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Abstract Wepresent a fastmethod for nonlinear data-
drivenmodel reduction of dynamical systems onto their
slowest nonresonant spectral submanifolds (SSMs).
While the recently proposed reduced-order modeling
method SSMLearn uses implicit optimization to fit a
spectral submanifold to data and reduce the dynam-
ics to a normal form, here, we reformulate these tasks
as explicit problems under certain simplifying assump-
tions. In addition, we provide a novel method for time-
lag selection when delay-embedding signals from mul-
timodal systems.We show that our alternative approach
to data-driven SSM construction yields accurate and
sparse rigorous models for essentially nonlinear (or
non-linearizable) dynamics on both numerical and
experimental datasets. Aside from a major reduction in
complexity, our new method allows an increase in the
training data dimensionality by several orders ofmagni-
tude. This promises to extend data-driven, SSM-based
modeling to problems with hundreds of thousands of
degrees of freedom.
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1 Introduction

Nonlinear dynamical systems are omnipresent in nature
and engineering. Examples include beam and plate
buckling [1], turbulent fluid flows [24], vibrations in
jointed structures [33], sloshing in fluid tanks [54],
and even traffic jams [40]. As computational resources
have grown, so has the interest in data-driven methods,
which take input data from experiments or simulations
and return a reduced model of the underlying system
dynamics. To date, however, no rigorous method has
been accepted as a standard for nonlinear system iden-
tification and reduced modeling.

Model simplicity (or parsimony) is vital for inter-
pretability, control, and responseprediction formechan-
ical devices [31]. This hasmotivated reductionmethods
based partially or fully on linearization of the underly-
ing dynamics, such as the proper orthogonal decom-
position [3,38] and the dynamic mode decomposition
(DMD) [48,49]. Specifically, DMD obtains the best fit
of a linear dynamical system to the data in an equation-
free manner [32], often utilizing delay embedding to
secure sufficiently many observables [17].

Manynonlinearmechanical systems, however, exhibit
phenomena that cannot occur in linear systems, such as
coexisting isolated steady states, and therefore cannot
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be captured by linearmodels [41].We refer to such phe-
nomena asnon-linearizable.Machine learningmethods
can potentially capture such phenomena [7,14,23,39],
but tend to provide models that lack interpretability and
perform poorly outside their training range [37].

Here, we propose spectral submanifolds (SSMs) to
obtain sparse models of nonlinearizable phenomena.
An SSM is the smoothest nonlinear continuation of a
nonresonant spectral subspace emanating from a steady
state, both in autonomous systems and systems with
periodic or quasiperiodic forcing. SSMs are unique,
attracting, and persistent invariant manifolds in the
phase space, that lend themselves well to model reduc-
tion [22].

A concept related to SSMs is a nonlinear normal
mode (NNM), which was originally defined as a peri-
odic motion of a nonlinear system [30,45,55]. A later
definition ofNNMs [50] targets invariantmanifolds tan-
gent to spectral subspaces of the linearized systemwith-
out focusing on the unique, smoothest such manifold.
In the sense of this third NNM definition, SSMs are
special NNMs with precisely known smoothness and
uniqueness properties. They can be constructed over an
arbitrary number of linearized modes which may also
be in resonance with each other. Recently, it has been
proven that two-dimensional SSMs converge to con-
servative NNMs composed of periodic orbits when the
damping in the system tends to zero [36]. Closely linked
to SSMs, invariant spectral foliations are the basis of
another rigorous approach for extending linear modal
analysis to nonlinear systems [51].

Spectral submanifolds can be rigorously constructed
for mechanical systems defined by differential equa-
tions [43]. Given a Taylor expansion of a set of
autonomous ODEs, the coefficients of an SSM can be
efficiently computed up to any order and dimension
[26]. This methodology has been used for model reduc-
tion of systems with hundreds of thousands of degrees
of freedom, accurately predicting responses to small
harmonic forcing [25,27,42], aswell as the bifurcations
of those responses [34,35].

These developments have motivated applications of
SSM theory to locate reduced-order models from data.
As a first step, Ref. [52] fitted a multivariate polyno-
mial to the sampling map and computed SSMs on the
resulting Taylor expanded dynamics. This yielded good
reconstructions of the backbone curves in a clamped-
clamped beam experiment. Typically, however, due to
the rapid growth in the number of terms, a polynomial

expansion of the flowmap in the full observable space is
sensitive to overfitting and quickly becomes intractable
in higher-dimensional systems.

Recently, another data-driven SSM identification
method was proposed to alleviate the overfitting of the
sampling map by separating the model reduction into
two steps: manifold identification and reduced dynam-
ics fitting [10]. Thus, the polynomial fit of the dynamics
takes place only on the SSM, and hence the number of
terms no longer grows with the data dimensionality.
First, the data is embedded in a user-defined observable
space. Then a polynomial representation of the SSM is
fitted to the data and the data dimensionality is reduced
by projection onto the tangent space of the SSM. Using
nonlinear optimization techniques, finally a transforma-
tion from the reduced coordinates to a normal form is
computed, maximizing sparsity while retaining essen-
tial nonlinearities [21].

While data-driven SSM-based model reduction has
been successfully applied to both numerical and exper-
imental data for fluid problems, structural dynamics,
and fluid-structure interaction [10,11,29], the required
implicit optimization can be computationally demand-
ing for high-dimensional systems. This paper intro-
duces an alternative method that explicitly computes
an SSM followed by a classic normal form transfor-
mation in the reduced coordinates. Our key assumption
is that the tangent space of the SSM at a fixed point
can be found by singular value decomposition (SVD).
This enables a major simplification and speedup at the
expense of giving up the more general applicability of
the method in Ref. [10]. In consequence, our proposed
method is faster than previous SSM-basedmodel reduc-
tion from data both in terms of implementation and
execution. We do not undertake any formal speed com-
parison with other methods here.

After reduction to the computed SSM and numerical
fitting of the reduced dynamics, we compute the nor-
mal form of the reduced dynamics analytically. This
is in contrast to Ref. [10], which fits the normal form
directly to data simultaneously at all required orders.
The aims of our new approach are accessibility to prac-
titioners, major speedup for rapid prototyping, analysis
of higher-dimensional observable spaces, and insight
into the differences between numerically and analyti-
cally computed normal forms.

The structure of this paper is as follows. First,
Sect. 2 gives a brief introduction to SSM theory, sum-
marizes SSM-based data-driven modeling, and details
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our new method. In Sect. 3, we discuss how to select
an observable space using delay embedding and use
SSM-reducedmodels for forced response prediction. In
Sect. 4, we apply our newly derived SSM-based model
reduction method to experiments from a sloshing tank,
simulations of a von Kármán beam, and experiments
on an internally resonant beam. Finally, in Sect. 5, we
drawconclusions from the examples, suggest additional
applications, and outline possible further enhancements
to dynamics-based machine learning.

2 Model order reduction on spectral submanifolds

We consider nonlinear autonomous dynamical systems
of class C l , l ∈ {N+, ∞, a}, with a denoting analyt-
icity, in the form

ẏ = Ay + f ( y), y ∈ R
p, f ∼ O(| y|2),

f : Rp → R
p. (1)

We assume A ∈ R
p×p is diagonalizable and the

real parts of its eigenvalues are either all strictly neg-
ative or all strictly positive. Note that this condition
requires the origin to be a hyperbolic fixed point, which
excludes rigid bodymodes from the analysis.Wedenote
by Vd the slowest d-dimensional spectral subspace of
A, i.e., the span of the eigenvectors corresponding to
the d eigenvalues with real part closest to zero. When
all eigenvalues have negative real parts, the dynamics
of the linearized system will converge to Vd in forward
time.

If the eigenvalues corresponding to Vd are non-
resonant with the remaining p − d eigenvalues of A,
Vd admits a unique smoothest, invariant, nonlinear con-
tinuation M under addition of the higher-order terms
[9]. We refer to M as a spectral submanifold (SSM)
[11,22]. In the case of a resonance between Vd and
the rest of the spectrum of A, we can include the res-
onant modal subspace in Vd and thus obtain a higher-
dimensional SSM. If all eigenvalues of A have negative
real parts, M will be an attracting slow manifold for
system (1), just as Vd is for the linear part of (1).

A numerical package, SSMTool, has been devel-
oped for the computation of SSMs from arbitrary
finite-dimensional nonlinear systems [25,26]. More
recently, a data-driven method was developed to com-
pute SSMs purely from observables of the dynamical
system [10,11]. In the following, we first review the
literature on data-driven reduced-order modeling on

SSMs, and then propose a simplified approach that is
applicable under further assumptions.

2.1 Learning spectral submanifolds from data

We seek a parametrization of M from trajectories in
an observable space, which may be the full phase space
or a suitable embedding, as described in Sect. 3.1. The
data-driven methods we will put forward consist of two
steps: manifold fitting and normal form computation.

We first outline the method recently proposed by
Ref. [10], as implemented in the algorithm SSMLearn
[12]. In that approach, one computes a parametrization
of the SSM as a multivariate polynomial

y(ξ) = Mξ1:m = Vξ + M2:mξ2:m,

M = [V , M2, . . . , Mm], M i ∈ R
p×di ,

(2)

with the reduced coordinates ξ = V� y and the matrix
V ∈ R

p×d containing d orthonormal vectors spanning
the spectral subspaceVd .Here,di denotes the number of
d-variate monomials at order i . Throughout this paper,
the superscript (·)l:r denotes a vector of all monomials
at orders l through r . For example, if x = [x1, x2]�,
then

x1:3 =
[
x1, x2, x

2
1 , x1x2, x

2
2 , x

3
1 , x

2
1 x2, x1x

2
2 , x

3
2

]�
.

Minimization of the distance of the parametrized
SSM from the training data points y j yields the optimal
coefficient matrix M� ∈ R

p×d1:m , with d1:m denoting
the number of d-variate monomials from orders 1 up to
m, as

M� = [V �, M�
2:m]

= argmin
V ,M2:m

∑
j

∥∥∥ y j −VV� y j −M2:m(V� y j )
2:m

∥∥∥ ,

(3)

subject to the constraints

V�V = I, V�M2:m = 0. (4)

Next, one computes the reduced dynamics ξ̇ =
Rξ1:r on the SSM in polynomial form,with coefficients
in the matrix R ∈ R

d×d1:r , by minimizing

argmin
R

∑
j

∥∥∥ξ̇ j − Rξ1:rj
∥∥∥ . (5)

Finally, one computes the normal form of the
reduced dynamics of ξ on the SSM [21]. This amounts
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to seeking a nonlinear transformation t−1 : ξ �→ z to
new coordinates z ∈ C

d , that reduces the number of
coefficients in R to a minimum set N ∈ C

d×d1:n . The
transformation and normalized dynamics are given by

z = t−1(ξ) = Hξ1:n = W−1ξ + H2:nξ2:n,
ż = n(z) = Nz1:n = �z + N2:n z2:n,

(6)

where H ∈ C
d×d1:n , and W ∈ C

d×d is the matrix
of eigenvectors of the linear part R1 = W�W−1 of
the reduced dynamics. N is potentially a very sparse
matrix, simplifying the dynamics to n(z). The loca-
tions of nonzero elements in N are determined by any
approximate inner resonances between the eigenvalues
in � [10]. An example is given in (17).

The transformation to the normal form on the SSM
is computed by minimization of the conjugacy error

argmin
N,H

∑
j

∥∥∥∇ξ t
−1(ξ j )ξ̇ j − n(t−1(ξ j ))

∥∥∥ . (7)

Data-driven model reduction to SSMs has been suc-
cessfully applied to both numerical and experimental
datasets [10,11,29].Yet, for very high-dimensional sys-
tems, the implicit optimization problems (3) and (7)
may be intractable. Further, their solution would bene-
fit from a simplified approach. Motivated by these chal-
lenges, in the remainder of this paper we discuss alter-
native, explicit formulations of the SSM geometry and
its reduced normal form,which are possible under addi-
tional assumptions detailed below.

2.2 Fast spectral submanifold identification

In order to turn the SSM identification into an explicit
problem, we assume that the tangent space of the SSM
at the origin can be approximately obtained by a sin-
gular value decomposition (SVD) of the data. This is
typically satisfied sufficiently close to an equilibrium
point. Moreover, since the main variance in the data
tends to occur along the tangent space of the SSM, the
span of the first d principal directions given by SVD
produces a good candidate for this subspace. A third
motivation for our main assumption is that the image of
M in a delay-embedded space tends to be flat, even if
M is strongly curved in the full phase space [10]. An
overview of the fast SSM construction method exploit-
ing this simplification is shown in Fig. 1.

Specifically,we approximate the tangent spaceVd by
d-dimensional truncated SVD on the snapshot matrix

Y ∈ R
p×N as

Y ≈ Ud Sd V̂
�
d , (8)

whereUd ∈ R
p×d , Sd ∈ R

d×d , V̂ d ∈ R
N×d . Defining

the tangent space approximation as

V = Ud S
−1
d , (9)

we can project the trajectories available from data onto
this approximate subspace to obtain d reduced coordi-
nates ξ as

ξ = V� y. (10)

We denote by � ∈ R
d×N the projection of Y onto

V . Numerically, it is beneficial to first normalize each
column of V with the maximum absolute value of the
corresponding row in V̂ d .

This first step is equivalent to proper orthogonal
decomposition [3,38], but our main interest in this
reduced subspace is its use for fitting a nonlinear
parametrization of the SSM.Themanifold parametriza-
tion coefficients M ∈ R

p×d1:m are obtained by polyno-
mial regression:

y ≈ Mξ1:m, M = Y(�1:m)†, (11)

with (·)† denoting the Moore–Penrose pseudo-inverse.
The reduced dynamics are approximated by anO(r)

polynomial regression, with the coefficient matrix R ∈
R
d×d1:r , as

ξ̇ ≈ Rξ1:r , R = �̇(�1:r )†. (12)

The time derivative ξ̇ may be computed numerically.
The quality of this approximation is important for
model accuracy. Therefore, we use a central finite dif-
ferencemethod including 4 adjacent points in each time
direction [20].

Next, diagonalizing the linear part R1 = W�W−1,
we again apply regression to rewrite R in the form G ∈
C
d×d1:r with the eigenvalues in the linear part G1 = �

and modal coordinates ζ = W−1ξ , such that

ζ̇ ≈ Gζ 1:r . (13)

To compute the normal form of the SSM-reduced
dynamics (13), we seek a near-identity polynomial
transformation t : z �→ ζ with coefficientsT ∈ C

d×d1:n

from new coordinates z ∈ C
d such that

ζ = t(z) = T z1:n = z + T2:n z2:n

ż = n(z) = Nz1:n = �z + N2:n z2:n .
(14)
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Fig. 1 Our simplified data-driven SSM construction consists
of two main parts, (I) fitting an SSM with SVD and polyno-
mial regression, and (II) computing a normal form on the mani-
fold by analytical solution of the cohomological equations. The

obtained reduced model can then be used for (III) prediction of
the autonomous system evolution or the response of the forced
system

We enforce conjugacy between the normal form and
reduced dynamics by plugging (14) into (13):

∇z(T z1:n)Nz1:n = G(T z1:n)1:r . (15)

We can compute T and N by solving (15) recursively
at increasing orders. See Ref. [25] for details on the
computations.

The simplest non-trivial normal form arises on a 2D
manifold emanating from a spectral subspace corre-
sponding to two complex conjugate eigenvalues (λ, λ̄)

with small real part. We denote the coordinates in the
normal form (z1, z2) = (z, z̄). The cubic normal form,
with γ ∈ C, is

ż = λz + γ z2 z̄ + O(5)

˙̄z = λ̄z̄ + γ̄ zz̄2 + O(5),
(16)

for which we obtain

N =
[

λ 0 0 0 0 0 γ 0 0
0 λ̄ 0 0 0 0 0 γ̄ 0

]
. (17)

Solving (15) yields

T =
[
1 0 T3 T4 T5 T6 0 T8 T9
0 1 T̄5 T̄4 T̄3 T̄9 T̄8 0 T̄6

]
, (18)

where

T3 = G3

λ
, T4 = G4

λ̄
, T5 = G5

2λ̄ − λ
,

T6 = 2G3T3 + G4T̄5 + G6

2λ
,

T8 = 2G3T5 + G4T̄3 + G4T4 + 2G5T̄4 + G8

2λ̄
,

T9 = G4T5 + 2G5T̄3 + G9

3λ̄ − λ
,

(19)

and Gi refers to element i of the top row in G [52].
We refer to the implementation of this simplified

method for cubic-order, 2D normal form computa-
tions as fastSSM. The full script is written out in
“Appendix A.1”. We have the reduced dynamics and
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normal form orders r = 3 and n = 3, and we are free
to set the order m of the manifold.

While a cubic order normal form will suffice to
model a number of datasets accurately [10,11], for
stronger nonlinearities we must include higher orders.
In the following, we refer to the extension of the man-
ifold fitting and normal form computation to arbitrary
dimension and order as fastSSM+. This implementa-
tion solves (15) by automatically applying SSMTool
to the coefficients of R. The full code is written out
in “Appendix A.2”. In principle, we are free to choose
any orders m, r , and n, but to avoid overfitting we must
limit the manifold orderm and reduced dynamics order
r . As an objective function for choosing these parame-
ters, we minimize the mean error of the predictions of
the training trajectories, as defined in (32). In addition,
we need to pick a large enough n to make the tail of the
SSM-reduced dynamics small enough.

Unlike (3) and (7), all computations in our proposed
method are explicit. Therefore, we expect this approach
to be faster than SSMLearn, which will generally come
at the cost of increased modeling errors. Further, we
note that in this simplified approach, the normal form
on theSSMis computed analytically, rather thannumer-
ically, from a polynomial fit of the data.

In practice wemust also approximate the inverse of t
to transform initial conditions to the normal formbefore
the integration. Themost accurate and simplest way is a
numerical solution for each initial condition, but a gen-
eral inverse map can also be computed. Accordingly,
we use an explicit 3rd-order polynomial expansion of
the inverse of t in the fastSSM algorithm. In contrast,
in the fastSSM+ algorithm for higher SSM dimensions
and normal form orders, we fit a polynomial map by
regression on the training data.

Finally,wenote that the simplifiedSSMcomputation
described here requires the data to lie sufficiently close
to the SSM. We achieve this by removing any initial
transients from the training dataset, as identified by a
spectral analysis on the input signal [11]. Since the SSM
is unique and attracting, this procedure ensures that we
train on relevant data.

3 Pre- and post-processing of the data

We present here considerations for the delay embed-
ding of observable functions to facilitate SSM identifi-
cation. We also show how to use the obtained normal

form dynamics to predict the forced response of the full
system.

3.1 Embedding spectral submanifolds in the
observable space

In practice, observing trajectories x(t) in the full phase
space is often intractable for high-dimensional systems.
An experimentalistmight only observe a scalar quantity
s(t) = ζ(x(t)), say, the displacement or acceleration at
one point in a vibrating structure. Nevertheless, if the
observable function ζ : Rnfull → R is generic, it can be
used to reconstruct an invariant manifold of the system
in an observable space via delay embedding.

To this end, we collect p measurements separated
by a timelag τ > 0 to form a vector y in an observable
space Rp as

y(t) = [s(t), s(t + τ), s(t + 2τ), . . . , s(t + (p − 1)τ )]�.

Takens’ embedding theorem implies that if x(t) lies on
an invariant d-dimensional manifoldM in the original
phase space, then y(t) lies on a diffeomorphic copy of
M in Rp with probability one, if p ≥ 2d + 1 and ζ(x)

is a generic observable [53]. This result also extends
to generic multivariate functions ζ : Rnfull → R

nobs as
long as the total observable space dimension exceeds
2d [15,47]. Even with a high-dimensional observable,
however, we apply delay embedding to diversify the
data and unveil information about the time derivative
of the signal in our later sloshing example [11].

The timelag τ is typically a multiple of the sampling
time or timestep�t of the available dataset. The default
choice is τ = �t , but one can also increase the timelag
to τ = k�t , k ∈ N+. Delay-embedding an observed
time series [s(t1), . . . , s(tN )] thus yields the snapshot
matrix

Y =

⎡
⎢⎢⎢⎢⎢⎣

s(t1) s(t2) . . . s(tN+(1−p)k)

s(tk+1) s(tk+2) . . . s(tN+(2−p)k)

s(t2k+1) s(t2k+2) . . . s(tN+(3−p)k)
...

...
. . .

...

s(t(p−1)k+1) s(t(p−1)k+2) . . . s(tN )

⎤
⎥⎥⎥⎥⎥⎦

.

(20)

Takens’ embedding theorem requires at least k = 1,
p = 2d + 1, which typically suffices for SSM identifi-
cation when d = 2.

If we observe a smooth scalar signal s(t), then for
small τ , we have

s(t + jτ) = s(t) + ṡ(t) jτ + O(( jτ)2).
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Delay-embedding s(t) then yields

y(t) =

⎡
⎢⎢⎢⎢⎢⎣

s(t)
s(t + τ)

s(t + 2τ)
...

s(t + (p − 1)τ )

⎤
⎥⎥⎥⎥⎥⎦

= s(t)

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
...

1

⎤
⎥⎥⎥⎥⎥⎦

+ṡ(t)τ

⎡
⎢⎢⎢⎢⎢⎣

0
1
2
...

p − 1

⎤
⎥⎥⎥⎥⎥⎦

+ O((pτ)2). (21)

As noted inRef. [10], if τ and p are small in comparison
to ṡ, then the diffeomorphic copy of M in the observ-
able space is approximately a plane spanned by the two
constant vectors appearing in (21).

For multimodal signals, however, p and k must be
increased to allow distinction between the modes in
the observable space. The modal subspaces of the full
phase space have corresponding planes in the observ-
able space, which must be identified to provide reduced
coordinates for the SSM. A low delay embedding
dimension and an overly short timelag can make these
planes close to parallel, which complicates their iden-
tification. In contrast, we want to pick the timelag and
embedding dimension such that the images of themodal
subspaces in the observable space are close to orthog-
onal.

To illustrate this, we consider an observed super-
position of two harmonics s(t) = a cos(ω1t + ψ1) +
b cos(ω2t +ψ2), a reasonable model of a typical signal
close to the origin. Using a trigonometric identity, we
can rewrite

s(t + jτ) = a cos(ω1t + ψ1) cos(ω1 jτ)

− a sin(ω1t + ψ1) sin(ω1 jτ)

+ b cos(ω2t + ψ2) cos(ω2 jτ)

− b sin(ω2t + ψ2) sin(ω2 jτ).

(22)

The delay-embedded observable vector is therefore

y(t) =

⎡
⎢⎢⎢⎢⎢⎣

s(t)
s(t + τ)

s(t + 2τ)
...

s(t + (p − 1)τ )

⎤
⎥⎥⎥⎥⎥⎦

= V

⎡
⎢⎢⎣

a cos(ω1t + ψ1)

−a sin(ω1t + ψ1)

b cos(ω2t + ψ2)

−b sin(ω2t + ψ2)

⎤
⎥⎥⎦ , (23)

where

V� =

⎡
⎢⎢⎣
1 cos(ω1τ) cos(2ω1τ) . . . cos((p − 1)ω1τ)

0 sin(ω1τ) sin(2ω1τ) . . . sin((p − 1)ω1τ)

1 cos(ω2τ) cos(2ω2τ) . . . cos((p − 1)ω2τ)

0 sin(ω2τ) sin(2ω2τ) . . . sin((p − 1)ω2τ)

⎤
⎥⎥⎦ .

(24)

The trajectories will reside on a 4-dimensional
hyperplane given by the constant matrix V of delay-
embedded harmonic functions. Picking τ and p too
small complicates manifold identification, because the
columns of V are close to linearly dependent. Instead,
we choose a timelag such that these planes are as close
to orthogonal as possible. Based on these considera-
tions, we select a timelag τ = k�t such that ω2τ ≈ π

2 ,
where ω2 is the second eigenfrequency of the observed
system. This argument generalizes to any number of
modes, although the choice of k becomes more com-
plicated. The embedding dimension p is set to at least
2d + 1. Further increases to p can facilitate identifica-
tion of a manifold but also complicate its geometry far
from the origin.

3.2 Backbone curves and forced response

If all eigenvalues of the reduced dynamics are com-
plex conjugate pairs, we can rewrite the normal form on
the SSM in polar coordinates (ρ, θ) with z� = ρ�eiθ� ,
z�+1 = ρ�e−iθ� . This yields the SSM-reduced dynam-
ics in the form

ρ̇� = c�(ρ, θ)ρ�,

θ̇� = ω�(ρ, θ).
(25)

If the imaginary parts of all eigenvalue pairs are non-
resonant with each other, then the functions c� and ω�
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depend only on ρ [43]. For example, the cubic 2D nor-
mal form (16) in polar coordinates reads

ρ̇ = Re (λ)ρ + Re (γ )ρ3 + O(ρ5),

θ̇ = Im (λ) + Im (γ )ρ2 + O(ρ4).
(26)

For the general 2D case, we define an amplitude as

A (ρ) = max
θ∈[0,2π)

∣∣∣∣α
(
Wt

([
ρeiθ

ρe−iθ

]))∣∣∣∣ , (27)

where α : R
p → R is a function mapping from the

observable space to some amplitude of a particular
degree of freedom or the norm of total displacements.
The backbone curve of that amplitude is then defined
as the parametrized curve

B(ρ) = (ω(ρ),A (ρ)), (28)

which is broadly used in the field of nonlinear vibrations
to illustrate the overall effect of nonlinearities in the
system.

Next, following Refs. [6,44], we use the data-driven
normal form on the SSM to predict the response of the
systemunder additional, time-periodic external forcing.
This amounts to adding a forcing term with amplitude
f and frequency � to the general 2D normal form to
obtain

ρ̇ = c(ρ)ρ + f sinψ,

ψ̇ = ω(ρ) − � + f

ρ
cosψ,

(29)

wherewehave introduced the phase differenceψ = θ−
�t . The forced response curve (FRC) is then defined as
the bifurcation curve of the fixed points (ρ0, ψ0) of (29)
under varying �. Squaring and adding the equations in
(29) yields a parametrization of the FRC for the forcing
frequency � and the phase lag ψ0 in the form

�(ρ0, f ) = ω(ρ0) ±
√

f 2

ρ2
0

− (c(ρ0))2,

ψ0(ρ0, f ) = − arcsin

(
c(ρ0)ρ0

f

)
.

(30)

Since the relation between the experimental forc-
ing and the normal form forcing f is unknown, a cal-
ibration of each FRC to at least one observation of a
forced response is necessary. Following Refs. [10,11],
we achieve this by prescribing a single intersection
point on the FRC in the frequency-amplitude plane. We
use the calibration frequency �cal and amplitude ucal
of the maximal experimental response at each forcing
level. The mapping to an equivalent point ycal in the

observable space can then be approximated by delay-
embedding a cosine signal of amplitude ucal and fre-
quency�cal.We compute the calibration amplitude ρcal
by projecting ycal onto the manifold and transforming
to the normal form. The forcing f is then computed
from the relationship

f 2 = (c(ρcal))
2ρ2

cal + (ω(ρcal) − �)2ρ2
cal. (31)

Finally, under periodic forcing, theSSMparametriza-
tion becomes time-dependent with the addition of a
small periodic term. We ignore this contribution here
to simplify the analysis, but note that this small non-
autonomous correction can be exactly computed if
needed [10,11].

4 Examples

We now apply the two variants of our simplified SSM
computation to three datasets: sloshing experiments in a
water tank, simulation of a clamped-clamped von Kár-
mán beam, and experiments on an internally resonant
beam.

We quantify the quality of our SSM-reduced mod-
els with the normalized mean trajectory error (NMTE)
[10]. Given a test trajectory with N snapshots y(t j ) and
the model-based reconstruction ŷ(t j ) obtained by inte-
grating the normal form dynamics and mapping back
to the observable space, the NMTE is defined as

NMTE = 1

N max j ‖ y(t j )‖
N∑
j=1

‖ ŷ(t j ) − y(t j )‖. (32)

4.1 Tank sloshing

A tank partially filled with a liquid responds nonlin-
early to horizontal harmonic excitation [54]. Stronger
fluid oscillation gives rise to more shearing against the
tank wall, so that the damping of the system increases
nonlinearly with the amplitude [19]. In addition, the
instantaneous frequency decreases at higher ampli-
tudes. Both phenomena are crucial for predicting the
forced response amplitude of the liquid. The industrial
applications for sloshingmodels are numerous, ranging
from the transportation of fluids in trucks [13] and con-
tainer ships [19] to the designof fuel tanks for spacecraft
[2,16].

In Ref. [10], SSMLearn was applied to experimen-
tal sloshing data from Ref. [8]. With nonlinear models
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Fig. 2 Sloshing experiment setup with the partially filled tank
and the cameras, mounted on a platform excited by a motor

of both frequency and damping, the forced response
of the first oscillation mode was accurately predicted
from unforced decaying center of mass signals. Here,
we will apply the fastSSM algorithm to a much
higher-dimensional observable space that includes fine-
resolved surface profile data.

The experiments described in Ref. [8] were per-
formed in a rectangular tank of width w = 500 mm
and depth l = 50 mm, partially filled with water up
to a height of 400 mm. The tank was mounted on a
moving platform excited harmonically by a motor at
different frequencies � and amplitudes A. A camera
was mounted on the moving platform, and the surface
profile h was detected via image processing with the
sampling time �t = 0.033 s. Figure 2 displays the
experimental setup.

From the surface profile, the sloshing amplitude can
be quantified by computing the horizontal position X̂ of
the liquid’s center of mass at each time, normalized by
the tank width. X̂ is a physically meaningful quantity,
relevant for engineering applications and robust against
small image evaluation errors. The tank was excited at
the tested frequencies until a steady state was reached,
and the driving was turned off. The oscillation ampli-
tude then decayed along the backbone curve defined in
(28).

Here we append the X̂ signal with the measure-
ments of the surface elevation h at 1 531 points. We
delay-embed these signals using 10 subsequent mea-
surements to create a 15 320-dimensional observable
space, in which a 2D, 7th-order SSM, shown in Fig. 3a,
is identified. We fit the reduced dynamics on the SSM
up to 3rd order, and then compute its 3rd-order normal
form as

ρ̇ = −0.062ρ − 0.019ρ3,

ρθ̇ = 7.81ρ − 0.628ρ3.
(33)

The backbone curves obtained from this normal form
are shown in Figure 3b.

In Fig. 3c and d, we compute forced response
curves for the center of mass position, X̂ , and com-
pare to its experimentally generated values obtained
along frequency sweeps from both directions. We find
the response prediction to be accurate. In particular, the
nonlinear damping term of the normal form helps cap-
turing the width of the forced response curve at higher
amplitudes.

Wealso use the normal form (33) to predict the devel-
opment of the decaying full surface profile h in Fig. 4.
Here, we take the initial surface profile and transform it
to an initial condition in the normal form coordinates.
We integrate the normal form from this initial condition
to predict its development in the observable space. We
observe that the prediction is in close agreement with
experiments, yielding a total NMTE of 2.05% over the
entire phase space.

Finally, we compare execution times for fastSSM
and SSMLearn when they are trained on the surface
profile data. These computations were performed on
MATLAB version 2020b, installed on an iMac with
2.3 GHz 18-Core Intel Xeon W and 128 GB RAM.

In Fig. 3e, the computational effort of fitting a 2D
SSMis plotted against the dimensionality of the training
data, i.e., the number of included surface points mul-
tiplied by the delay embedding dimension 10. Due to
its explicit coefficient fitting, fastSSM achieves a major
speedup, and enables analysis of significantly higher-
dimensional data than SSMLearn. Since our proposed
SSM fitting method is based on SVD and polynomial
regression, we expect the computational effort to grow
linearly with the input data dimensionality. This indeed
holds approximately for the highest-dimensional train-
ing datasets in the present example.

After reduction to the SSM, both SSMLearn and
fastSSM compute the O(3) normal form in less than a
second. In order to compare the computational effort for
higher-order normal forms, we apply fastSSM+. Fig-
ure 3f shows the time required to compute a 2D normal
form after fitting the SSM to the sloshing data. At a
given order, fastSSM+ is on average 15 times faster
than SSMLearn. While both methods are fast in this
example, the difference becomes significant at higher
dimensions. It shouldbenoted, however, that in strongly
nonlinear cases, an analytical expansion may require a
higher-order normal form to converge, and so the differ-
ence to the practitioner may be smaller. This difference
in the convergence of normal forms is closer examined
in the next example.
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(a) (c) (e)

(b) (d) (f)

Fig. 3 a A visualization of the identified 2D SSM, with the wall
surface amplitude on the vertical axis. b The computed instan-
taneous damping and frequency show significant nonlinearity. c
Prediction of the forced response amplitude and d phase lag com-
pared with experimental results for three different forcing ampli-

tudes. e The computational cost of manifold fitting is orders of
magnitude lower with fastSSM than with SSMLearn, and scales
better with higher dimensionality. f fastSSM+ normal form com-
putation is also faster, although SSMLearn tends to require a
lower order for convergence

4.2 von Kármán beam

Weconsider data fromnumerical simulations of a finite-
elementmodel of a clamped-clamped vonKármán non-
linear beam [27]. Each element has three degrees of
freedom: axial deformation u0, transverse deflection
w0, and rotation w′

0. The nonlinear von Kármán axial
strain approximation is

ε11 = u′
0(x1) + 1

2

(
w′
0(x1)

)2 − zw′′
0(x1), (34)

where the second term sets this model apart from the
linear Euler–Bernoulli beam. The axial stress is mod-
eled as

σ = Eε11 + κε̇11, (35)

where E is the Young’s modulus and κ is the material
rate of viscous damping.

After a convergence analysis, we set the number of
elements to 12, which results in a 33-degree of freedom
mechanical system, i.e., a 66-dimensional phase space.
As initial condition, we compute the response to a static

transverse load of 14 kN at the midpoint, removed at
the simulation start. Our observable function is themid-
point displacement, and the objective is to reconstruct
the SSM and its dynamics in the observable space by
delay-embedding the signal. A sketch of the system is
shown in Fig. 5a.

We set E = 70 GPa, κ = 1.0 × 106 Pa · s, length
1000 mm, width 50 mm, and thickness 20 mm. The
sampling time is �t = 0.0955 s. To satisfy the condi-
tions of Takens’ embedding theorem, we set the delay
embedding dimension to p = 5. The maximum dis-
placement in the training data is 15.9 mm.

A cubic normal form is insufficient to describe
the higher amplitude oscillations, which prompts us
to compute higher orders with SSMTool. We use a
1st-order SSM, 5th-order SSM-reduced dynamics, and
obtain an 11th-order normal form
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Fig. 4 Snapshots of the fastSSM prediction of the surface profile
decay. The initial condition is transformed to the SSM-reduced
system, which is integrated to produce a 2D trajectory in normal
form coordinates. By mapping the trajectory back to the observ-

able space, we can predict the full surface profile and observe
close agreement with the experiments in phase, amplitude, and
shape

ρ̇ = −3.12ρ − 0.899ρ3 + 4.12ρ5

−12.4ρ7 + 16.0ρ9 − 17.7ρ11, (36a)

ρθ̇ = 658ρ + 263ρ3 − 155ρ5

+151ρ7 − 181ρ9 + 237ρ11, (36b)

which yields a NMTE of 0.63% on the training data
(Fig. 5b).

We compute the FRC and verify it against a numeri-
cal integration frequency sweep in Fig. 5c. Clearly, the
autonomous SSM obtained from our new fastSSM+
algorithm predicts the forced response very accurately
even with strong nonlinearities. Figure 5d shows a rep-
resentation of the SSM geometry, which, as predicted
in Sect. 3.1, is almost flat due to the small timelag.

There is, however, a limit to the range of validity
of the normal form (36), and so the forced response
prediction is not guaranteed to be accurate for arbi-
trarily high amplitudes. To explore this limitation, we
increase the initial point load to 35 kN, equivalent to
a maximum displacement of 24.4 mm in the training
data. We plot backbone curves computed numerically
with SSMLearn and analytically at increasing orders
with fastSSM+ in Fig. 5e. For reference, we also com-
pute an approximation of the instantaneous frequency
with Peak Finding and Fitting (PFF) from Ref. [28].

Above approximately 20 mm transverse displacement
of the beammidpoint, increasing the order of the normal
form computation no longer improves the model, as the
radius of analyticity seems to be reached. On the other
hand, the SSMLearn model remains valid far beyond
this limit. This is a clear advantage of the numerical
normal form approach over analytical computations.

Taking this observation further, a similar conver-
gence study is shown in Fig. 5f for increasing orders of
SSMTool computation on the full finite-element system
of equations. The SSMLearn backbone curve agrees
with the PFF estimate at a larger range than the analyti-
cal normal form converges. This shows that data-driven
reduced-ordermodeling can surpass analyticalmethods
in terms of range of validity, even when the full system
is known.

4.3 Resonant beam experiments

Our final dataset comprises velocity measurements
from an internally resonant beam structure detailed in
Ref. [11]. It consists of an internal beam jointed with
three bolts to the left midpoint of an external C-shaped
beam,which is clamped to ground at its rightmost edges
(Fig. 6a). The bolts give rise to nonlinear frictional slip
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(a)

(b) (c)

(d) (e) (f)

Fig. 5 a The observable is the midpoint displacement u(t) of a
12-element von Kármán clamped-clamped beam. b Based on an
O(5) reduced dynamics model, we compute using the fastSSM+
algorithm a normal form that predicts the displacement decay
accurately. c Prediction of the forced response amplitude. d The
2D SSM visualized in a 3D representation of the observable

space. Above 20 mm deflection, increased orders of e fastSSM+
and f SSMTool no longer improve the backbone curve approxi-
mation. Higher amplitudes lie beyond the radius of convergence
of the SSM Taylor expansion. SSMLearn, however, continues to
approximate the backbone curve well beyond this limit

[5,18], and the beam lengths are tuned so that the system
has a 1:2 resonance between its slowest out-of-plane
bending eigenfrequencies,measured to be 122.4Hz and
243.4 Hz. Vibrations are induced with an impulse ham-
mer at three different impact locations and the transient
out-of-plane velocity of the inner beam tip is measured
at 5120 Hz. Varying the impact location and force for
data diversity, 12 different trajectories were obtained.
Frequency analysis shows that only the two slowest
eigenfrequencies are present in the signals, sowe aim to
identify a 4D internally resonant SSM in an observable
space for our model reduction.

With more than one mode present in the data, we
must judiciously choose the delay embedding param-
eters. In the experiment, the sampling time is �t =
0.0001953 s, which with ω2 = 2π × 243.4 rad/s pro-

duces τ = 5�t according to the method in Sect. 3.1.
This timelag results in a good reconstruction already
at the minimum Takens dimension, p = 9. However,
increasing the dimensionality further increases modal
orthogonality and thus improves trajectory reconstruc-
tion. Motivated by this, we select a delay embedding
dimension of p = 12, as the reconstructions improve
only marginally beyond this number. We show a repre-
sentation of the test trajectories in this observable space
in Fig. 6b.

We select three trajectories as the test set—one for
each hammer impact location—and use the remaining
nine trajectories for training. We set the order of expan-
sion for the SSM m = 3, the SSM-reduced dynamics
order r = 3, and obtain the 3rd-order normal form. The
results do depend on the order of reduced dynamics,
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(a) (b) (c)

(d) (e) (f)

Fig. 6 a Sketch of the experimental setup for the resonant
beam tester [11]. b The test trajectories embedded in the delay-
embedded observable space, in which we fit the SSM. c, d
The reconstruction from the obtained 4D normal form dynam-
ics agrees with the decay of measured velocities. e Plotting the

modal amplitudes ρ against one another shows that ρ2 dies out
more quickly than ρ1, but, due to modal interaction, the decay
rates vary. f The instantaneous damping of the second mode is at
times positive, indicating modal energy interchange

but are insensitive to the orders of computation for the
SSM and the normal form on it. Our fastSSM+ algo-
rithm detects an inner resonance from the data and we
obtain the normal form

ρ̇1 = −0.4426ρ1 + 0.0837ρ1ρ
2
2 − 5.550ρ3

1

+ (0.2683 cosψ − 0.2639 sinψ) ρ1ρ2, (37a)

ρ1θ̇1 = 768.9ρ1 − 0.7541ρ1ρ
2
2 − 17.90ρ3

1

+ (−0.2639 cosψ − 0.2683 sinψ) ρ1ρ2,

(37b)

ρ̇2 = −3.125ρ2 − 4.750ρ3
2 − 12.00ρ2

1ρ2

+ (1.340 cosψ − 0.1161 sinψ) ρ2
1 , (37c)

ρ2θ̇2 = 1529ρ2 − 10.54ρ3
2 − 13.86ρ2

1ρ2

+ (0.1161 cosψ + 1.340 sinψ) ρ2
1 , (37d)

where the automatically fitted trigonometric terms
involving ψ = 2θ1 − θ2 account for the phase-
dependence induced by the internal resonance. The
reconstruction of the first test trajectory obtained by
integrating the normal form is shown in Fig. 6c, with

a zoomed-in version in Fig. 6d. The NMTE on the test
set computed in the first coordinate is 1.28%.

Figure 6e plots the first modal amplitude, ρ1, against
the second one, ρ2, for each simulated trajectory. The
second mode clearly decays faster and trajectories are
eventually dominated by the slower mode ρ1. However,
due to the modal coupling terms in the normal form,
the decay is not monotonic. Rather, there is a wealth of
different decaying patterns depending on initial condi-
tions.

Finally, Fig. 6f shows the instantaneous damping
ρ̇1/ρ1 and ρ̇2/ρ2 for the reconstructions correspond-
ing to the third impact location. For the slow mode, we
observe strong nonlinearity as the instantaneous damp-
ing varies dramatically. The fluctuations are even larger
for the fast mode. At times, its instantaneous damp-
ing reaches positive values, which indicates that energy
is transferred from the slow to the fast mode, as pre-
viously observed in Refs. [4,46]. Overall, the model
obtained with our fastSSM+ algorithm agrees with the
one returned by SSMLearn in Ref. [11].
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5 Conclusions

We have introduced a fast alternative to a recent data-
driven reduction method for nonlinear dynamical sys-
tems. Our approach is inspired by the SSMLearn
method [10,11], but formulates the fitting of an SSM as
an explicit problem by assuming that its tangent space
can be obtained by singular value decomposition on the
data. Furthermore, we compute the normal form on the
manifold explicitly and recursively, rather than solving
an implicit minimization problem.

Our approach is based on rigorous existence and
uniqueness results for SSMs constructed near hyper-
bolic fixed points of smooth dynamical systems. In
addition, the spectral subspace over which the SSM
is constructed may contain either stable directions or
unstable directions but not a mixture of these. These
assumptions formally exclude applications of ourmeth-
ods near non-hyperbolic fixed points, over spectral sub-
spaces of mixed stability type and to systems with
non-smooth features such as hysteretic phenomena and
impacts. Our ongoingwork seeks to extend SSM theory
in a way that overcomes these limitations.

We have applied our alternative model-reduction
method to three datasets: tank sloshing experiments, a
nonlinear beam finite-element simulation, and experi-
ments from an internally resonantmechanical structure.
In all three problems, we obtained a model that accu-
rately predicted the decay of the autonomous system. In
addition, we have demonstrated that a forcing term can
be added to the autonomous model for highly accurate
prediction of the forced response amplitude and phase.
Training on the beam experimental data, the internal
resonance was automatically detected and our method
generated a model that could predict energy repartition
among the modes.

The assumptions made for our new method dras-
tically speed up model identification on SSMs from
data, increase the possible dimensionality of observ-
able spaces we can tackle, and significantly simplify
the numerical implementation. In comparison with the
previous method, however, we sacrifice some model
accuracy. Perhaps more significantly, we have found
large differences in normal form convergence domains
to the benefit of SSMLearn.

Specifically, we demonstrate on our simulated beam
problem that the numerical normal form has a consid-
erably larger range of validity than the analytical nor-
mal forms of the full system and consequently those of

our new data-driven SSM construction. In other words,
data-driven analysis can outperform analytical methods
in terms of model validity, even when the full equations
of the system are known. This suggests that a plausible
approach to obtaining a reduced-ordermodel of a finite-
element structure would be to simulate the system and
train on a small number of trajectories, rather than for-
mulating the full equation system and computing SSMs
analytically. This idea is a subject of our ongoing work.
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A Code

A.1 fastSSM

The fastSSM code requires no external packages and
can be applied to data out-of-the-box. This implemen-
tation is limited to finding 2D SSMs and computing
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their 3rd order normal form. For strong nonlinearities
or higher-dimensional SSMs, we recommend installing
SSMTool and running fastSSM+. fastSSM is also avail-
able at www.github.com/haller-group/SSMLearn/tree/
main/fastSSM.
� �

function [Mmap, iMmap, Tmap, iTmap, Nflow, Yrec] = fastSSM(t, Y, mfdorder)
% [Mmap, iMmap, Tmap, iTmap, Nflow, Yrec] = fastSSM(t, Y, mfdorder)
% Computes a 2D SSM and O(3) normal form from data. By Joar Axas (jgoeransson@ethz.ch)
%
% INPUT: OUTPUT:
% t (1xn) time values Mmap function SSM parametrization y=M(xi)^{1:m}
% Y (pxn) snapshots at times t iMmap function SSM chart
% mfdorder int SSM polynomial order Tmap function normal form transformation xi=T(z)
% iTmap function inverse normal form transformation
% Nflow function normal form dynamics zdot=N(z)
% Yrec (pxn) fastSSM reconstruction of Y

%% Fit manifold
[u,s,v] = svds(Y, 2);
V = (s\u'./max(abs(v'),[],2))'; % tangent space
iMmap = @(y) V'*y;
Xi = iMmap(Y);
Mcoeff = Y/phi(Xi, 1:mfdorder);
Mmap = @(xi) Mcoeff*phi(xi, 1:mfdorder);

%% Compute finite differences and reduced dynamics
idx = 5:(size(Xi,2)-4);
dXi = 4/5*(Xi(:,idx+1)-Xi(:,idx-1)) -1/5*(Xi(:,idx+2)-Xi(:,idx-2)) + …

4/105*(Xi(:,idx+3)-Xi(:,idx-3)) -1/280*(Xi(:,idx+4)-Xi(:,idx-4));
Xidot = dXi./(t(idx+1)-t(idx));

R = Xidot/phi(Xi(:,idx), 1:3); % reduced dynamics
[W,Lambda] = eig(R(1:2,1:2));
G = W\Xidot/phi(W\Xi(:,idx), 1:3); % diagonalize R

%% Compute transformation to normal form
ll = Lambda(1,1); % lambda_l
lc = conj(ll); % lambda_l+1
lj = [ll; lc]; % lambda_j
T1 = eye(2);
T2 = [G(:,3)./(2*ll-lj), G(:,4)./(ll+lc-lj), G(:,5)./(2*lc-lj)];
T3 = horzcat(([2,1].*G(:,3:4)*T2(:,1) + G(:,6))./(3*ll-lj), …

[0;1].*([2,1].*G(:,3:4)*T2(:,2) + [1,2].*G(:,4:5)*T2(:,1) + G(:,7))./(2*ll+lc-lj), …
[1;0].*([2,1].*G(:,3:4)*T2(:,3) + [1,2].*G(:,4:5)*T2(:,2) + G(:,8))./(ll+2*lc-lj), …

([1,2].*G(:,4:5)*T2(:,3) + G(:,9))./(3*lc-lj));
T = [T1, T2, T3];
Tmap = @(z) real(W*T*phi([z;conj(z)], 1:3));

gamma = [2,1].*G(1,3:4)*T2(:,2) + [1,2].*G(1,4:5)*T2(:,1) + G(1,7);
Nflow = @(t,z) ll*z + gamma*z.^2.*conj(z);

%% Approximate inverse to the normal form transformation
iT1 = [1,0];
iT2 = -T2(1,:);
iT3 = -T3(1,:) + horzcat(2*T(1,3).^2 + T(1,4)*conj(T(1,5)), …
3*T(1,3)*T(1,4) + T(1,4)*conj(T(1,4)) + 2*T(1,5)*conj(T(1,5)), …
2*T(1,3)*T(1,5) + T(1,4)*conj(T(1,3)) + T(1,4)*T(1,4) + 2*T(1,5)*conj(T(1,4)), …
T(1,4)*T(1,5) + 2*T(1,5)*conj(T(1,3)));

iT = [iT1, iT2, iT3];
iTmap = @(xi) iT*phi(W\xi, 1:3);

%% Evaluate model
fprintf('\\dot{\\rho} = %6.3f\\rho %+6.3f\\rho^3\n', real(ll), real(gamma))
fprintf('\\dot{\\theta} = %6.3f %+6.3f\\rho^2\n', imag(ll), imag(gamma))
[~, Zrec] = ode45(Nflow, t, iTmap(Xi(:,1)), odeset('RelTol', 1e-6));
Yrec = Mmap(Tmap(Zrec.'));
plot(t, Y(1,:), '-', t, Yrec(1,:), '--', 'linewidth', 1.5);
xlabel('t'); ylabel('Y_1'); legend({'data','reconstruction'})
end

%% Subfunction: multivariate polynomial
function Sigma=exponents(d, k)
B = repmat({0:max(k)}, 1, d);
A = combvec(B{:}).';
Sigma = A(ismember(sum(A, 2), k),:);
[~,ind] = sort(sum(Sigma, 2));
Sigma = Sigma(ind,:);

end
function u = phi(xi, r) % return monomials
x = reshape(xi, 1, size(xi, 1), []);
exps = exponents(size(xi, 1), r);
u = reshape(prod(x.^exps, 2), size(exps, 1), []);

end
� �

A.2 fastSSM+

This implementation appliesSSMTool to extendnormal
form computations to arbitrary dimension and order.
The fastSSM+ code is also available at www.github.

com/haller-group/SSMLearn/tree/main/fastSSM.
Requires installation of SSMTool [26].
� �

function [Mmap, iMmap, Tmap, iTmap, Nflow, Yrec] = fastSSMplus(t, Y, mfddim, mfdorder, …
romorder, nforder)

% [Mmap, iMmap, Tmap, iTmap, Nflow, Yrec] = fastSSMplus(
% t, Y, mfddim, mfdorder, romorder, nforder)
% Computes an SSM and normal form from data with SSMTool. By Joar Axas (jgoeransson@ethz.

ch)
%
% INPUT: OUTPUT:
% t (1xn) time values Mmap function SSM parametrization y=M(xi)^{1:m}
% Y (pxn) snapshots at times t iMmap function SSM chart
% mfddim int SSM dimension Tmap function normal form transformation xi=T(z)
% mfdorder int SSM polynomial order iTmap function inverse normal form transformation
% romorder int reduced dynamics order Nflow function normal form dynamics zdot=N(z)
% nforder int normal form order Yrec (pxn) fastSSMplus reconstruction of Y

%% Fit manifold
[u,s,v] = svds(Y, mfddim);
V = (s\u'./max(abs(v'),[],2))'; % tangent space
iMmap = @(y) V'*y;
Xi = iMmap(Y);
Mcoeff = Y/phi(Xi, 1:mfdorder);
Mmap = @(xi) Mcoeff*phi(xi, 1:mfdorder);

%% Compute finite differences and reduced dynamics
idx = 5:(size(Xi,2)-4);
dXi = 4/5*(Xi(:,idx+1)-Xi(:,idx-1)) -1/5*(Xi(:,idx+2)-Xi(:,idx-2)) + …

4/105*(Xi(:,idx+3)-Xi(:,idx-3)) -1/280*(Xi(:,idx+4)-Xi(:,idx-4));
Xidot = dXi./(t(idx+1)-t(idx));
R = Xidot/phi(Xi(:,idx), 1:romorder);

%% Rearrange coefficients into tensors for SSMTool
Rcol = 1;
for order = 1:romorder

exps = exponents(mfddim, order);
fnl{order}.ind = exps;
fnl{order}.coeffs = R(:,Rcol:Rcol+size(exps,1)-1);
Rcol = Rcol + size(exps, 1);
fnl{order} = multi_index_to_tensor(fnl{order}.coeffs,fnl{order}.ind);

end

%% Compute normal form with SSMTool
DS = DynamicalSystem();
set(DS.Options, 'Emax', mfddim, 'Nmax', 100, 'notation', 'multiindex')
set(DS, 'A', R(1:mfddim,1:mfddim), 'B', eye(mfddim), 'fnl', fnl(2:end));
S = SSM(DS);
set(S.Options, 'reltol', 0.1, 'notation', 'multiindex');
S.choose_E(1:mfddim)
[Tcoeff, Ncoeff] = S.compute_whisker(nforder);
Tmap = @(z) real(tpoly(Tcoeff, z));
Nflow = @(t,z) tpoly(Ncoeff, z);

%% Approximate inverse to the normal form transformation
[W, ~] = eig(R(1:mfddim,1:mfddim));
invpoints = W\Xi;
iT = invpoints/phi(Tmap(invpoints),1:nforder);
iTmap = @(xi) iT*phi(xi, 1:nforder);

%% Evaluate model
options = struct('isauto', 1, 'isdamped', 1, 'numDigits', 3);
symexp = reduced_dynamics_symbolic(DS.spectrum.Lambda(1:mfddim), Ncoeff, options);
sympref('FloatingPointOutput',true);
fprintf('\\dot{\\rho}_%u =\n\\rho_{%u}\\dot{\\theta_%u} =\n', ceil(0.1:1/3:mfddim/2))
disp(symexp)

[~, Zrec] = ode45(Nflow, t, iTmap(Xi(:,1)), odeset('RelTol', 1e-6));
Yrec = Mmap(Tmap(Zrec.'));
plot(t, Y(1,:), '-', t, Yrec(1,:), '--', 'linewidth', 1.5);
xlabel('t'); ylabel('Y_1'); legend({'data','reconstruction'})
end

%% Subfunction: multivariate polynomial
function Sigma=exponents(d, k)

B = repmat({0:max(k)}, 1, d);
A = combvec(B{:}).';
Sigma = A(ismember(sum(A, 2), k),:);
[~,ind] = sort(sum(Sigma, 2));
Sigma = Sigma(ind,:);

end
function u = phi(xi, r) % return monomials

x = reshape(xi, 1, size(xi, 1), []);
exps = exponents(size(xi, 1), r);
u = reshape(prod(x.^exps, 2), size(exps, 1), []);

end

%% Subfunction: Express tensor as polynomial function
function xi = tpoly(T, z)

xi = zeros(size(T{1}.coeffs,1),size(z, 2));
z = reshape(z, 1, size(z, 1), []);
for o = 1:numel(T)
if ~isempty(T{o}.ind)

xi = xi + T{o}.coeffs*reshape(prod(z.^T{o}.ind,2), size(T{o}.ind,1), []);
end

end
end

� �
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