifolds of
fields just by tracking the determinant of the Jacobianuniformly hyperbolic sets, while iteration in backward time
D, u(x(t),t) along particles from t=t, will give the slices of local unstable manifolds.
This is precisely the numerical scheme that we described in
the Introduction. The intersection of the stable and unstable
curves will clearly mark candidates for uniformly hyperbolic
particle paths. For these, the remaining conditions of Theo-

Here we give an improvement of the conditions of Theo-rem 1 may be verified. As we noted in Sec. I, in some ex-
rem 1. The improved conditions are somewhat more inamples this verification is crucial as the set of particles with
volved to implement numerically, yet they may give betterlong initial residence times in hyperbolic regions is too large.
results in given applications. In other examples, such as the one described in Sec. IV be-

proof also reveals the even sharper condition

+
)\1 min )\2 min,

s

B. A sharper version of Theorem 1
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low, the emerging template of local stable and unstabldor large enoughl a numerical evaluation of the first condi-
manifolds is sharp enough so that further computations aréon in Eq. (6) would yield precisely the pieces of the local
not necessary. stable and unstable manifolds £ —uvt.

While for analytically given vector fields the calculation As for the second condition in E@6), we note that on
of the JacobianD,u(x(t),t) along the solutionx(t) is the solutionx=—uvt we have
straightforward numerically, for experimentally or numeri- 0 1
cally defined velocity fields it needs to be interpolated. How- Dxu(—vt,t)=< ) ’
ever, as opposed to the difficulties arising with similar cal- 10
culations for finite-time Lyapunov exponents, here thetherefore, on this solution
results will be fairly robust and independent of the discreti-
zation scheme used. The reason is that one does not need to detDxu(—vt,t)=-1, a=v2, B=0,
solve the variational equation associated witku(x(t),t),
or compute higher powers of this matrix. In our numerical
experiments for analytically given flowssee beloy, the — Consequently, conditions6) and (7) are satisfied forx
field dr(x,) showed no noticeable difference when first the = —vt for all times, implying that it is a uniformly hyper-

exact Jacobian was used and then its approximation by finitgolic solution on any finite time interval. By continuity, close
differences. enough solutions in its local stable and unstable manifolds

will also satisfy Eqs(6) and (7).

We conclude that in this example our Jacobian algorithm
picks out thin stripes around the stable and unstable mani-
In this section we consider two examples that illustratefolds around the local stable and unstable manifolds< of
the use of Theorem 1. We start with a simple integrable= —yt. The stripes shrink down to the local stable and un-
example in which the outcome of a numerical experimentstable manifolds exponentially fast i, and hence the re-

can be predicted without actually performing it. We thensults refine quickly in time. The verification of Eq®) and
consider a nonintegrable example and test our algorithni7) is not necessary since they are automatically satisfied.

¥=0, Nimin=A2mn=1.

IV. EXAMPLES

along with another technique, the finite strain methofl Example 2 (Forced Duffing equation in a rotating
Sec. ). frame. We now apply the change of coordinates

Example 1 (Duffing equation in a moving frame.et us .
consider the time-dependent system x=A(t)y= ( C9swt _Sm“’t) y

Sinwt  coswt
: Xo+(v2—v )t
X=U), UCGOD=1 4 )t (gt o,t)3) to the Duffing equatiofiEq. (10)] to obtain the system
©) _ sinwt(X; coswt—X, sinwt)3

which is obtained by lettingc=y— vt with v=(v1,v,) in X=BOX={ cosmt(x, cosot—x, sina)t)3)’
the Duffing equation where

Vi=Y2, V2=Yi-VYi. (10
We know that the only uniformly hyperbolic trajectory of B(t):<
Eqg. (10) is they=0 equilibrium as well as solutions in its
local stable and unstable manifolds. We would like to se€l0 break integrability, we add af(1) periodic forcing term
whether the sufficient criterion we gave in the previous secand consider the modified system
tion picks outx= —wvt and its local stable and unstable mani-
folds as uniformly hyperbolic sets for systd®). X=B(t)x—
On any solutiorx(t) of Eq. (9) we have

sin 2wt w+COoS 2wt
—w+cos2wt —sin2wt |’

sinwt(x; coswt— X, sinwt)® 0
coswt(x, coswt—X, sinwt)®/ " | sinwt |

12
D u(x(t),t) = 0 & Without the sinusoidal forcing term, this time-dependent
X ’ 1-3(x(t)+vt)2 0/’ system would admit two homoclinic manifolds asymptotic to

thex=0 equilibrium. The homoclinic solutions would differ
from the usual pair of homoclinic solutions of the Duffing

1 equation by a rotating component. Adding the forcing term is

|X1(t)+vlt|<‘7- (13) expected to break the homoclinic structures and perturb the

3 origin into a hyperbolic periodic orbit. The location or even
Thus, the first condition in Eqb) is satisfied for solutions of the existence of this hyperbolic trajectory is not obvious
Eq. (9) which stay in a band of width #8 around the plane since the perturbation is large, and hence standard persis-
xi=vqt in the extended phase space of the variablesence results from dynamical systems do not apply.
(X1,X,,t). We know from the geometry of the Duffing equa- We now use the Jacobian algorithm described in the pre-
tion[Eq. (10)] that fort € [ty,tp+ T], the solutions satisfying vious section to locate uniformly hyperbolic trajectories in
Eg. (12) form an open neighborhood of the local stable andthe above problem. We select the rotation spred<1 in
unstable manifolds of the solution=—wvt. This neighbor- our experiments in order to push our method to its limits.
hood is getting thinner and thinner @dncreases. Therefore, This means that the coherent structures in the flow rotate at

so we have ddd,u(x(t),t)<0 if
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08 08
1] oe
P FIG. 2. (Color) Two different algo-
f 407 rithms applied to the forced Duffing
| equation in a rotating frame. The num-
L lag ber of initial conditions is 2500, taken
i from the squar¢—3,3] X[ —3,3]. The
b time of integration is[0,15] for the
fos stable manifold and0,—15] for the
i unstable manifold.(a) Visualization
0.4 by the finite strain map algorithm,
!— with the maximal strain normalized to
: 1. (b) Visualization by the Jacobian al-
g0 gorithm, with the maximal time
4 d1(xe) normalized to 1.
02
01
1} 0

speeds almost comparable to particle speeds near the origithm described in Sec. Il C highlights only the core of the
In real-life flows of fluid mechanics this will typically not be mixing template, theé =0 slices of the local stable and un-
the case. stable manifolds a uniformly hyperbolic trajectory.

As a first exploratory step, we use the finite strain map  Aided by the above picture, we now focus on the smaller
technique(see the Introductionas well as the Jacobian al- window[ —1,1] X[ —1,1] of initial conditions. This will help
gorithm on the square—3,3] X[ — 3,3] of initial conditions.  the finite strain algorithm since in this window the maximum
The solutions are integrated in both cases on the time intelf the strain is closer to the strain near the uniformly hyper-
vals [0,15] and[0,— 15] to obtain approximations for the  bolic point. Indeed, as seen in Fig. 3, the finite strain algo-
=0 slices of stable and unstable manifolds, respectively. Weithm initially gives a good approximation for the core of the
show the results for Fig. 2. The finite strain map techniquemixing temple. However, even before the end of two forcing
highlights global maxima of stretching, but misses the underperiods(4), it starts producing a fuzzy picture from which
lying uniformly hyperbolic trajectory that is ultimately re- the location of the underlying hyperbolic point is hard to
sponsible for all the mixing. As expected, the Jacobian algoguess. Att=15 the picture becomes unhelpful due to the

0B
i os
B
{ J4
0.8
0.6 FIG. 3. (Color) Same as Fig. 2 for
04 three different times of integration.
The initial grid is the squarg¢—3,3]
0.2 x[—3,3] of 2500 particles(a) Finite
0 strain algorithm (b) Jacobian algo-
rithm.
;|
0.6
0.4
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widespread strain near the homoclinic tangle. This is to b&herefore, uniformly hyperbolic solutions admit finite-time
compared with the Jacobian calculation which consistentlystable and unstable manifol@see Haller and Poje As op-
and sharply pinpoints the center of mixing. This illustratesposed to regulafinfinite-time) invariant manifolds, finite-
the point we made earlier: The Jacobian algorithm is notime stable and unstable manifolds aa unique. However,

sensitive to the choice of the time of integration; it only they are unique up to an error 6f(e °T) wherec>0 is an

refines itself ag increases.

V. UNIFORM HYPERBOLICITY FOR FINITE TIMES

Here we give a precise definition for uniform finite-time

appropriate constant. As a result, on long enough time inter-
vals their nonuniqueness cannot be resolved numeriteflly
Haller and Poj®.

At the same time, hyperbolicity does not imply uniform
hyperbolicity on the same time interval. For instance, solu-

hyperbolicity to set the stage for the proof of Theorems 1 andions in the stable manifold of the hyperbolic fixed point of

2 in the next section. For the velocity fie(dl), the flow map
F{o ‘Xg—>X(tg+ 7,Xg) associates the value of the solution
X(t,Xg) at timety+ 7 to its initial conditionx(tg,Xg)=Xg-
The linearized flow map along a solutigi{t) can be written
as

D{ =DF{ (¢(t)):R"—R", (13)

Our main interest will be to describe uniform hyperbo-
licity for solutions on a time intervallty,to+T], where O
<T<oo, With numerical applications in mind, our next defi-
nition of uniform finite-time hyperbolicity is motivated by
similar definitions for discrete dynamical systefsse, e.g.,
Katok and Hasselblit

Definition 1: We call a solutione(t) uniformly hyper-
bolic on the time intervaltg,to+ T] if for some constants
0<A, <1 and for sufficiently small &0, there exists a
splitting R"=E/ (h)®E_ (h) depending continuously on
and h such that

DIE; (M =ESn(h), [D{le mll=1-hN,

I[D{1 e

+

h(h)”Sl_hMr
for all te[ty,tg+T—h].

Roughly speaking, uniform hyperbolicity means that
even arbitrarily short segments of the solution behave like

“saddles:” They attract infinitesimally close initial condi-
tions x(7,Xg) along certain directionsi.e., alongE_) and
repel them along other directior(se., alongE_). Unifor-
mity is reflected by the fact that the constantand x can be
chosen independently &f and 7.

It is not hard to see that uniformly hyperbolic solutions
are normally hyperbolic on any finite time intervity,tg
+T]. Indeed, if for anyre (0,T] we leth=7/N for a large
enough positive integed, then we obtain

T h h h h
ID{ ez mlI= Dt +7-nDg s 7-2n" Dy, D le-|
<IID} s r—nllIDE r—zll- DL, JIDE el
<(1—hn)N=(1—-hn)7",
Sinceh can be arbitrarily small, we obtain
ID{ e @ <lim(1—hn)""=e™*",  7e(0T],
h—0

where the limit lim,_ oE (h)=E, (0) exists by continuous
dependence oh. A similar argument yields

ID7 e @l=lim(1—hu)""=e"#7, 7€ (0T].
h—0

the ordinary pendulum are not uniformly hyperbolic on finite
time intervals unless the initial conditiof, is chosen close
enough to the fixed point.

VI. PROOFS OF THE MAIN THEOREMS

A. Proof of Theorem 1
1. Setup

We start by introducing the change of coordinagesx
—x(t), which puts Eq(1) in the form

y=Dyu(x(t),H)y+O(ly|?), (14)
whereO(|y|?) terms do depend on Under the first condi-
tion in Eq.(6), for anyt € [ty,to+ T] the matrixD,u(x(t),t)
admits two real eigenvalues A;(t)<O<<A,(t). We can
then define the matriM (t) of eigenvectors as in Sec. lll,

and pass to a frame moving with the eigenvectors by letting
y=M{(t)z. The transformed system takes the form

z=A(t)z+P(z,t)—Q(z,1), (15
with A (t)=diag(—\(t), \o(1), P(z,t)=0O(IM~[[Mz]?)

andQ(z,t)=M " *Mz. By Eq.(3), from the definitions ofx
and g3 from Eq. (4) we obtain

2v2C V23
Pz Ol==—=|2% |Q@vl=—"12,

with an appropriat€€>0 fort e [ty,to+ T]. Note that in the
z coordinates the original solutiox(t) satisfiesz=0.

2. Integral equations

We fix two small constants, A>0 and modify Eq(15)
in a C” fashion such that the modified vector field

7=A(t)z+P(z,t)+Q(z,1), (16)

is smooth for alze R? andt € R, coincides with Eq(15) for
|zi|< & andte[ty+A,t,+T—A], and obeys

A1) <—Ng min<O<N g min=<A (1),

At)=A(1)=0, teR,
(17)

B 2v2C ~ V2B
IP(zt)|<6 |2, |Q(Z,t)|$7|2|,

(¢4

P(z,)=Q(z,1)=0, te[ty,to+T],

(For more details of this construction we refer the reader to
Haller and Poj®.
Introducing the notation

or |z|>26.
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Z:(ZSiZu): 5=(§S,ﬁu), Q:(ésvbu)-
7\1=/~\11a 7\227\22,

then dropping the tildes, we obtain by integration from Eq.

(16) the equations

t
zy(t) = e fiMdrz (1 )+ f e PO P (7(7),7)
tS
+Qq(z(7),7)]dT,
. - (18
2(H) =t M2z (1) + j &/ 2299 P (2(7), )
t

u

+Qu(z(7),7)]dr.

We want to construct a stable S&f to the solutionz(t)
=0. The subset of this set falling in the intervie& [t

+A,tp+T—AT] will serve as a finite-time stable set for the

original solutionx(t). We defineWs as

WS={zo|sudz(t;zq)| <oe}.
t=0
In other wordsW°® contains the set of initial conditions that
remain bounded in forward tim&\® is a positively invariant
set by definition, and for any solutiar{t) e W° and for any
fixedte R, we have

lim |/t 2(M972 (1) <K lim e/i,)2(d7=0,

— o —o0

tLJ tu
As a result, taking the limit,—« in Eq. (18), settingt,
=0 andzy(t) =z, we obtain that solutions iW* satisfy the

integral equation

G. Haller

zy(t)=e JoM(Ddr7 4 f te—fiM(sWS[Ps(z(T),T)
0
+Qs(2z(7),7)]dT, (19

2= [ @P2P (a7),1)+ Q27,7 .

We shall prove that this integral equation has a unique solu-

tion z(t) with zy(0)=zg, which will imply thatW® is a non-
empty set.

3. Normal hyperbolicity of x (t)
We rewrite Eq.(19) in the form
z(t)=F(z(1)), (20)

which shows that a solution of E¢L9) is a fixed point of the
map F. We shall use the norm

|z =sudz(t)]
t=0

on the function space
Bx=1{z(1):[02)—=R?ze CY[0»), |z]<K},

which is a complete metric space in the ndfrnf. We want
to show thatF is a contraction mapping oBy in order to
conclude the existence of a unique solution to &£§).

First we show thatF mapsBy into By . From the inte-
gral equatiorEq. (19)] and the estimateldEq. (17)] we ob-
tain

| F(z(1)|<e Tz | + f;e‘f‘rﬂl“"‘S[lPs(z(r).T)l+|Qs<z<r>,r)|]dr+ J "/ 0a999 Py (2(7), 7| +|Qu(z(7), 7)[1dr
t

(21)

2V2C V2 t
g&effg)\l('r)d'f_i_ 5 +_ﬁ max Je*f:)\l(s)ds|z|d7
@ A Jtelty tg+T1170
2V2C V2 %
+[5 " +T'6 max max feftf”z(s)ds|z|dr.
t

teltg,totT] telt.to+T]

if we let |z < 6. Taking the supremum of both sides over But this last inequality is always satisfied fée>0 small

t=0 and using|z|<K gives

23C VIB
574’

( 1 N 1 )K
)\1min )\Zmin .

This inequality shows thadtF(z(t))||<K will hold if

et o
K )\Zmin

+ﬁé( )<1.

(¢4

1F(z(t)] < 6+

a

2v2C

o

1

)\1 min

+

)\1 min )\2 min

enough under the second assumption in @&g.

We now want to argue thaf is a contraction mapping
on the spaceByx. For any two functionsz,ze By with
z4(0)=124(0), theintegral equatiodEq. (19)] holds, and an
estimate similar tq21) gives

[ A(z(t)) — F(2(t)||
( 2v2C x/iﬂ)(
<|s +

o
Again, this inequality will hold for6>0 small under the
second assumption in E¢6). We can, therefore, conclude

1

L1
)\l min

)\2 min

)nzm—z(t)n.

o
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that Eq.(19) has a unique solution for anw| <& if §is

small enough. The derivative of the solution with respect to

Invariant manifolds in velocity fields 107
V2P V2P
e (b= . lex(t)]|= . (27
| ' | aN1 min | 2 | QA2 min

wg obeys similar estimates; thus we obtain that the solution

of Eq. (19) is a C! function of w®, i.e., the seM® is a C?
manifold.
The existence of £ manifold of solutions

WH={zo|suz(t; zg)| <o}

t<0

follows from a similar construction.

4. Uniform hyperbolicity of x = (t)

In order to derive further conditions under whigiit)

This follows from the inequalitie§25) and (26) and the lin-
earity of t=const slices oU® andU" for |z|< 4. In thew
coordinateg22) becomes

w=C(w,t)w (29
with
C(w,)=S"Xz,t)(A(t)+P(z1))S(z1t)
-SYz,t)S(z,1).

Note thatC(w,t) is a diagonal matrix by construction.
As a next step in our construction, we will estimate the signs

becomes uniformly hyperbolic, we need a better understandf the diagonal elements &(w,t) for small enouglw. We

ing of theO(z) part of the integral equatiorEq. (19)]. This
is equivalent to studying the system

z=(A(t)+P(z1))z,

where forte[tg+A,tg+T—A]

(22

M L OM(t) [Z<é

P(zt)=
(1) 0 |z|>26

Forte[tgtAtg+T—A], A(t) andE(z,t) again denote the
appropriately extended matrices used in Etp). We also
recall that

_ )
IP(z,t)I$7ﬁ- (23)

first note that forlS(z,t)w|<4é
ISzt=0(5),

as one concludes by differentiating the integral equdtitm
(24)], as well as the analogous equation for solutiondJdn
Since S™(z,t) is uniformly bounded, a direct calculation
gives the following expression for the first diagonal element
of C(w,t):

— N1+ Pt e;P1o—€5P o —e185( Ao+ Pyy)
1-ee

11~

+0O(5). (29)

Using the estimate&5) and (26) together with the first in-
equality in condition(7), we conclude that + e;e,>0. As a

A contraction mapping argument identical to that in Sec.result, the sign ofCy; is determined by the sign of the nu-

VI A 3 shows that under the second condition in E4), the
z=0 solution of the system of ODKordinary differential

equation (22) admits two-dimensional stable and unstable

manifolds,U® andU". For|z|<§, thet=const slices ofJ®
and U" are lines by the linearity of E¢(22). Solutions in,
say,U?® again satisfy the integral equation

t —
z,(t)= f &/ 2299P (7(7), 7)dr, (24
which gives the global bound
V2365
Zllus< , 25

after one uses tha priori estimate|z|<4& in Eq. (24). A
similar argument leads to
v2pB6

z < .
| S||Uu a)\]_min

(26)

We now introduce a time-dependent linear change of

coordinates along=0 that will transform the manifolds/®

merator in Eq(29). If

— Nyt [Pyl +|e1]|Prg + €] |Pasl + e €] (N o+ |522|)<306

then we can seleci small enough so th&t;(w,t) <0. Now
Egs.(23) and (27) together show that E430) holds if

282
a’z)\l min 2 min
with y defined in Eq(5). But this last inequality is satisfied
by the second assumption in conditiér) of Theorem 1,
therefore, we conclude tha&,,(w,t)<0 for |S(z,t)w|<é
and 6 small enough. A similar argument shows that
C14(w,t)>0 holds for|S(z,t)w|< & and § small enough by
the third assumption in conditiofY).

With all this knowledge about syste(28), we rewrite
the full set of ODEgequivalent to the integral equatidh9) ]
in thew coordinates to obtain

w=C(w,t)w+ O(|w|?).

AN~ N>,

In this coordinate system the variational equation along the

andU" into orthogonal planes. Such a change of coordinategg|utionw=0 is of the form

can be chosen as= S(z,t)w with

_( 1 ez(t))
S(z,t)= ey 1) |z|< 6.

The functionse;(t) obey the estimates

{=C(01)¢,

where we used the fact th@t has no explicitv dependence
for w sufficiently small. The fundamental matrix solution
d(t+h) with d(t)=1 of this system is just the representa-
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tion on the linearized flow map'=DF!(u(t)) of the origi-
nal velocity field(1). Consequently, in thes coordinates we
can write

DM'=1+hC(0t)+O(h?).
For anyh>0, the splittingR"=E," (h) ® E; (h) with

E (h)={w|w,=0}, E(h)={w|w;=0},
is invariant under the linearized flow, i.eDME; (h)
=E_;(h). Furthermore,

||DP|E;(h)||= 1+ Cy1(0t)h+O(h?),
IO ey, mll=1—CaA0)h+O(h?),

for all te[ty,tp+T—h]. Since both C44(0;t)<0 and

C,5(0,t)>0, the solutionx(t) is uniformly hyperbolic by

Definition 1 with the choice
C11(0t

A= min | 11( )|,

C(0})
te ['[0 ot T] 2 .

m= 2

te[to,tO+T]
B. Proof of Theorem 2

Since x(t) is assumed to be uniformly hyperbolic on
[to,to+T], for any fixedt in this interval the matrixP(t)

described in the statement of the theorem is defined. Apply-

ing the change of coordinatgs= P(t)z to the transformed
equation[Eq. (14)] then gives

z=A()z+0(|2]%),
where

A(t)=P~L(t)Du(x(t),t)P(t)+ P L(t)P(t)

(—Vl(t) 0 )

0 va(t))’

with v¢(t),v,(t)>0. (As in our earlier calculations, the
O(|z|?) terms have a general, explicit time-dependence.
Consequently, we must have

def E(t)+F(1)]<0,

where

31

E(t)=P~1(t)D,u(x(t),t)P(t), F(t)=P L(t)P(t).
Now, a direct calculation shows that
defE(t)+F(t)]

=detE(t)+detF (t)+ >, [E;(t)F};(1)—Ejj()F;i(D)]
1#]

=detE(t)— |detF(t)| —|detF(t)||E(t)F ~1(t)]

G. Haller
) |detP(t)|  |detP(t)]
=detD,u(x(.D ]~ 14em ] ~ [detP(o)]
X|E()|[F~ (1))
. |detP(t)] 2v2
= detDu(x(D.D ]~ 15emm] ~ [detP(0)2
< [P(O]D,u(x(0) )], %2

where we used the fact thd(t)| =v2 by assumption. Then,
combining Eq.(31) with Eq. (32) and with assumptiofB) of
Theorem 2, we obtain that d&tu(x(t),t)]<0 must hold.
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