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ABSTRACT
We construct a class of spatially polynomial velocity fields that are exact solutions of the planar unsteady Navier–Stokes equation. These
solutions can be used as simple benchmarks for testing numerical methods or verifying the feasibility of flow-feature identification prin-
ciples. We use examples from the constructed solution family to illustrate the deficiencies of streamline-based feature detection and
those of the Okubo–Weiss criterion, which is the common two-dimensional version of the broadly used Q-, Δ-, λ2-, and λci-criteria for
vortex-detection. Our planar polynomial solutions also extend directly to explicit, three-dimensional unsteady Navier–Stokes solutions with
a symmetry.
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I. INTRODUCTION
In this paper, we address the following question: For what

time-dependent vectors akj(t) ∈ R2 does the two-dimensional (2D)
velocity field,

u(x, t) =
n

∑
j=0

m

∑
k=0

akj(t)x
kyj, (1)

solve the incompressible Navier–Stokes equation with the spatial
variable x = (x, y) ∈ R2 and the time variable t ∈ R? Answering this
question enables one to produce a large class of exact Navier–Stokes
solutions for numerical benchmarking and for verifying theoreti-
cal results on simple, dynamically consistent, unsteady flow mod-
els. For linear velocity fields [akj(t) ≡ 0 for k, j > 1], general exis-
tence conditions are detailed by Majda1 and Majda and Bertozzi.2

A more specific form of these spatially linear solutions is given by
Craik and Criminale,3 who obtain that any differentiable function
a00(t) and any differentiable, zero-trace matrix A(t) generate a linear
Navier–Stokes solution u(x, t) in the form

u(x, t) = a00(t) + A(t)x, (2)

provided that Ȧ(t)+A2
(t) is symmetric. Note that all such solutions

are universal (i.e., independent of the Reynolds number) because
the viscous forces vanish identically on them. Reviews of exact
Navier–Stokes solutions tend to omit a discussion of the Craik–
Criminale solutions although they list several specific spatially lin-
ear steady solutions for concrete physical settings (see the work of
Berker,4 Wang,5–7 and Drazin and Riley8). For solutions with at least
quadratic spatial dependence, no general results of the specific form
(1) have apparently been derived.

In a related work, Perry and Chong9 outlined a recursive pro-
cedure for determining local Taylor expansions of solutions of the
Navier–Stokes equation up to any order when specific boundary
conditions are available. Bewley and Protas10 showed that near
a straight boundary, all the resulting Taylor coefficients can be
expressed as functions and derivatives of the skin friction and the
wall pressure. The objective in these studies is, however, the recur-
sive construction of Taylor coefficients for the given boundary
conditions rather than a derivation of the general form of exact poly-
nomial Navier–Stokes velocity fields of finite order. We also men-
tion the work of Bajer and Moffatt,11 who construct exact, steady
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three-dimensional (3D) Navier–Stokes flows with quadratic spatial
dependence for which the flux of the velocity field through the unit
sphere vanishes pointwise.

The linear part of the velocity field (1) can already have arbi-
trary temporal complexity, but remains spatially homogeneous by
construction. The linear solution family (2) identified by Craik and
Criminale3 cannot, therefore, produce bounded coherent flow struc-
tures. As a consequence, these linear solutions cannot yield Navier–
Stokes flows with finite coherent vortices or bounded chaotic mixing
zones.

Higher-order polynomial vector fields of the form (1), how-
ever, are free from these limitations, providing an endless source
of unsteady and dynamically consistent examples of flow structures
away from boundaries. We will construct specific examples of such
flows and illustrate how the instantaneous streamlines, as well as
the 2D version of the broadly used Q-criterion of Hunt, Wray,
and Moin,12 the Δ-criterion in Ref. 13, the λ2-criterion in Ref. 14,
and the λci-criterion (or swirling-strength criterion) in Ref. 15, fail
in describing the fluid particle behavior correctly in these exam-
ples. We will also point out how the two-dimensional exact solu-
tions we construct explicitly extend to unsteady 3D Navier–Stokes
solutions.

II. UNIVERSAL NAVIER–STOKES SOLUTIONS
We rewrite the incompressible Navier–Stokes equation (under

potential body forces) for a velocity field u(x, t) in the following
form:

∂u
∂t

+ (u ⋅∇)u − νΔu = ∇[−
p + V
ρ
], (3)

where ν ≥ 0 is the kinematic viscosity, ρ > 0 is the density, p(x, t)
is the pressure field, and V(x, t) is the potential of external body
forces, such as gravity. We note that the left-hand side of (3) is a gra-
dient (i.e., conservative) vector field. By classic results in potential
theory, a vector field is conservative on a simply connected domain
if and only if its curl is zero. For a 2D vector field, this zero-curl
condition is equivalent to the requirement that the Jacobian of the
vector field is zero, as already noted in the construction of linear
Navier–Stokes solutions by Craik and Criminale.3 On open, simply
connected domains, therefore, a sufficient and necessary condition
for u(x, t) to be a Navier–Stokes solution is given by

∇[
∂u
∂t

+ (u ⋅∇)u − νΔu] = (∇[
∂u
∂t

+ (u ⋅∇)u − νΔu])
T

, (4)

which no longer depends on the pressure and the external body
force potential V. Substituting (1) into (4) and equating equal pow-
ers of x and y in the off-diagonal elements of the matrices on the
opposite sides of the resulting equation, we obtain conditions on
the unknown coefficients of the spatially polynomial velocity field
u(x, t).

By a universal solution of Eq. (3), we mean a solution u(x, t)
on which viscous forces identically vanish, rendering the pressure
p(x, t) independent of the Reynolds number. Note that all spatially
linear solutions of (3) are universal. More generally, a solution u(x, t)

of Eq. (3) is a universal solution of the planar Navier–Stokes equa-
tion if and only if

Δu ≡ 0, (5)

i.e., if it is a harmonic solution. Hence, when looking for univer-
sal solutions of the form (1) that satisfy (4), we look for solutions
u(x, t) whose components are harmonic polynomials in x with time-
dependent coefficients. Since the viscous terms in the Navier–Stokes
equation vanish for harmonic flows, the universal solutions we find
will also be the solutions of Euler’s equation. Our main result is as
follows:

Theorem 1. An nth-order, unsteady polynomial velocity field
u(x, t) = (u(x, y, t), v(x, y, t)) of the spatial variable x = (x, y)
is a universal solution of the planar, incompressible Navier–Stokes
equation (3) if and only if

u(x, t) = h(t) +
1
2
ω(−y

x ) +
n

∑
k=1
(

ak(t) bk(t)
bk(t) −ak(t)

)(
Re(x + iy)k

Im(x + iy)k) (6)

holds for some arbitrary smooth functions h : R → R2, ak, bk∶R → R
and an arbitrary constant ω ∈ R, where ω coincides with the constant
scalar vorticity field of u(x, t).

Proof: To prove that a universal solution u(x, t) must be pre-
cisely of the form given in (6), we recall from the work of Andrews,
Askey, and Roy16 that a basis of the space of kth-order, homogeneous
harmonic polynomials of two variables is given by

{Re[fk(x, y)], Im[fk(x, y)]},

fk(x, y) ∶= (x + iy)k, k = 0, 1, 2, . . . .
(7)

Hence, the most general form of a polynomial u(x, t) satisfying the
universality condition (5) is

u(x, t) =
n

∑
k=0
(
αk(t) βk(t)
γk(t) δk(t)

)(
Re[ fk(x, y)]
Im[ fk(x, y)]) (8)

for some smooth scalar-valued functions αk(t), βk(t), γk(t), and
δk(t). By the Cauchy–Riemann equations for holomorphic complex
functions, f k(x, y) must then satisfy

∂Refk

∂x
=
∂Imfk

∂y
, (9)

∂Refk

∂y
= −

∂Imfk

∂x
. (10)

Under these conditions, requiring the divergence of u(x, t) in (8) to
vanish is equivalent to

n

∑
k=0
(αk

∂Refk

∂x
+ βk

∂Imfk

∂x
+ γk

∂Refk

∂y
+ δk

∂Imfk

∂y
)

=
n

∑
k=0
((αk + δk)

∂Refk

∂x
+ (γk − βk)

∂Refk

∂y
) ≡ 0. (11)
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For formula (11) to hold at order k = 0, any constant term

h(t) ∶= (α0(t) β0(t)
γ0(t) δ0(t)

)(
1
1) (12)

can be selected. At order k = 1, the same formula requires

α1(t) ≡ −δ1(t).

Finally, for k ≥ 2, formula (11) requires

αk(t) ≡ −δk(t), βk(t) ≡ γk(t), k ≥ 2.

By equations Eqs. (9) and (10), the vorticity field of the 2D
velocity field u(x, t) is

[∇ × u(x, t)]3 =
∂v
∂x
−
∂u
∂y
=

n

∑
k=0
(γk

∂Refk

∂x
− αk

∂Imfk

∂x
) − (αk

∂Refk

∂y
+ βk

∂Imfk

∂y
)

=
n

∑
k=0
(γk

∂Refk

∂x
− βk

∂Imfk

∂y
) − αk(

∂Imfk

∂x
+
∂Refk

∂y
)

=γ1(t) − β1(t).

Therefore, with the notation
ak(t) ∶= αk(t) = −δk(t), k ≥ 1,

b1(t) ∶=
1
2
(β1(t) + γ1(t)), ω(t) ∶= γ1(t) − β1(t),

bk(t) ∶= βk(t) ≡ γk(t), k ≥ 2,

(13)

and with the identity

(
α1(t) β1(t)
γ1(t) −α1(t)

)(
Ref1
Imf1
) = (

α1(t) 1
2(γ1(t) + β1(t))

1
2(γ1(t) + β1(t)) −α1(t)

)(
Ref1
Imf1
) + ( 0 1

2(γ1(t) + β1(t))
1
2(γ1(t) + β1(t)) 0 )(

Ref1
Imf1
)

= (
α1(t) b1(t)
b1(t) −α1(t)

)(
Ref1
Imf1
) + ( 0 − 1

2ω(t)
1
2ω(t) 0 )(

x
y),

formulas (8)–(13) give

u(x, t) = h(t) +
1
2
ω(t)(−y

x ) +
n

∑
k=1
(

ak(t) bk(t)
bk(t) −ak(t)

)(
Refk
Imfk
), (14)

with ω(t) denoting the spatially constant (but at this point time-
dependent) scalar vorticity field of (14). Since u(x, t) is harmonic
and incompressible, the symmetry condition (4) is satisfied by the

velocity field (14) if and only if the 2 × 2 matrix,

∇
∂u
∂t

+∇[(u ⋅∇)u], (15)

is symmetric. To verify the symmetry of this matrix using the nota-
tion u = (u, v), first note that the skew-symmetric parts of the two
summands in (15) are given by

skew[∇
∂u
∂t
] =

1
2
(∇

∂u
∂t
− [∇

∂u
∂t
]

T
) =

1
2
(

0 −ω̇(t)
ω̇(t) 0 ), (16)

skew[∇[(u ⋅∇)u]] = skew( 0 uxyu + uyyv + (ux + vy)uy
vxxu + vxyv + (ux + vy)vx 0 ) = 0, (17)

where we have used the incompressibility condition ux + vy = 0,
as well as the spatial independence of the scalar vorticity ω(t) of u,
which implies that ∂xω = vxx − uxy ≡ 0 and ∂yω = vxy − uyy ≡ 0. For-
mulas (15)–(17) then imply that for the matrix (15) to be symmetric,
we must have ω̇(t) ≡ 0, i.e., ω(t) = ω = const. must hold in (14). This
completes the proof of the theorem. ◽

For the universal solutions derived in this section, the pressure
field p(x, t) can be obtained by substituting the solutions into (3),
integrating the left-hand side of the resulting equation, multiplying
the result by –ρ, and subtracting the potential V(x, t).

The two-dimensional Navier–Stokes solution family (6) imme-
diately generates three-dimensional, incompressible Navier–Stokes
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solutions as well. The planar components of these solutions are just
given by (6), while their vertical component, w(x, y, t), satisfies the
scalar advection–diffusion equation,

∂tw +∇w ⋅ u = νΔw, (18)

as shown, e.g., by Majda and Bertozzi.2 We, therefore, obtain the
following result.

Proposition 2. Any polynomial solution (14) of the pla-
nar Navier–Stokes equation generates a family of exact solutions
(u(x, t), w(x, t)) for the three-dimensional version of the Navier–
Stokes equation (3), where w(x, t) is an arbitrary solution of the
advection-diffusion Eq. (18). In particular,

v(x, t) = (u(x, t)
w(x, t)) = (

h(t)
w0
) +

1
2
ω(t)
⎛
⎜
⎝

−y
x
0

⎞
⎟
⎠

+
⎛
⎜
⎝

∑
n
k=1(

ak(t) bk(t)
bk(t) −ak(t)

)(
Refk
Imfk
)

0

⎞
⎟
⎠

(19)

is an exact, unsteady polynomial solution of the 3D Navier–Stokes
equation for any choice of the constant vertical velocity w0 ∈ R.

III. VORTEX IDENTIFICATION METHODS
For our later analysis of universal solution examples, we now

briefly review the most broadly used pointwise structure identifi-
cation schemes in unsteady flows. For 2D flows, the Okubo–Weiss
criterion (Okubo17 and Weiss18) postulates that the nature of fluid
particle motion in a flow is governed by the eigenvalue configura-
tion of the velocity gradient ∇u(x, t). For 2D incompressible flows,
this eigenvalue configuration is uniquely characterized by the scalar
field,

OW(x, t) = −det[∇u(x, t)]. (20)

The Okubo–Weiss criterion postulates that in elliptic (or vortical)
regions, the velocity gradient ∇u(x, t) has purely imaginary eigen-
values, or equivalently, OW(x, t) < 0 holds. Similarly, the criterion
postulates that hyperbolic (or stretching) regions are characterized
by OW(x, t) > 0.

As formula (19) shows, any universal 2D Navier–Stokes solu-
tion generates a 3D Navier–Stokes solution family v = (u, w0)

with an arbitrary, constant vertical velocity component w0. This
extension enables the application of 3D local vortex-identification
criteria to our universal solutions. Such criteria generally involve
the spin tensor Ω = 1

2 [∇v − (∇v)
T
] and the rate-of-strain tensor

S = 1
2 [∇v + (∇v)T

], the antisymmetric and symmetric parts of ∇v,
respectively.

While Epps19 provided a comprehensive review of such criteria,
we will here focus on the three most broadly used ones.

We also mention the work of Rousseaux et al.,20 who utilized
the hydrodynamic Lamb vector (cf. Belevich,21 Marmanis,22 and
Sridhar23) in the vortex detection.

The first of the three local vortex criteria we discuss here, the
Q-criterion of Hunt, Wray, and Moin,12 postulates that in a vortical
region, the Euclidean matrix norm of Ω dominates that of S, render-
ing the scalar field,

Q(x, t) =
1
2
(∥Ω∥2

− ∥S∥2
), (21)

positive. One can verify by direct calculation that Q(x, t) ≡ OW(x, t)
holds for the 3D extension (19) of our universal solutions (and, in
general, for any two-dimensional flow), rendering the Q-criterion
equivalent to the Okubo–Weiss criterion for these flows.

Second, the Δ-criterion of Chong et al.13 seeks vortices in 3D
flow as domains where the velocity gradient ∇v(x, t) admits eigen-
values with nonzero imaginary parts. In the extended universal solu-
tions (19), zero is always an eigenvalue for∇v, and hence, by incom-
pressibility, the remaining two eigenvalues of ∇v are complex pre-
cisely when they are purely imaginary. This happens precisely when
Q(x, t) ≡ OW(x, t) > 0 holds, and hence, the Δ-criterion also coin-
cides with the Okubo–Weiss criterion on the universal solutions we
have constructed.

Third, the λ2-criterion of Jeong and Hussein14 identifies vor-
tices as the collection of points where the pressure has a local
minimum within an appropriately chosen two-dimensional plane.
Under various further assumptions, this principle is equivalent to
the requirement that the intermediate eigenvalue, λ2(S2 + W2

), of
the symmetric tensor S2 + W2 must satisfy

λ2(S2 + W2
) < 0. (22)

For the extended universal solutions (19), we obtain from a direct
calculation that

λ2(S2 + W2
) = S2

11 + S2
12 −W2

12 = −Q

and the λ2-criterion also agrees with Okubo–Weiss criterion for
these flows.

Finally, the λci-criterion (or swirling-strength criterion) of
Chakraborthy et al.15 follows the logic of the Δ-criterion and asserts
that local material swirling occurs at points where ∇v has a pair of
complex eigenvalues λcr + iλci and a real eigenvalue λr . To ensure
tight enough spiraling (orbital compactness) typical for a vortex, the
λci-criterion asserts the requirement

λci ≥ ε, λcr/λci ≤ δ (23)

for some small, constant thresholds ε, δ > 0. Again, for the extended
universal flows (19), we can only have λci = 0, and on any compact
domain with λci > 0, we can select ε > 0 such that the criterion (22)
is satisfied. Once again, therefore, the λci-criterion agrees with the
Okubo–Weiss criterion for the extended universal flows (19).

All these vortex criteria seek to capture the vortex-type fluid
particle behavior in a heuristic fashion, i.e., hope to achieve con-
clusions about the trajectories generated by the velocity field v(x, t)
from instantaneous snapshots of v(x, t). Some of these criteria have
been shown to give reasonable results on simple steady flows. Such
steady examples have prompted the broad use of these criteria in
analyzing general unsteady flow data for which no ground truth is
available. This practice can immediately be questioned based on first
principles, given that all these criteria are frame-dependent (see the
work of Haller24,25), yet truly unsteady flows have no distinguished
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frames (cf. Lugt26). Another questionable practice has been to sim-
ply replace the original versions of vortex identification criteria with
plots of heuristically chosen level surfaces of the quantities arising in
these criteria. Such level surfaces are generally highly sensitive to the
choice of the constant value that defines them, yet these constants
are routinely chosen to match intuition or provide visually pleasing
results.

The exact, unsteady Navier–Stokes solutions we have con-
structed here give an opportunity to test the vortex identification
methods above on nontrivial, unsteady Navier–Stokes solutions in
which a ground truth can be reliably established via Poincaré maps.
As we will see below, such a systematic analysis reveals major incon-
sistencies for all the vortex criteria recalled above. As we have seen, it
will be enough to point out these inconsistencies on the 2D universal
solutions (6) for the Okubo–Weiss criterion. The same inconsis-
tencies then arise automatically in the analysis of the extended 3D
Navier–Stokes solution (19) via the Q-, Δ-, λ2-, and λci-criteria.

IV. EXAMPLES
We now give examples of dynamically consistent flow fields

covered by the general formula (6). With these exact solutions, we
illustrate that using the instantaneous streamlines for material vortex
detection (see, e.g., the work of Sadajoen and Post27 and Robinson28)
gives inconsistent results. With the same solutions, we also illustrate
how the Okubo–Weiss criterion described in Sec. III fails to identify
the true nature of the unsteady fluid particle motion.

Example 1. Haller24,25 proposed the velocity field

u(x, t) = ( sin 4t cos 4t + 2
cos 4t − 2 − sin 4t )x (24)

as a purely kinematic benchmark example for testing vortex crite-
ria. By inspection of (6), we find that (24) solves the Navier–Stokes
equation with h(t) ≡ 0, a1(t) = sin 4t, b1(t) = cos 4t, ω = −4, and ak
= bk ≡ 0 for k ≥ 2. More generally, formula (6) shows that the linear
unsteady velocity field,

ẋ = u(x, t) = ( − sin Ct cos Ct − ω
2

cos Ct + ω
2 sin Ct )x, (25)

solves the 2D Navier–Stokes equation for any constants ω and C and
any smooth function h(t). We set h(t) ≡ 0 for simplicity and pass to
a rotating y-coordinate frame via the transformation

x =M(t)y, M(t) = (
cos C

2 t sin C
2 t

− sin C
2 t cos C

2 t
). (26)

In these new coordinates, (25) becomes

ẋ = ( − sin Ct cos Ct − ω
2

cos Ct + ω
2 sin Ct )x

= (
− sin Ct cos Ct − ω

2
cos Ct + ω

2 sin Ct )M
−1y (27)

=
⎛

⎝

−(1 + ω
2 ) sin C

2 t (1 − ω
2 ) cos C

2 t

(1 + ω
2 ) cos C

2 t (1 − ω
2 ) sin C

2 t
⎞

⎠
y. (28)

At the same time, differentiating the coordinate change (26) with
respect to time gives ẋ = Ṁy+Mẏ, which, combined with (28), gives
the velocity field in the y-frame as

ẏ = ũ(y) = ( 0 1 + 1
2(C − ω)

1 − 1
2(C − ω) 0 )y. (29)

This transformed velocity field is steady, defining an exactly solv-
able autonomous linear system of differential equations for par-
ticle motions. The nature of its solutions depends on the eigen-

values λ1,2 = ±

√

1 − 1
4(ω − C)2 of the coefficient matrix in (26).

Specifically, for |ω − C| < 2, we have a saddle-type flow with typ-
ical solutions growing exponentially, while for |ω − C| > 2, we
have a center-type flow in which all trajectories perform periodic
motion.

Mapped back into the original frame via the time-periodic
transformation (26), the center-type trajectories become quasiperi-
odic. Figure 1(a) shows such a quasiperiodic particle trajec-
tory, and Fig. 1(b) shows instantaneous streamlines of the veloc-
ity field (6) with h(t) ≡ 0, a1(t) = sin 4t, b1(t) = cos 4t, and
ω = −1 and ak = bk ≡ 0 for k ≥ 2. These parameter values yield the
following velocity field:

u(x, t) = ( sin 4t cos 4t + 1
2

cos 4t − 1
2 − sin 4t )x, (30)

which satisfies |ω − C| > 2. This flow would, therefore, appear as an
unbounded vortex in any flow visualization experiment involving
dye or particles, yet its instantaneous streamlines suggest a saddle
point at the origin for all times. Similarly, the Okubo–Weiss criterion
incorrectly pronounces the entire plane hyperbolic for the flow (30)
for all times. Indeed, formula (20) gives

OW ≡ 1 −
ω2

4
=

7
16
> 0. (31)

Example 2. By the general formula (6), a simple quadratic
extension of the linear velocity field (24) is given by the universal
Navier–Stokes solution

u(x, t) = ( sin 4t cos 4t + 2
cos 4t − 2 − sin 4t )x + α(t)(x2

− y2

−2xy ), (32)

where we have chosen a2(t) ≡ α(t) and b2(t) ≡ 0 in the quadratic
terms of (6), and set h(t), ak(t), and bk for k > 2, as in Example 1. Set-
ting α(t) ≡ −0.1 for simplicity, we find that the instantaneous stream-
lines now suggest a bounded spinning vortex enclosed by connec-
tions between two stagnation points. The Okubo–Weiss criterion
also suggests a coherent vortex surrounding the origin at all times,
as OW < 0 holds on a yellow domain shown containing the origin,
as shown in Fig. 2(a). In reality, however, the origin is a saddle-
type Lagrangian trajectory with transversely intersecting stable and
unstable manifolds.

As shown in Fig. 2(b), for the Poincaré map of the flow, the
resulting homoclinic tangle creates intense chaotic mixing. This
mixing process rapidly removes all but a measure zero set of initial
conditions from the Okubo–Weiss vortical region. Therefore, the
Navier–Stokes solution (32) with α(t) ≡ −0.1 provides a clear false
positive for coherent material vortex detection based on streamlines
and on the Okubo–Weiss criterion.
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FIG. 1. (a) A typical fluid particle trajectory generated by the linear unsteady velocity field (30) for the time interval [t0, t1] = [0, 200] for the initial condition x0 = (2, 0). This
flow would appear as an unbounded vortex in any flow-visualization experiment involving dye or particles. (b) The instantaneous streamlines of the same velocity field, shown
here for t = 0, suggest a saddle point at the origin for all times (streamlines at other times look similar).

Example 3. Building on the discussion of the stability of the x
= 0 fixed point of equation (25), we now consider another specific
Navier–Stokes velocity field of the form

u(x, t) = ( sin 4t cos 4t + 1
2

cos 4t − 1
2 − sin 4t )x + α(t)(x2

− y2

−2xy ) (33)

from the universal solution family (6). In the notation used for equa-
tion (25), we now have ω = −1 and C = 4, which give |C − ω|
> 2. Therefore, as discussed in Example 1, the origin of (33) is a
center-type fixed point under linearization for the Lagrangian par-
ticle motion. At the same time, both the instantaneous streamlines
in Fig. 3(a) and the Okubo–Weiss criterion suggest a saddle-type
(hyperbolic) behavior for the linearized flow, given that OW > 0

FIG. 2. (a) Instantaneous streamlines and the Okubo–Weiss elliptic region (yellow) for the universal Navier–Stokes solution (32) with α(t) ≡ −0.1 at time t = 0. Other time
slices are similar. (b) Stable (blue) and unstable (red) manifolds of the fixed point of the Poincaré map (based at t = 0 with period T = π

2 ) for the Lagrangian particle motions
under the same velocity field, superimposed on the structures shown in (a).
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FIG. 3. (a) Instantaneous streamlines for the universal Navier–Stokes solution (33) with α(t) ≡ −0.015 at time t = 0. Other time slices are similar. (b) KAM curves (blue) of the
same velocity field, superimposed on the streamlines shown in (a).

holds on the whole plane. By the Kolmogorov–Arnold–Moser
(KAM) theorem,29 however, setting the small parameter α(t)
≡ −0.015 in (33) is expected to preserve the elliptic (vortical) nature
of the Lagrangian particle motion in the quadratic velocity field (33).
Indeed, most quasiperiodic motions of the linearized system survive
with the exception of resonance islands, as indicated by the KAM
curves shown in blue in Fig. 3(b). Therefore, the Navier–Stokes

solution (33) with α(t) ≡ −0.015 provides a false negative for
coherent material vortex detection based on the streamlines or the
Okubo–Weiss criterion. Note that the KAM curves shown in some
of the examples in this section were obtained by launching fluid
particles from a uniformly spaced grid over the domain shown,
advecting them over the time span [0 2π], and plotting the advected
positions of the fluid particles at each time step.

FIG. 4. (a) Instantaneous streamlines and Okubo–Weiss elliptic region (yellow) for the universal Navier–Stokes solution (34) with α(t) ≡ 0.005 at time t = 0. Other time slices
are similar. (b) Stable (blue) and unstable (red) manifolds of the fixed point of the Poincaré map (based at t = 0 with period T = π

2 ) for the Lagrangian particle motions under
the same velocity field, superimposed on the structures shown in (a).
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Example 4. By the general formula (6), a cubic extension of
(24) is given by the universal Navier–Stokes solution

u(x, t) = ( sin 4t cos 4t + 2
cos 4t − 2 − sin 4t )x + α(t)( x(x2

− 3y2
)

−y(3x2
− y2
)
), (34)

where we have chosen a2(t) ≡ 0, b2(t) ≡ 0, a3(t) ≡ α(t), and b3(t) ≡ 0
in the quadratic and cubic terms of (6), respectively, and set h(t), ω,
ak(t), and bk(t) for k > 3 as in Example 2. We also set α(t) ≡ 0.005.
The instantaneous streamlines, shown in Fig. 4(a) for t = 0, suggest
a bounded spinning vortex around the origin surrounded by two
saddle-type structures. Similarly, the Okubo–Weiss criterion, visual-
ized by the yellow domain (OW < 0) in Fig. 4(a), suggests a coherent
vortex surrounding the origin at all times.

The actual Lagrangian dynamics, however, is again strikingly
different: As shown in Fig. 4(b), the Poincaré map of the flow
shows that the origin is a saddle-type Lagrangian trajectory with
transversely intersecting stable (blue) and unstable (red) manifolds,
which lead to chaotic mixing near the origin. Therefore, the Navier–
Stokes solution (34) with α(t) ≡ 0.005 provides, similar to Example
2, a false positive for coherent material vortex detection based on
streamlines and on the Okubo–Weiss criterion.

Example 5. We now consider another universal Navier–Stokes
solution of the form

u(x, t) = ( sin 4t cos 4t + 1
2

cos 4t − 1
2 − sin 4t )x + α(t)( x(x2

− 3y2
)

−y(3x2
− y2
)
), (35)

where we have chosen a2(t) ≡ 0, b2(t) ≡ 0, a3(t) ≡ α(t), and b3(t)
≡ 0 in the quadratic and cubic terms of (6), respectively, and selected
h(t), ω, ak(t), and bk(t) for k = 2 and k > 3, as in Example 1. As
discussed in Example 3, for the choice of a small parameter α(t)
≡ 0.005, we expect, by the KAM theorem,29 that most quasiperiodic

motions of the linearized systems survive around the origin. Con-
trary to this, the instantaneous streamline picture, shown in Fig. 5(a)
for t = 0, suggests a stagnation point at the origin. The Okubo–Weiss
criterion, visualized by the yellow domains (OW < 0) in Fig. 5(a),
predicts two coherent vortices away from the origin. Figure 5(b)
shows in blue the KAM curves of the velocity field (35), revealing a
bounded material coherent vortex around the origin. The rest of the
particles, which are not captured by the material vortex, escape to
infinity. Hence, the Okubo–Weiss criterion provides one false neg-
ative and two false positives for vortex identification in the velocity
field (35).

Example 6. A further extension of the velocity field (35) is
given by the universal Navier–Stokes solution

u(x, t) = ( sin 10t cos 10t + 2
cos 10t − 2 − sin 10t )x + α(t)( x(x2

− 3y2
)

−y(3x2
− y2
)
), (36)

where we have chosen a2(t) ≡ 0, b2(t) ≡ 0, a3(t) ≡ α(t), and b3(t) ≡ 0
in the quadratic and cubic terms of (6), respectively, and set h(t),
α(t), ω, ak(t), and bk(t) for k > 3, as in Example 4. This solution is
a nonlinear extension of the general linear velocity field (25), with
ω = −2 and C = 10. Therefore, as for the solution (33), |C − ω| > 2.
Hence, the origin of (36) is a center-type fixed point of the linearized
system. By the KAM theorem,29 adding a nonlinear term multiplied
by the small parameter α(t) ≡ 0.005 in (36), the Lagrangian particle
motion in the cubic velocity field (36) is expected to remain ellip-
tical (vortical) around the origin. The instantaneous streamlines of
(36), shown in Fig. 6(a) for t = 0, suggest a coherent vortex around
the origin. The Okubo–Weiss criterion, visualized in Fig. 6(a) for
the initial time t = 0 by the yellow domain (OW > 0), also suggests
a coherent vortex near the origin. Shown in blue in Fig. 6(b) are
the KAM curves of the flow, revealing, indeed, a bounded coher-
ent vortex around the origin. The rest of the particles, which are not

FIG. 5. (a) Instantaneous streamlines and Okubo–Weiss elliptic region (yellow) for the universal Navier–Stokes solution (35) with α(t) ≡ 0.005 at time t = 0. Other time slices
are similar. (b) KAM curves (blue) of the same velocity field.
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FIG. 6. (a) Instantaneous streamlines and Okubo–Weiss elliptic region (yellow) for the universal Navier–Stokes solution (36) with α(t) ≡ 0.005 at time t = 0. Other time slices
are similar. (b) KAM curves (blue) of the same velocity field.

captured by the material vortices around the origin, escape to infin-
ity. Hence, for the solution (36), both the Okubo–Weiss criterion
and the instantaneous streamlines correctly predict the presence of a
coherent vortex around the origin. At the same time, they fail to pre-
dict the correct shape of the vortex and completely miss six smaller
vortices surrounding the large vortex in Fig. 6(b).

V. CONCLUSIONS
We have derived an explicit form for all spatially polynomial,

universal, planar Navier–Stokes flows up to arbitrary order. We then
used examples of such solutions to test the ability of the instanta-
neous streamlines and the Okubo–Weiss criterion and the 2D ver-
sion of the Q-criterion and to detect coherent material vortices and
stretching regions in unsteady flows.

Specifically, using the main result of this paper, we have derived
two chaotically mixing Navier–Stokes flows whose analysis via
instantaneous streamlines and by the Okubo–Weiss criterion sug-
gests a lack of stretching due to the presence of a coherent vor-
tex. Likewise, we have constructed two exact Navier–Stokes flows
that have a bounded coherent Lagrangian vortex around the ori-
gin despite the hyperbolic flow structure suggested by instantaneous
streamlines and the Okubo–Weiss criterion. Finally, we have con-
structed a Navier–Stokes solution whose trajectories form a coherent
vortex near the origin. While the Okubo–Weiss criterion and the
instantaneous streamlines do signal a nearby vortex in this example,
they fail to render the correct shape of the vortex and miss additional
smaller vortices in its neighborhood.

Using the 2D unsteady solutions, we have given an explicit
family of unsteady polynomial solutions to the 3D Navier–Stokes
equation. The first two coordinates of these 3D velocity fields agree
with our planar polynomial solutions, while their third coordinate is

simply a uniform, constant velocity component. When applied to
these extended unsteady solutions, the Q-, Δ-, λ2-, and λci-criteria
give the same incorrect flow classification results as the Okubo–
Weiss criterion does in our two-dimensional examples.

The exact solutions derived in this paper can be used as basic
unsteady benchmarks for coherent structure detection criteria and
numerical schemes. They also provide a wealth of bounded, dynam-
ically consistent flow patterns away from boundaries. For instance,
the specific two-dimensional velocity field examples we have derived
can be viewed as models of coherent structures, such as eddies and
fronts, in oceanic flows away from the coastlines.
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