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a b s t r a c t

For general nonlinear mechanical systems, we derive closed-form, reduced-order models up

to cubic order based on rigorous invariant manifold results. For conservative systems, the

reduction is based on Lyapunov Subcenter Manifold (LSM) theory, whereas for damped-forced

systems, we use Spectral Submanifold (SSM) theory. To evaluate our explicit formulas for the

reduced model, no coordinate changes are required beyond an initial linear one. The reduced-

order models we derive are simple and depend only on physical and modal parameters, allow-

ing us to extract fundamental characteristics, such as backbone curves and forced-response

curves, of multi-degree-of-freedommechanical systems. To numerically verify the accuracy of

the reduced models, we test the reduction formulas on several mechanical systems, including

a higher-dimensional nonlinear Timoshenko beam.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The dimensional reduction of nonlinear systems in structural dynamics has two underlying drivers. One is the necessity to

decrease computational time, as computing a reduced-order model can be orders of magnitudes faster than solving the full

system. The second driver is model identification, which is easier to carry out when a reduced number of parameters needs to

be fitted to experimental or simulation data.

The appealing properties of modal decomposition and reduction in linear systems motivate the exploration of a similar

decomposition and reduction for nonlinear systems. The latter can be accomplished in a mathematically exact fashion if the

spectral subspaces of the linearized system can be continued as invariant manifolds of equal dimension, tangent to those spec-

tral subspaces at a fixed point. Moreover, if these manifolds are unique and analytic, they can be sought in the form of Tay-

lor expansions near the fixed point. As a consequence, the dynamics on these manifolds will serve as a mathematically exact

reduced-order model that can be constructed up to any required order of accuracy.

In this work, we provide ready-to-use explicit formulas for third-order reduced models of autonomous and non-autonomous

mechanical systems with general second- and third-order polynomial nonlinearities, without transforming the second-order

equations of motion to a first-order form. For conservative systems, this third-order model reduction is performed onto Lya-

punov Subcenter Manifolds (LSMs) [1], whereas for damped-forced systems, we perform the reduction onto Spectral Submani-

folds (SSMs) [2], which are mathematically rigorous versions of the nonlinear normal modes proposed first by Shaw and Pierre

∗
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[3]. To obtain higher-order LSM- and SSM-reduced models, one may use the automated numerical reduction procedure devel-

oped in Ref. [4].

Alternative approaches to nonlinear model reduction in mechanical systems include the method of normal forms ([5–7])

and the method of modal derivatives [8]. Normal forms involve a recursive simplification of the full system via a sequence of

nonlinear coordinate changes near a fixed point. Truncated at any finite order, the normal form admits invariant subspaces to

which one may reduce the dynamics. It is, however, generally unclear from this approach what will happen to these invariant

subspaces under the addition of the remaining, unnormalized terms. Furthermore, the reduced model is available in coordi-

nates that are nonlinear functions of the original coordinates and hence their physical meaning is not immediate. Finally, the

procedure assumes the knowledge of a full linear modal decomposition at the start, which is not necessarily available for large

systems.

The method of normal forms has nevertheless been applied to equations of motion in second-order form including periodic

forcing (cf. Neild and Wagg [6] and Neild et al. [7]). As an advantage, the method allows for the extraction of the steady-state

response in addition to backbone curves in the unforced and undamped limit. As opposed to SSM theory, however, the method

does not provide a mathematically exact reduced-order model and requires additional smallness assumptions on the nonlinear

and damping terms.

In earlier work, Touzé and Amabili [5] propose a normal form procedure for the construction of reduced-order models for

geometrically nonlinear vibrations of thin structures. They introduce the external forcing directly into the normal form along

non-physical, curvilinear coordinates. In this work, we prove that at leading-order, the SSM-reduced system of a periodically

forced mechanical system can be seen as the autonomous SSM-reduced system with the modal-participation factor (see Géradin

and Rixen [9]) of the first mode added to the reduced system, therefore justifying the Touzé–Amabili approach. Our Proof utilizes

recent work by Breunung and Haller [10] on time-periodic SSMs in mechanical systems.

A more recent application of the method of normal forms for model-order reduction purposes can be found in the work

of Denis et al. [11]. They observe that, in the absence of internal resonances, a reduced-order model for each mode can be

approximated by a Duffing oscillator. The method requires full knowledge of the linear modal decomposition and excludes

resonances up to any order in order to make the unnormalized tail of the asymptotic expansion arbitrarily small. In this work, we

confirm this idea mathematically using LSM theory and show that for a conservative system with symmetric cubic nonlinearities,

a third-order reduced model can indeed be sought as a Duffing oscillator, without using a modal transformation.

The other alternative to nonlinear model reduction is the method of modal derivatives [8], which assumes the existence of

quadratic invariant manifolds in the configuration space (space of positions). While such a manifold can formally be sought, it

generally does not actually exist in the configuration space but in the phase space. Accordingly, modal derivatives only give an

accurate reduced-order model in slow-fast systems in which spectral submanifolds have a weak dependence on the velocities

(see Ref. [12]).

In our present development of explicit, cubic reduction formulas, we circumvent the issues with normal forms and modal

derivatives and provide generally applicable, explicit formulas for nonlinear reduced-order models. We also illustrate the use of

our reduction formulas on different mechanical systems varying from simple to complex.

2. Conservative systems

2.1. Setup

We consider (n + 1)-degree-of-freedom, undamped nonlinear autonomous mechanical systems of the form

ẍ +𝜔2x + P(x, y) = 0, (1)

Mÿ + Ky + Q(x, y) = 0, (2)

where x is a scalar, y is an n-vector; P and Q are nonlinear, polynomial functions of x and y up to order 2 ≤ l ≤ 3; M and K are

the mass and stiffness matrices corresponding to the n-degree-of-freedom generalized coordinate vector y, while m and k are

the modal mass and stiffness coefficients corresponding to x. We refer to the x variable as the modeling variable and y as the

vector of non-modeling variables. Obtaining the form (1)-(2) for a mechanical system requires the use of a linear transformation

that decouples the modeling variable from the rest. To this end, only the mode shape associated with the x-mode has to be

explicitly known; the remaining n columns of the matrix of the linear transformation can be chosen as an arbitrary basis from

the n-dimensional plane orthogonal to the known mode shape in ℝn+1.

We will use the notation

𝜔 =
√

k

m
, 𝛀2

p
= M−1K, (3)

where 𝜔 is the natural frequency belonging to the modeling mode x with the imaginary pair of eigenvalues ±i𝜔. The non-

modeling modes belong to the purely imaginary eigenvalues ±i𝜔1,… ,±i𝜔n, with 𝜔k denoting the kth natural frequency. Our
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notation for the coefficients of the lth-order polynomials P and Q is

P(x, y) =
l∑

j+|k|=2

pjkxjy
k1

1
… y

kn
n , Q(x, y) =

l∑
j+|k|=2

qjkxjy
k1

1
… y

kn
n , (4)

pjk ∈ ℝ, qjk ∈ ℝn, k ∈ ℕn.

For the integer vectors k ∈ ℕn, specific values we will often need are

0 = (0,… , 0) ∈ ℕn, ej = (0,… , 0, 1
jth
, 0,… , 0) ∈ ℕn,

denoting the identically zero index vector and the jth unit vector, respectively. Additionally, we introduce the notation

pjI =
[

pje1
,… , pjen

]⊤
∈ ℝn, QjI =

[
qje1

,… ,qjen

]
∈ ℝn×n. (5)

2.2. The LSM-reduced model in the general case

As shown by Kelley [1], under the non-resonance conditions

𝜔i

𝜔
∉ ℤ, i = 1,… , n, (6)

a unique, analytic, two-dimensional invariant manifold

 = {(x, ẋ, y, ẏ) ∈ ℝ2n+2, y = w(x, ẋ), ẏ = ẇ(x, ẋ)} (7)

exists for system (1)-(2), tangent to the two-dimensional subspace y = ẏ = 0 at the trivial fixed point x = ẋ = 0, y = ẏ = 0. Often

called the Lyapunov subcenter manifold (LSM),  is known to be filled with periodic orbits of (1)-(2). In the nonlinear vibrations

literature, the amplitude-frequency plot of these periodic orbits is called the (conservative) backbone curve of system (1)-(2) (see,

e.g., Londono et al. [13]).

Reducing the full dynamics to the invariant manifold  gives an exact two-dimensional model for the nonlinear dynamics

associated with the x-mode. Such a model has apparently not been computed for the general class of systems (1)-(2) in the

literature before. We will carry out this computation explicitly below.

As a first step, we derive a universally valid third-order approximation to  in the form

y = w(x, ẋ) =
∑

i+j∈{2,3}
wijx

iẋj +(|(x, ẋ)|4). (8)

We restrict (1)-(2) to the LSM by enslaving the y variable to (x, ẋ) in equation (1) as

ẍ + 𝜔2x + P (x,w (x, ẋ)) +
(| (x, ẋ) |4) = 0. (9)

More specifically, we obtain the following result.

Theorem 2.1. Under assumption (6), the exact, third-order reduced model for system (1)-(2) on the LSM,  , takes the form

ẍ + 𝜔2x + p20x2 +
(

p30 + ⟨p1I,w20⟩) x3 + ⟨p1I,w02⟩ xẋ2 +(|(x, ẋ)|4) = 0, (10)

where

w20 = −
(
𝛀2

p − 2𝜔2I
)(

𝛀2
p − 4𝜔2I

)−1

𝛀−2
p M−1q20,

w02 = 2
(
𝛀2

p
− 4𝜔2I

)−1

𝛀−2
p

M−1q20.

Proof. This result follows directly upon substitution of the coefficients derived in Lemma A.1 of Appendix A. □

When system (1)-(2) is lower-dimensional and full modal decomposition can be performed in reasonable time, one can

also further simplify the explicit formulas for the LSM coefficients and reduced model (see Theorem 2.1), as we show below in

Section 2.3. These formulas enable a direct comparison of our results with other methods, such as the method of normal forms

[14]. Even though the normal form method does not, in principle, require the system to be diagonalized, ready-to-use, explicit

reduction formulas are only available in the literature for systems represented in modal coordinates [14].
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2.3. Explicit form of the LSM-reduced model when the non-modeling modes are available

After a modal transformation of the form y = 𝚽𝜼, system (1)-(2) can be written as

ẍ +𝜔2x + R(x,𝜼) = 0, (11)

𝜼̈ +𝛀2𝜼 + S(x,𝜼) = 0, (12)

where 𝜔 is the natural frequency of the modeling variable x, and the diagonal matrix 𝛀 contains the natural frequencies of the

non-modeling variables y. The lth-order polynomials R and S are given by

R(x,𝜼) =
l∑

j+|k|=2

rjkxj𝜂k1

1
… 𝜂kn

n , S(x,𝜼) =
l∑

j+|k|=2

sjkxj𝜂k1

1
… 𝜂kn

n , (13)

rjk ∈ ℝ, sjk ∈ ℝn, k ∈ ℕn.

Similarly to Section 2.2, we introduce the notation

rjI ≔
[

rje1
,… , rjen

]⊤
∈ ℝn, SjI ≔

[
sje1

,… , sjen

]
∈ ℝn×n. (14)

We now derive the third-order approximation to  in modal coordinates in the form

𝜼 = w̃(x, ẋ) =
∑

i+j∈{2,3}
w̃ijx

iẋj +(|(x, ẋ)|4). (15)

We restrict (11)-(12) to the LSM by enslaving the 𝜼 variable to (x, ẋ) in eq. (11), which gives

ẍ +𝜔2x + R(x, w̃(x, ẋ)) +(|(x, ẋ)|4) = 0. (16)

We then obtain the following result.

Theorem 2.2. Under assumption (6), the exact, third-order reduced model of (11)-(12) on the LSM takes the form

ẍ +𝜔2x + r20x2 +
(

r30 −
⟨

r1I, (𝛀2D4)−1D2s20

⟩)
x3 + 2

⟨
r1I, (𝛀2D4)−1s20

⟩
xẋ2 +(|(x, ẋ)|4) = 0, (17)

where

D2 = (𝛀2 − 2𝜔2I), D4 = (𝛀2 − 4𝜔2I).

Proof. This result is directly obtained upon substitution of the coefficients derived in Lemma B.1 of Appendix B. □

Although similar results can be obtained using normal form theory, see e.g. Denis et al. [11], a clear advantage of the LSM

reduction method is that it requires no nonlinear change of coordinates. As a consequence, the reduced model (17) keeps the

original modeling coordinate x as a physically meaningful modal coordinate. Additionally, the coefficients of the reduced model

(17) are simple to compute numerically. Note that equation (17) takes the form of a Duffing-oscillator if

r20 = 0,
⟨

r1I, (𝛀2D4)−1s20

⟩
= 0. (18)

This condition is satisfied, for instance, for an even potential function that leads to vanishing second-order nonlinearities. In that

case, the reduced model, accurate up to (x3), is given by

ẍ +𝜔2x + r30x3 +(x4) = 0. (19)

Consequently, for a conservative system with symmetric cubic nonlinearities, a third-order reduced model can immediately be

sought as a Duffing-oscillator. For such systems, therefore, the numerical and experimental procedure of Olivier et al. [11] is

justified when they define an equivalent Duffing-oscillator for reduced models obtained from a normal form analysis.

2.4. Reduced and truncated dynamics on the LSM

The full reduced dynamics on the LSM, a symplectic invariant manifold of a canonical Hamiltonian system, is necessarily

Hamiltonian. However, system (10) is a truncation of the full reduced dynamics. Therefore, it is a priori unclear if (10) is Hamil-

tonian or not. In the following, we show that the truncated reduced model on the LSM is a conservative nonlinear oscillator with

closed orbits, and therefore accurately captures the long-term qualitative dynamics on the LSM. As a first step, we rewrite the

third-order reduced model (10) as a two-dimensional first-order system

ẋ =y,

ẏ = − 𝜔2x − 𝛼x2 − 𝛽x3 − 𝛾xy2.
(20)
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Note that system (20) is invariant under the transformation x → x, y → −y, t → −t, and therefore is reversible with respect to

the line y = 0 [15].

Theorem 2.3. Let (20) be nondegenerate, i.e., assume that the determinant of its Jacobian at x = y = 0 is positive, and assume that

(20) is reversible. Then, the x = y = 0 equilibrium of (20) is a center, i.e., system (20) has only periodic orbits in a vicinity of the origin.

Proof. See Stepanov and Nemytskii [15] who prove this result for general reversible systems. □

Theorem 2.3 guarantees that locally around the origin, the truncated system qualitatively captures the long-term dynamics

on the LSM. For a complete global understanding of the phase space of system (20), we now prove that the third-order reduced

model is a generalized Hamiltonian system.

Theorem 2.4. System (20) is Hamiltonian with the symplectic form 𝜔 and the Hamiltonian H defined as

𝜔 = e−𝛾x2
dx ∧ dy, H(x, y) = 1

2
e𝛾x2

y2 + 𝜔2

2𝛾
e𝛾x2 + ∫ e𝛾x2 (

𝛼x2 + 𝛽x3
)

dx. (21)

Proof. We derive this result in Appendix C. □

The linearization of system (20) reveals that its fixed point, (x, y) = (0, 0), is a center in linear approximation. The Hessian of

H(x, y), evaluated at (x, y) = (0, 0), is

D2H(0, 0) = 𝜔2 > 0, (22)

thus we conclude that the truncated reduced-order model is Lyapunov stable. This proves that, beyond being a close pointwise

approximation, the truncated model also accurately represents the long-term, qualitative dynamics on the LSM around the fixed

point.

2.5. Comparison with reduced models obtained from the method of modal derivatives

Although the application of modal derivatives (MDs) is based on an idea similar to the LSM reduction, MDs lack the underly-

ing invariant manifold theory that would ensure robustness or validity of the reduced-order model [8]. The manifold proposed

by MDs is sought in the quadratic form 𝜼 = 𝚯x2, where 𝚯 is expressed, according to Ref. [12], as

𝚯 = −1

2
𝜕𝜼S(x,𝜼)−1𝜕2

xxS(x,𝜼) ∣x=0,𝜼=0, (23)

where

S(x,𝜼) = 𝛀2𝜼 +
3∑

j+|k|=2

sjkxj𝜂k1

1
… 𝜂kn

n . (24)

This leads to the coefficient vector

𝚯 = −𝛀−2s20, (25)

and ultimately to the reduced model

ẍ + 𝜔2
0
x + p20x2 +

(
p30 −

⟨
p1I,𝚽𝛀−2s20

⟩)
x3 = 0. (26)

Theorem 2.5. In the limit of Ωi → ∞, i.e., for large modal gaps between the modeling and non-modeling frequencies, the MD-reduced

model approaches the LSM-reduced model. The two methods, however, do not agree in any other nontrivial case. Near resonances

among the natural frequencies, the error of the MD-based reduction becomes unbounded.

Proof. We derive this result in Appendix D. □

By Theorem 2.5, the error of a model reduction using modal derivatives, instead of the LSM-reduced model, will be small for

extremely large spectral gaps. Generally, however, the error introduced by the formal MD approach is substantial and grows

unbounded near external resonances.

2.6. Comparison with reduced models obtained from the method of normal forms

The method of normal forms, described in detail in Ref. [14], offers an alternative way to reduce a nonlinear mechanical

system to a single mode and infer its hardening or softening behavior. The decoupling of the modeling mode from the rest is

achieved through a nonlinear, near-identity change of variables. In that setting, the system is assumed to be in modal coordinates

to begin with, therefore throughout this section, we also assume the input system for reduction in the form of equations (11)

and (12). The key step in the derivation of a normal-form-based reduced model is to introduce a near-identity transformation

of the modal coordinate system q = [x;𝜼] to a curvilinear coordinate system s = [u; v] of the form

qi = si +
n+1∑
j=1

n+1∑
k≥j

(
aijksjsk + bijkṡj ṡk

)
+

n+1∑
j=1

n+1∑
k≥j

n+1∑
l≥k

rijklsjsksl +
n+1∑
j=1

n+1∑
k=1

n+1∑
l≥k

uijklsjṡkṡl, (27)



Z. Veraszto et al. / Journal of Sound and Vibration 468 (2020) 1150396

q̇i = ṡi +
n+1∑
j=1

n+1∑
k=1

𝛾ijksjṡk +
n+1∑
j=1

n+1∑
k≥j

n+1∑
l≥k

𝜇ijklsjsksl +
n+1∑
j=1

n+1∑
k=1

n+1∑
l≥k

𝜈ijkl ṡjsksl, (28)

which constitutes a decoupling up to a given order between the modeling and non-modeling modes. The reduced model

obtained by this approach, with the same notation as in (4) and (13), reads as

ü + 𝜔2u +

(
r30 − ⟨r1I,

(
𝛀2D2

)−1
s20⟩ − 2r2

20

3𝜔2

)
u3 + 2

(⟨r1I,𝛀2D−1
2

s20⟩ − 2r2
20

3𝜔4

)
uu̇2 = 0. (29)

Although (29) is similar to the LSM reduced model, it can only be computed if the system is available in modal coordinates.

In that case, one has to compute only a small subset of the coefficients in the near-identity transformation (27)-(28) to obtain

(29). The reduced model correctly identifies hardening or softening behavior up to second order (see Section 4).

The method of normal forms, however, does not guarantee that an actual LSM exists in the phase space under addition

of higher-order, unnormalized terms in system (11)-(12). In that sense, a truncated normal-form based reduced model is not

justified at the same level of mathematical rigor as the LSM-based reduced model.

3. Dissipative systems

3.1. Setup

We now consider (n + 1)-degree-of-freedom, periodically forced, damped nonlinear mechanical systems of the form

mẍ + cẋ + kx + P (x, ẋ, y, ẏ) = 𝜀F1 sin (𝜙) , (30)

Mÿ + Cẏ + Ky + Q (x, ẋ, y, ẏ) = 𝜀F2 sin (𝜙) , (31)

0 < 𝜀 ≪ 1, 𝜙 = Ωt,

where x is a scalar, y is an n-vector; P and Q are now nonlinear, polynomial functions of x, ẋ, y and ẏ up to order 2 ≤ l ≤ 3; M,

C and K are the mass, damping and stiffness matrices corresponding to the n-degree-of-freedom generalized coordinate vector

y, while m, c and k are the modal mass, damping and stiffness coefficients, corresponding to x. We assume Rayleigh-damping,

which implies that the modal matrices simultaneously diagonalize the mass, the stiffness and the damping matrices. The mono-

harmonic forcing vectors F1 sin(𝜙) and F2 sin(𝜙), do not depend on the positions and velocities. In this setting, our notation of

the coefficients of the lth-order polynomials P and Q is

P(x, ẋ, y, ẏ) =
l∑

j+k+|u|+|v|=2

pjkuvxjẋky
u1

1
… y

un
n ẏ

v1

1
… ẏ

vn
n , (32)

Q(x, ẋ, y, ẏ) =
l∑

j+k+|u|+|v|=2

qjkuvxjẋky
u1

1
… y

un
n ẏ

v1

1
… ẏ

vn
n , (33)

pjkuv ∈ ℝ, qjkuv ∈ ℝn, u ∈ ℕn, v ∈ ℕn.

Additionally, we introduce the notation

pjkI0 ≔ [
pjke10,… , pjken0

]⊤
∈ ℝn, pjk0I ≔

[
pjk0e1

,… , pjk0en

]⊤
∈ ℝn. (34)

We denote the solutions of the eigenproblem det(m𝜆2 + c𝜆 + k) = 0 by 𝜆x
1
= 𝜆x

2
, corresponding to the underdamped x-mode.

We denote the solutions of the eigenproblem det(𝜆2M + 𝜆C + K) = 0 by 𝜆y

i
, i ∈ 1,… , 2n. We order the eigenvalues by decreas-

ing real parts so that Re𝜆y

2n
≤ · · · ≤ Re𝜆y

1
< 0. We define𝚽2 as the modal matrix, which consists of the eigenvectors correspond-

ing to each eigenvalue 𝜆y

i
, for i ∈ 1,… , 2n. The modeling subspace is fixed to be the slow spectral subspace, i.e., the subspace

spanned by the slowest decaying mode, which, in turn, implies that Re𝜆y

2n
≤ · · · ≤ Re𝜆y

1
< Re𝜆x

2
= Re𝜆x

1
< 0.

3.2. The SSM-reduced model

Haller and Ponsioen [2] give a detailed explanation of different classes of ODEs to which the theory of spectral submanifolds

(SSMs) applies. The case relevant for the above setup is a time-periodic slow SSM. To discuss the conditions under which such
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manifolds exist, we define the absolute spectral quotient of the slow spectral subspace (aligned with the x-degree of freedom)

in the form

Σ ≔ Int
Re𝜆y

2n

Re𝜆x
1

, (35)

with the function Int(·) referring to the integer part of a real number. Next, we assume that the low-order non-resonance con-

dition

Re𝜆y

i
≠ m1Re𝜆x

1
+ m2Re𝜆x

2
, i = 1,… , 2n, 2 ≤ m1 + m2 ≤ Σ, (36)

holds. Then a two-dimensional, analytic, invariant and attracting time-periodic SSM exists that is unique in the differentiability

class CΣ+1. For a more detailed formulation of absolute and relative spectral quotients of a general spectral subspace, see Haller

and Ponsioen [2]. We note that the theory of SSMs only requires this linear nonresonance condition. No other condition on the

linear spectrum or on the order of damping coefficients is assumed in our discussion.

Theorem 3.1. Under assumption (36), the single degree-of-freedom, third-order SSM-reduced model of system (30)-(31) is of the

form

mẍ+cẋ + kx + p2000x2 + p1100xẋ + p0200ẋ2 + p3000x3 + p2100x2ẋ + p1200xẋ2 + p0300ẋ3

+
⟨(

𝚽2W
)⊤ (

xp10I0 + ẋp01I0

)
, z⊗2

⟩
+

⟨(
𝚽2W̃

)⊤ (
xp100I + ẋp010I

)
, z⊗2

⟩
+(|(x, ẋ)|4, 𝜀|(x, ẋ)|, 𝜀2) = 𝜀F1 sin(𝜙),

(37)

with z⊗2 ∶= [x2, xẋ, ẋx, ẋ2]⊤ and with

W =
[
w11 w12 w12 w22

]
, W̃ =

[
w̃11 w̃12 w̃12 w̃22

]
, (38)

where w11,i, w12,i , w22,i and w̃11,i , w̃12,i, w̃22,i are defined in (F.1) and (F.5), respectively.

Proof. We derive this result in Appendix F. □

In the present dissipative case, we could also use a higher-dimensional modeling variable, x ∈ ℝ𝜈 , 𝜈 ≥ 1. As an advantage, the

corresponding SSM exists under less restrictive non-resonance conditions. By increasing the number of modeling variables, res-

onances between the modeling and the non-modeling modes can be avoided. We discuss the construction of the SSM-reduced

model for x ∈ ℝ𝜈 in Appendix E.

4. Hardening or softening behavior

By smoothness of all terms involved, finite Taylor expansions for the SSM-reduced dynamics necessarily converge to finite

expansions of the LSM-reduced dynamics over the same modeling variable x, as the damping matrix C tends to zero. This follows

because both SSM and LSM satisfy the same invariance equations and these equations depend smoothly on the dissipative

perturbation to their conservative limit. As a consequence, we can determine the hardening or softening nature of a dissipative

system through the periodic orbits of the conservative limit.

4.1. Extracting the backbone curve from the LSM

Under assumption (6), we define the backbone curve of system (1)-(2) as the set of ordered pairs (r, 𝜔 (r)) for a periodic orbit

family on the LSM, starting from the initial condition

(r, 0,w(r, 0), ẇ(r, 0)) ∈  . (39)

To obtain an approximation to this curve, we first rewrite (10) as

ẍ + 𝜔2
0
x + p20x2 + (p30 + p̂30)x3 + ŝ12xẋ2 = 0, (40)

where we introduced the short-hand notation

p20 ≔ p20, p30 ≔ p30, p̂30 ≔ ⟨p1I,w20⟩ , ŝ12 ≔ ⟨p1I,w02⟩ .
With the help of this notation, we obtain the following result

Theorem 4.1. The backbone curve of system (1)-(2) can be approximated by

𝜔(r) = 𝜔0 +𝜔1r2 +(r3), (42)
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Table 1

Hardening coefficients of different model reduction methods.

Method 𝜔2

LSM Normal forms
9(r30−

⟨
r1I ,(𝛀2D4 )−1D2s20

⟩
)𝜔2

0
−10r2

20
+6

⟨
r1I ,(𝛀2D4 )−1s20

⟩
𝜔4

0

24𝜔3
0

MDs
9(r30−

⟨
r1I ,𝚽𝛀−2s20

⟩
)𝜔2

0
−10r2

20

24𝜔3
0

where,

𝜔1 =
9(p30 + p̂30)𝜔2

0
− 10p2

20
+ 3̂s12𝜔

4
0

24𝜔3
0

. (43)

Proof. We derive this result in Appendix G. □

We use Theorem 4.1 to generate frequency-energy plots for a conservative system in section 5.2. Additionally, we observe

that the second-order LSM approximation (42) takes the form of a diagonal quadratic form (see w11 = 0 in Lemma B.1) for each

non-modeling mode, which gives that the eigendirections are aligned with the x and ẋ axes. Therefore the periodic orbits on the

LSM take their positional extrema in the x direction for each non-modeling mode. To compute this extremum we merely need

to take the values that this second order approximation takes in the first eigendirection (x axis). This gives the second-order

amplitude estimate for the non-modeling modes

r𝜂i
= 𝛼ir

2, (44)

along periodic orbits on the LSM. Knowing the potential for the forces in a conservative mechanical system together with the

estimate (44) gives a fourth-order estimate of the energy of the periodic orbits of the LSM.

4.2. Comparison of the backbone curves obtained from different model reduction methods

Here we compute the backbone curves of system (11)-(12) obtained under different reduction methods, using the approach

explained in the Proof of Theorem 4.1. This approach leads to the general approximation formula

𝜔(r) = 𝜔0 + 𝜔2r2 +(r3), (45)

where 𝜔2 varies with the reduction method used, as summarized in Table 1.

Table 1 shows that SSM theory and normal forms give the same result for 𝜔2, while the prediction for 𝜔2 from modal

derivatives differs substantially.

5. Numerical simulations

We have implemented the model reduction formulas obtained in the previous sections in Julia [16]. In this section, we

illustrate the power of these formulas on several examples. In each case, the full reduced and linearized models are solved

numerically using the DifferentialEquations.jl [17] package.

5.1. An analytic example

Haller and Ponsioen [12] gave a minimal nontrivial example of a system on which SSM reduction can be simply demon-

strated. The system is of the form

ẍ +
(

c1 + 𝜇1x2
)

ẋ + k1x + axy + bx3 = 0, (46)

ÿ + c2ẏ + k2y + cx2 = 0, (47)

which is already in modal coordinates, and hence we have 𝚽 = I. The ẋy, xẏ and ẋẏ terms in equation (46) are absent. All

second-order nonlinearities in x, ẋ are zero, therefore p2000 = p1100 = p0200 = 0. In addition, p0300 = p1200 = 0 and p2100 = 𝜇1

and p3000 = b. The linear part in the modeling mode x is characterized by 2𝜁𝜔 = c1 and 𝜔2 = k1.

Using equation (37), we obtain the reduced-order model in the form

ẍ + c1ẋ + k1x +
(

b + aw11

)
x3 +

(
𝜇1 + 2aw12

)
x2ẋ +

(
aw22

)
xẋ2 +(4) = 0, (48)

in agreement with [12]. We show a simulation of the reduced dynamics on the SSM in Fig. 1. Additionally, we show a trajectory

of the full system, illustrating its convergence to the reduced dynamics on the SSM.

All of our reduced models are defined locally around a fixed point. Their domain of validity reduces as the parameters

approach a configuration in which the non-resonance conditions (36) no longer hold. In the resonant case, the reduced models
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Fig. 1. Synchronization between near-SSM trajectories of system (46)-(47) and its reduced model (48). The dotted green surface is the second-order approximation of

the SSM. The parameter values are c1 = 0.1, 𝜇1 = 0.02, k1 = 1, a = 0.06, b = 0.02, c2 = 1.2, k2 = 27, c = 0.08. (For interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this article.)

Fig. 2. Solutions of system (46)-(47) in the near-resonant (1 ∶ 2.01) case with a resonance parameter r = 2.01. The parameter values are c1 = 0.1, 𝜇1 = 0.02, k1 = 1, a =
0.06, b = 0.02, c2 = rc1 , k2 = r2k1, c = 0.08.

are not defined anymore. Using the same example, we demonstrate the breakdown of the reduced model in a near-resonant

case, where we show that the response of the reduced model is inaccurate even when the full response of the system is in the

linear regime (see Fig. 2).

5.2. Nonlinear oscillator chain

We continue with a twelve-degree-of-freedom, third-order nonlinear mechanical system of the form

mq̈j + c
(

2q̇j − q̇j+1 − q̇j−1

)
+ k

(
2qj − qj+1 − qj−1

)
+ 𝜅2

(
qj − qj−1

)2 − 𝜅2

(
qj+1 − qj

)2

+ 𝜅3

(
qj − qj−1

)3 + 𝜅3

(
qj − qj+1

)3 = 0, j = 1,… , 12, q0 ≡ 0, q13 ≡ 0,
(49)

describing the mechanical model shown in Fig. 3. In this system, all the mass and spring coefficients are identical, i.e., m = k = 1,

while the damping coefficient is c = 0.01. The springs admit a potential function of the form

V = 1

2
k(qj − qj−1)2 + 1

3
𝜅2(qj − qj−1)3 + 1

4
𝜅3(qj − qj−1)4. (50)

As system (49) is not in the form of (30)-(31), a linear transformation is needed first to linearly decouple the modeling mode

from the non-modeling ones. Since the mass matrix is diagonal, while the stiffness and damping matrices are tridiagonal Töplitz

matrices, we can compute the modal matrix by using the closed form formula (cf. [18])

Φij = sin
ij𝜋

n + 1
. (51)
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Fig. 3. Illustration of the nonlinear oscillator chain described by eq. (49).

Fig. 4. Conservative backbone curves and force response curves of the damped system (49) obtained using COCO and the LSM/SSM reduced model. The forcing is in both

cases F̂𝜖 = 0.0013 and the damping is c = 0.01. Panels (a) and (b) show data of the softening and the hardening system, respectively.

For the conservative limit of system (49), we compute the second-order approximated backbone curves and verify our result

via numerical continuation using the po toolbox of COCO [19] (see Fig. 4). To quantify the region of validity of these approxima-

tions, we refer to Fig. 5, where we observe an increase in energy of two orders of magnitude into the nonlinear regime for both

the hardening and the softening systems. The SSM reduced models for the hardening system (i.e 𝜅2 = 0.05, 𝜅3 = 0.8) is of the

specific form

ẍ + 0.000581ẋ + 0.058116x + 8.27 · 10−5x2 + 0.000314x3 − 6.22 · 10−5xẋ2 = 0, (52)

while for the softening system (i.e 𝜅2 = −0.1, 𝜅3 = −2) it is

ẍ + 0.000581ẋ + 0.058116x − 0.000165x2 − 0.000769x3 − 0.000249xẋ2 = 0. (53)

Additionally, we numerically simulate the original damped system, the reduced system based on modal derivatives and the

reduced system based on SSM theory. The mismatch between the modal derivatives and the SSM-reduced model is clearly

visible in Fig. 6.

Fig. 5. Frequency-energy diagrams based on the LSM reduced model for the hardening and softening example of Fig. 4. Panels (a) and (b) show data of the softening and

the hardening system, respectively.
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Fig. 6. First coordinate against time in the numerical simulation of the 12-DoF oscillator chain (49) showing the full system, the SSM-reduced, the MD-reduced and the

linearized system to show the highly nonlinear character of the system. Parameters used: c = 0.05, 𝜅2 = 0.01 and 𝜅3 = 0.01.

Table 2

Geometric and material parameters.

Parameter Value

L 1200 mm

h 40 mm

b 40 mm

𝜌 7850 · 10−9 kgmm−3

E 90 GPa

G 34.6 GPa

𝜂 13.4 MPas

𝜇 8.3 MPas

5.3. Nonlinear Timoshenko beam

In this section, we construct an SSM-reduced model for a discretized nonlinear Timoshenko beam consisting of three ele-

ments, resulting in a 32-dimensional phase space (cf. Ponsioen et al. [4]). The chosen beam parameter values are listed in Table 2.

Here L is the length of the beam; h the height of the beam; b the with of the beam; 𝜌 the density; E the Young’s modulus; G

the shear modulus; 𝜂 the axial material damping constant and 𝜇 the shear material damping constant.

For the simulation of the full stiff system, we used a fourth-order [20] ESDRIK integrator with a relative and absolute tolerance

of 10−8. The reduced system was integrated with an adaptive 7∕6 Runge-Kutta scheme [21] where we set the tolerances equal

to 10−12. With these settings a speed up factor of 2820 was obtained (from 197s to 0.07s) between the integration of the full

system and the reduced model, see Fig. 7.

Fig. 7. Simulation results for the time histories of the 16 DoF nonlinear Timoshenko beam.
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Fig. 8. Backbone curves of the 16-DoF nonlinear Timoshenko beam based on numerical continuation and the perturbation approach of the conservative limit detailed in

section 4.

In Fig. 8, we compare the backbone curve extracted from our LSM reduced model with the numerically continued backbone

curve using thepo toolbox of COCO. In this case the damping parameters have been set to zero to obtain a conservative system,

required for LSM reduction and the numerical backbone curve continuation.

6. Conclusions

We have shown that the third-order LSM- and SSM-reduced models accurately capture backbone curves and forced-response

curves, respectively, of multi-degree-of-freedom mechanical systems, including a higher-dimensional nonlinear Timoshenko

beam, while remaining simple to implement numerically. An advantage of our reduction method is that no near-identity trans-

formations are needed, as opposed to normal-form-based reduction methods. The reduction method keeps the original mod-

eling coordinate as a physically meaningful modal coordinate, resulting in a reduced model that only depends on physical and

modal parameters.

Our LSM-reduction method can also be applied when the modal transformation matrix is unfeasible to compute. This is often

the case for large systems in which such computations are expensive and often numerically inaccurate. In the conservative case,

we have identified conditions under which the formal modal-derivatives-based reduction gives a reasonable approximation of

the exact LSM reduction. Additionally, we have shown under which conditions the third-order LSM reduced model is actually a

Duffing-oscillator, supporting experimental observations in the literature.

We rigorously justified that in a leading-order approximation, the SSM-reduced system of a periodically forced mechanical

system can be seen as the autonomous SSM-reduced system with the modal-participation factor of the first mode added to the

reduced system, which justifies the proposed normal form method by Touzé and Amabili [5]. An important further development

of the present results will allow for the inclusion of quasi-periodic forcing in system (1)-(2), as the results of Haller and Ponsioen

[2] are general enough to allow for such forcing.

Appendix

A. Derivation of the LSM coefficients in the general case

Lemma A.1. Under assumption (6), the unknown coefficients in (8) satisfy w11 = w21 = w03 = 0 and the linear equations[
w20

w02

]
=

[
𝛀2

p − 2𝜔2I 2𝜔4I

2I 𝛀2
p
− 2𝜔2I

]−1 [
−M−1q200

]
, (A.1)

[
w30

w12

]
=

[
𝛀2

p
− 3𝜔2I 2𝜔4I

6I 𝛀2
p − 7𝜔2I

]−1 ([
2p20I − Q̃1I −4𝜔2p20

0 4p20I − M−1Q̃1I

][
w20

w02

]
−

[
M−1q30

0

])
, (A.2)

with

𝛀2
p
= M−1K, Q̃1I =

[
q1e1

,… ,q1en

]
∈ ℝn×n. (A.3)

Proof. In the following, we use the invariance of  to derive the LSM coefficients listed in Lemma B.1. Differentiating equation
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(8) with respect to time, we obtain, for the ith element of ẏ,

ẏi =

⟨
Dwi,

[
ẋ

ẍ

]⟩
+(|(x, ẋ)|4), (A.4)

where the gradient of wi is

Dwi =

[
2w20,ix + w11,i ẋ + 3w30,ix

2 + 2w21,ixẋ + w12,iẋ
2

w11,ix + 2w02,i ẋ + w21,ix
2 + 2w12,ixẋ + 3w03,iẋ

2

]
. (A.5)

Similarly, the second time derivative can be written as

ÿi =

⟨
Dwi,

[
ẍ
...
x

]⟩
+

⟨[
ẋ

ẍ

]
, D2wi

[
ẋ

ẍ

]⟩
+(|(x, ẋ)|4), (A.6)

where the Hessian of wi is written as

D2wi =

[
2w20,i + 6w30,ix + 2w21,iẋ w11,i + 2w21,ix + 2w12,iẋ

w11,i + 2w21,ix + 2w12,i ẋ 2w02,i + 2w12,ix + 6w03,iẋ

]
. (A.7)

We express the higher order derivatives, ẍ and
...
x , in equation (A.6) as a function of x and ẋ, by using equation (1), restricted

to the manifold,

ẍ = −(𝜔2x + p20x2) +(|(x, ẋ)|3). (A.8)

Differentiating equation (A.8) with respect to time yields,
...
x = −(𝜔2ẋ + 2p20xẋ) +(|(x, ẋ)|3). (A.9)

Substitution of equations (A.8) and (A.9) in (A.6) gives

ÿi = (2w02,i𝜔
4 − 2w20,i𝜔

2)x2 − 4w11,i𝜔
2xẋ + (2w20,i − 2w02,i𝜔

2)ẋ2 + (−2w20,ip20 − 3w30,i𝜔
2 + 4w02,i𝜔

2p20 + 2𝜔4w12,i)x3

+(−5w11,ip20 − 7w21,i𝜔
2 + 6w03,i𝜔

4)x2ẋ + (6w30,i − 4w02,ip20 − 7w12,i𝜔
2)xẋ2 + (2w21,i − 3w03,i𝜔

2)ẋ3 +(|(x, ẋ)|4).
(A.10)

Rewriting equation (2) and substituting y = w(x, ẋ), we obtain the following expression for the ith element of ÿ, truncated at

(|(x, ẋ)|4)
ÿi = −

((
M−1K

)
ij
w20,j +

(
M−1

)
ij
q20,j

)
x2 −

(
M−1K

)
ij
w11,jxẋ −

(
M−1K

)
ij
w02,jẋ

2

−
((

M−1K
)

ij
w30,j +

(
M−1

)
ij
q1ek,j

w20,k +
(

M−1
)

ij
q30,j

)
x3

−
((

M−1K
)

ij
w21,j +

(
M−1

)
ij
q1ek,j

w11,k

)
x2ẋ

−
((

M−1K
)

ij
w12,j +

(
M−1

)
ij
q1ek,j

w02,k

)
xẋ2 −

(
M−1K

)
ij
w03,jẋ

3 +(|(x, ẋ)|4).
(A.11)

Comparing the coefficients of each monomial term in (A.10) and (A.11) leads to a system of algebraic equations for the second

order coefficients

2𝜔4𝛿ijw02,i +
((

M−1K
)

ij
− 2𝜔2𝛿ij

)
w20,j = −

(
M−1

)
ij
q20,j, (A.12)(

4𝜔2𝛿ij −
(

M−1K
)

ij

)
w11,j = 0, (A.13)

2w20,i +
((

M−1K
)

ij
− 2𝜔2𝛿ij

)
w02,j = 0. (A.14)

From equation (A.13), we conclude that w11,i = 0, leading to the third order coefficient equations

2𝜔4w12,i +
((

M−1K
)

ij
− 3𝜔2𝛿ij

)
w30,j = n1,i, (A.15)

6𝜔4w03,i +
((

M−1K
)

ij
− 7𝜔2𝛿ij

)
w21,j = 0, (A.16)

6w30,i +
((

M−1K
)

ij
− 7𝜔2𝛿ij

)
w12,j = n3,i, (A.17)
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2w21,i +
((

M−1K
)

ij
− 3𝜔2𝛿ij

)
w03,j = 0, (A.18)

where

n1,i = −
(
M−1

)
ij
q30,j + 2p20w20,i −

(
M−1

)
ij
q1ek,j

w20,k − 4𝜔2p20w02,i, (A.19)

n3,i = 4p20w02,i −
(

M−1
)

ij
q1ek,j

w02,k. (A.20)

Equations (A.16) and (A.18) can be solved for w21 and w03 leading to w21 = w03 = 0 Note that the algebraic equations

(A.15)-(A.18), related to the third order LSM coefficients, depend on the second order LSM coefficients. Therefore one has to solve

for the quadratic LSM coefficients first, and substitute the result into the algebraic equations related to the third order. Note that

the coupling between different modes of the system only occurs at third-order. Introducing the matrix notation 𝛀2
p ≔ M−1K

and Q̃1I ≔
[
q1e1

,… ,q1en

]
, yields the result stated in Lemma A.1. □

B. Derivation of the LSM coefficients when the non-modeling modes are available

Lemma B.1. Under assumption (6), the unknown coefficients in (15) satisfy

w̃20 = −(𝛀2D4)−1D2s20, (B.1)

w̃11 = 0, (B.2)

w̃02 = 2(𝛀2D4)−1s20, (B.3)

w̃30 = (D1D9)−1D7n1 + 1

6

[
I − (D1D9)−1D7D3

]
n2, (B.4)

w̃21 = 0, (B.5)

w̃12 = −(D1D9)−1
[
6n1 − D3n2

]
, (B.6)

w̃03 = 0, (B.7)

where

n1 ≔ −s30 + (2r20I − S̃1I)w̃20 − 4𝜔2r20w̃02, (B.8)

n2 ≔ (4r20I − S̃1I)w̃02, (B.9)

Dk ≔ (𝛀2 − k𝜔2I), k ∈ ℤ. (B.10)

Proof. This result directly follows from transforming equations (A.12-A.18) in modal coordinates. This step makes M−1K diag-

onal and decouples the equations from each other for every mode:

2𝜔4w̃02,i +
(
𝜔2

i
− 2𝜔2

)
w̃20,i = −s20,i, (B.11)(

4𝜔2 − 𝜔2
i

)
w̃11,i = 0, (B.12)

2w̃20,i +
(
𝜔2

i
− 2𝜔2

)
w̃02,i = 0, (B.13)

2𝜔4w̃12,i +
(
𝜔2

i
− 3𝜔2

)
w̃30,i = n1,i, (B.14)

6𝜔4w̃03,i +
(
𝜔2

i
− 7𝜔2

)
w̃21,i = 0, (B.15)

6w̃30,i +
(
𝜔2

i
− 7𝜔2

)
w̃12,i = n3,i, (B.16)

2w̃21,i +
(
𝜔2

i
− 3𝜔2

)
w̃03,i = 0, (B.17)
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where

n1,i = −s30,i + 2r20w̃20,i − s11,ijw̃20,j − 4𝜔2r20w̃02,i, (B.18)

n3,i = 4r20w̃02,i − s11,ijw̃02,j. (B.19)

The solution of this system gives the statement of Lemma B.1. □

The LSM theory does not guarantee the existence of a reduced-order model in case of resonance. The LSM coefficients will

blow up exactly when the matrices 𝛀2D4 and D1D9 become singular. These matrices are diagonal, where their ith diagonal

element can be written as(
Ω2D4

)
ii
= 𝜔2

i

(
𝜔i − 2𝜔

) (
𝜔i + 2𝜔

)
, (B.20)

(
D1D9

)
ii
=

(
𝜔i − 𝜔

) (
𝜔i + 𝜔

) (
𝜔i − 3𝜔

) (
𝜔i + 3𝜔

)
. (B.21)

As can be seen, 1:1, 1:2 and 1:3 lower-order resonances are explicitly causing a blow-up in the expressions. Higher-order res-

onances will have the same effect in higher-order approximation. Even though the lower-order approximations are formally

computable, there seems to be no awareness of this in existing literature.

C. Proof of Theorem 2.4

For convenience, we restate our two-dimensional first-order system (20)

ẋ =y,

ẏ = − 𝜔2x − 𝛼x2 − 𝛽x3 − 𝛾xy2.
(C.1)

Assuming that system (C.1) is Hamiltonian, then it must be of the general form[
ẋ

ẏ

]
= a(x, y)JDH(x, y) =

[
a(x, y)𝜕yH − a(x, y)𝜕xH

]
. (C.2)

For simplicity we assume that the scalar function a(x, y) only depends on x. Equating equations (C.1) and (C.2), we obtain

𝜕yH(x, y) = y

a(x)
, (C.3)

𝜕xH(x, y) = 𝜔2x + 𝛼x2 + 𝛽x3 + 𝛾xy2

a(x)
. (C.4)

Integrating equation (C.3) over y yields

H(x, y) = y2

2a(x)
+ F(x), (C.5)

where F(x) is a scalar function, arising from the integration, that can solely depend on x. Differentiating equation (C.5) with

respect to x and equating the result with equation (C.4), gives

− y2

2a(x)2
𝜕xa(x) + 𝜕xF(x) = 𝛾xy2

a(x)
+ 𝜔2x + 𝛼x2 + 𝛽x3

a(x)
. (C.6)

We observe that 𝜕xF(x) only depends on x, therefore we must have that

𝜕xa(x) = −2𝛾xa(x), 𝜕xF(x) = 𝜔2x + 𝛼x2 + 𝛽x3

a(x)
, (C.7)

having the solutions

a(x) = e−𝛾x2
, (C.8)

F(x) = 𝜔2

2𝛾
e𝛾x2 + ∫ e𝛾x2 (

𝛼x2 + 𝛽x3
)

dx. (C.9)

Substituting the solutions for a(x) and F(x) into equation (C.5), proves Theorem 2.4. □

D. Proof of Theorem 2.5
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For algebraic equivalence of the MDs and the LSM reduced models, we must have that w̃02 = 0 because the MDs reduction

misses the ẋ2 term. This condition leads to the equation

(𝛀2D4)−1s20 = 0, (D.1)

which is satisfied only in the case of s20 = 0, which in turn leads to flat manifolds from both the MDs and the LSM reductions.

The main statement of the theorem follows from the following limits for s20 ≠ 0, written in coordinates:

lim
Ωi→∞

𝛼i

Θi

= lim
Ωi→∞

Ω2
i
− 2𝜔2

Ω2
i
− 4𝜔2

= 1,

lim
Ωi→∞

𝛾i

𝛼i

= 0.

(D.2)

Observe that in the resonant limit cases, the error of the MDs reduction is unbounded

lim
Ωi→2𝜔

𝛼i

Θi

= ∞, (D.3)

as the MDs reduction method does not take the possible resonances into consideration. This concludes the proof of Theorem 2.5.

□

E. Construction of the time-periodic SSM reduced model in the general case

E.1. Setup

We now consider (n + 𝜈)-degree-of-freedom, periodically forced, damped nonlinear mechanical systems with a linearly

independent partition of the variables so that x ∈ ℝ𝜈 (modeling variables) and y ∈ ℝn (non-modeling variables):

M1ẍ + C1ẋ + K1x + P(x, ẋ, y, ẏ) = 𝜀F1 sin(𝜙), (E.1)

M2ÿ + C2ẏ + K2y + Q(x, ẋ, y, ẏ) = 𝜀F2 sin(𝜙), (E.2)

0 ≤ 𝜀 ≪ 1, 𝜙 = Ωt,

where the mono-harmonic external forcing does not depend on positions and velocities.

We assume Rayleigh-damping, which implies that the modal matrices simultaneously diagonalize the mass, the stiffness

and the damping matrices. We denote the solutions of the eigenproblem det(𝜆2M1 + 𝜆C1 + K1) = 0 by 𝜆x
i
, i ∈ 1,… , 2𝜈. The

eigenvalues are ordered by their real parts so that Re𝜆x
2𝜈

≤ · · · ≤ Re𝜆x
1
< 0. The solutions of the eigenproblem det(𝜆2M2 +

𝜆C2 + K2) = 0 are given by 𝜆y

i
, i ∈ 1,… , 2n. Again, we order the eigenvalues by their real parts so that Re𝜆y

2n
≤ · · · ≤ Re𝜆y

1
< 0.

The modeling subspace is declared to be a slow spectral subspace, i.e., the subspace spanned by the 𝜈 slowest decaying modes.

This, in turn, implies that Re𝜆y

2n
≤ · · · ≤ Re𝜆y

1
< Re𝜆x

2𝜈 ≤ · · · ≤ Re𝜆x
1
< 0.

E.2. Existence of the reduced model

In the current setting, we seek a time-periodic slow SSM. We assume that the low-order non-resonance conditions

Re𝜆y

j
≠

𝜈∑
i=1

𝜈iRe𝜆x
i
, (E.3)

hold for every j and nonnegative set of integers 𝜈i such that 2 ≤ ∑𝜈
k=1 𝜈k ≤ Σ. Then a 2𝜈-dimensional, analytic, invariant and

attracting time-periodic SSM exists that is unique in the differentiability class CΣ+1, and higher, up to analytic.

E.3. Construction of the time-periodic SSM reduced model

We express the damped mechanical system (E.1)-(E.2) in modal coordinates by substituting x = 𝚽1𝝃, y = 𝚽2𝜼. Subse-

quently, we project the equations of motion onto the modal directions by left multiplying equations (E.1) and (E.2) with the

transposed modal matrices 𝚽⊤
1

and 𝚽⊤
2

:

𝝃̈ + Ĉ1𝝃̇ + K̂1𝝃 + R
(
𝝃, 𝝃̇,𝜼, 𝜼̇

)
= 𝜀F̂1 sin(𝜙), (E.4)

𝜼̈ + Ĉ2𝜼̇ + K̂2𝜼 + S
(
𝝃, 𝝃̇,𝜼, 𝜼̇

)
= 𝜀F̂2 sin(𝜙), (E.5)

Using the results from Haller and Ponsioen [2], we make use the fact that the SSM perturbs smoothly from the modeling subspace
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of the linear unperturbed part of system (E.4)-(E.5) under the addition of (𝜀) terms in system (E.4)-(E.5). We restrict ourselves

to the setting of Breunung and Haller [10] and expand each non-modeling variables 𝜂i in 𝜀. Subsequently, for different orders of

𝜀, every non-modeling variable 𝜂i is expanded in 𝝃 and 𝝃̇. After a truncating at (|(𝝃, 𝝃̇)|3, 𝜀|(𝝃, 𝝃̇)|, 𝜀2), which is justified if 𝝃

and 𝝃̇ are of (𝜀
1
4 ), we obtain

𝜂i =

⟨[
𝝃

𝝃̇

]
,

[
W11,i W12,i

W⊤
12,i W22,i

][
𝝃

𝝃̇

]⟩
+ 𝜀Wi(𝜙) +(|(𝝃, 𝝃̇)|3, 𝜀|(𝝃, 𝝃̇)|, 𝜀2). (E.6)

Here, W11,i,W12,i and W22,i are m × m matrices. We specifically aim for a third-order reduced model, which implies that the

manifold only has to be approximated up to second order. We uniquely define the quadratic form in equation (E.6), by requiring

that W11,i = W⊤
11,i and W22,i = W⊤

22,i.

Lemma E.1. The coefficient matrices W11,i, W12,i and W22,i of the second-order SSM approximation (E.6) solve the linear matrix

equations

S11,i =Sym
[(

4𝜁i𝜔iK̂1 − 2K̂1Ĉ1

)
W⊤

12,i

+
(

2K̂1 −𝜔2
i

I
)

W11,i − 2K̂1W22,iK̂1

]
,

(E.7)

S12,i = −
(

K̂1Ĉ1 − 2𝜁i𝜔iK̂1

)
W22,i − (𝜔2

i
I − K̂1)W12,i + 2K̂1W⊤

12,i − 2K̂1W22,iĈ1 − W12,i

(
Ĉ

2

1
− K̂1

)
+W11,iĈ1 + 2𝜁i𝜔iW12,iĈ1 − 2𝜁i𝜔iW11,i,

(E.8)

S22,i =Sym
[(

2Ĉ1 − 4𝜁i𝜔iI
)

W12,i +
(

4𝜁i𝜔iĈ1 −𝜔2
i

I − 2
(

Ĉ
2

1 − K̂1

))
W22,i

+ 4Ĉ1W⊤
12,i − 2Ĉ1W22,iĈ1 − 2W11,i

]
.

(E.9)

where S11,i, S12,i and S22,i are the m × m matrices filled with the coefficients of the 𝝃, 𝝃̇ dependent terms from the quadratic part of

Si(𝝃, 𝝃̇,𝜼, 𝜼̇).

Lemma E.2. The time-dependent coefficients Wi(𝜙), of the second order SSM approximation (E.6), are the periodic solutions of the

second-order non-homogeneous ordinary differential equations

Ω2W′′
i
+ 2𝜁i𝜔iΩW′

i
+ 𝜔2

i
Wi = F̂2,i sin(𝜙), (E.10)

and can be expressed as

Wi(𝜙) =
𝜔2

i
−Ω2

(𝜔2
i
−Ω2)2 + (2𝜁i𝜔iΩ)2

F̂2,i sin(𝜙)

+

(
(𝜔2

i
− Ω2)2

2𝜁i𝜔iΩ((𝜔2
i
−Ω2)2 + (2𝜁i𝜔iΩ)2)

− 1

2𝜁i𝜔iΩ

)
F̂2,i cos(𝜙).

Proof. We prove Lemmas E.1 and E.2 simultaneously using a direct invariance computation. Differentiating equation (E.6) with

respect to time twice yields

𝜂̈i = 2

(⟨[
𝝃̈
...

𝝃

]
,

[
W11,i W12,i

W⊤
12,i W22,i

][
𝝃

𝝃̇

]⟩
+

⟨[
𝝃̇

𝝃̈

]
,

[
W11,i W12,i

W⊤
12,i W22,i

][
𝝃̇

𝝃̈

]⟩)
(E.12)

+ 𝜀𝜕2
𝜙

Wi(𝜙)Ω
2 +(|(𝝃, 𝝃̇)|3, 𝜀|(𝝃, 𝝃̇)|, 𝜀2). (E.13)

We express the higher derivatives 𝝃̈ and
...

𝝃 using equation (E.4) and its derivative with respect to time

𝝃̈ = −Ĉ1𝝃̇ − K̂1𝝃 + 𝜀F̂1 sin(𝜙) +(|(𝝃, 𝝃̇)|2), (E.14)

...

𝝃 =
(

Ĉ
2

1 − K̂1

)
𝝃̇ + Ĉ1K̂1𝝃 + 𝜀ΩF̂1 cos(𝜙) +(|(𝝃, 𝝃̇)|2). (E.15)

Substituting expressions (E.14) and (E.15) into equation (E.13) gives
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𝜂̈i = 2

⟨⎡⎢⎢⎣
−Ĉ1𝝃̇ − K̂1𝝃(

Ĉ
2

1 − K̂1

)
𝝃̇ + Ĉ1K̂1𝝃

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
W11,i W12,i

W⊤
12,i W22,i

⎤⎥⎥⎦
⎡⎢⎢⎣
𝝃

𝝃̇

⎤⎥⎥⎦
⟩

+2

⟨⎡⎢⎢⎣
𝝃̇

−Ĉ1𝝃̇ − K̂1𝝃

⎤⎥⎥⎦ ,
[

W11,i W12,i

W⊤
12,i W22,i

][
𝝃̇

−Ĉ1𝝃̇ − K̂1𝝃

]⟩

+𝜀𝜕2
𝜙Wi(𝜙)Ω2 +(|(𝝃, 𝝃̇)|3, 𝜀|(𝝃, 𝝃̇)|, 𝜀2).

(E.16)

Equation (E.16) is still quadratic in 𝝃 and 𝝃̇, and can be rearranged as

𝜂̈i =

⟨[
𝝃

𝝃̇

]
,

[
B11,i B12,i

B21,i B22,i

]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

B,i

[
𝝃

𝝃̇

]⟩
+ 𝜀𝜕2

𝜙Wi(𝜙)Ω
2 +(|(𝝃, 𝝃̇)|3, 𝜀|(𝝃, 𝝃̇)|, 𝜀2), (E.17)

where the Bkl,i matrices are equal to

B11,i = 2K̂1Ĉ1W⊤
12,i − 2K̂1W11,i + 2K̂1W22,iK̂1, (E.18)

B12,i = 2K̂1Ĉ1W22,i − 2K̂1W12,i − 2K̂1W⊤
12,i, (E.19)

B21,i = 2
(

Ĉ
2

1
− K̂1

)
W⊤

12,i − 2Ĉ1W11,i + 4Ĉ1W22,iK̂1 − 2W12,iK̂1, (E.20)

B22,i = 2
(

Ĉ
2

1
− K̂1

)
W22,i − 2Ĉ1W12,i + 2Ĉ1W22,iĈ1 − 4Ĉ1W⊤

12,i + 2W11,i. (E.21)

The ith element of equation (E.5) can be written as

𝜂̈i + 2𝜁i𝜔i𝜂̇i + 𝜔2
i
𝜂i + Si(𝝃, 𝝃̇,𝜼, 𝜼̇) = 𝜀F̂2,i sin(𝜙), (E.22)

which, truncated at third-order in 𝝃 and 𝝃̇ and taking into consideration that 𝜂i = (|(𝝃, 𝝃̇)|2), leads to

𝜂̈i + 2𝜁i𝜔i𝜂̇i + 𝜔2
i
𝜂i +

⟨[
𝝃

𝝃̇

]
,

[
S11,i S12,i

S⊤
12,i S22,i

][
𝝃

𝝃̇

]⟩
+(|(𝝃, 𝝃̇)|3) = 𝜀F̂2,i sin(𝜙), (E.23)

where S11,i, S12,i and S22,i are 𝜈 × 𝜈 matrices filled with coefficients of the 𝝃, 𝝃̇ dependent terms from the quadratic part of

Si(𝝃, 𝝃̇,𝜼, 𝜼̇). Substituting 𝜂i from equation (E.6) and its time derivative 𝜂̇i into equation (E.23), leads, after some rearrangement,

to the quadratic approximation:

𝜂̈i =

⟨[
𝝃

𝝃̇

]
,Ci

[
𝝃

𝝃̇

]⟩
+ 𝜀

(
F̂2,i sin𝜙 − 2𝜁i𝜔i𝜕𝜙WiΩ −𝜔2

i
Wi

)
+(|(𝝃, 𝝃̇)|3, 𝜀|(𝝃, 𝝃̇)|, 𝜀2), (E.24)

where Ci denotes the hypermatrix

Ci =

[
C11,i C12,i

C21,i C22,i

]
, (E.25)

C11,i = −𝜔2
i
W11,i + 4𝜁i𝜔iK̂1W⊤

12,i − S11,i, (E.26)

C12,i = −𝜔2
i
W12,i − S12,i + 4𝜁i𝜔iK̂1W22,i, (E.27)

C21,i = −𝜔2
i
W⊤

12,i − S⊤
12,i − 4𝜁i𝜔iW11,i + 4𝜁i𝜔iĈ1W⊤

12,i, (E.28)

C22,i = −𝜔2
i
W22,i − S22,i − 4𝜁i𝜔iW12,i + 4𝜁i𝜔iĈ1W22,i. (E.29)

At leading order, we are now able to equate the quadratic forms in equations (E.17) and (E.24), which implies that Bi and Ci

must have equal symmetric parts, i.e.,

Sym Bi = Sym Ci, (E.30)
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which returns the linear system stated in Lemma E.1. Equating the (𝜀|(𝝃, 𝝃̇)|0) terms will return a non-homogeneous second-

order ordinary differential equation

Ω2W′′
i
+ 2𝜁i𝜔iΩW′

i
+ 𝜔2

i
Wi = F̂2,i sin(𝜙), (E.31)

where we introduced the notation 𝜕𝜙(·) = (·)′. Using the method of undetermined coefficients, we obtain the periodic solution

Wi(𝜙) =
𝜔2

i
−Ω2

(𝜔2
i
−Ω2)2 + (2𝜁i𝜔iΩ)2

F̂2,i sin(𝜙) (E.32)

+

(
(𝜔2

i
− Ω2)2

2𝜁i𝜔iΩ((𝜔2
i
−Ω2)2 + (2𝜁i𝜔iΩ)2)

− 1

2𝜁i𝜔iΩ

)
F̂2,i cos(𝜙),

which proves Lemma E.2. □

F. Proof of Theorem 3.1

A general solution of equations (E.7)–(E.9), without specifying the dimension 𝜈, cannot be obtained. However, the solution

for the practically most relevant case of reducing the system to a single degree of freedom (𝜈 = 1) can be written in closed form,

⎡⎢⎢⎢⎣
w11,i

w12,i

w22,i

⎤⎥⎥⎥⎦ = L−1
i

⎡⎢⎢⎢⎣
s2000,i

s1100,i

s0200,i

⎤⎥⎥⎥⎦ , Li =
⎡⎢⎢⎢⎣
l11 l12 l13

l21 l22 l23

l31 l32 l33

⎤⎥⎥⎥⎦ ,
l11 = 2𝜔2 − 𝜔2

i
,

l12 = 4𝜔2(𝜁i𝜔i − 𝜁𝜔),

l13 = −2𝜔4,

l21 = 2(𝜁𝜔 − 𝜁i𝜔i),

l22 = 4𝜁i𝜔i𝜁𝜔 − 4𝜔2(𝜁2 − 1) −𝜔2
i
,

l23 = 2𝜁i𝜔i𝜔
2 − 6𝜁𝜔3,

l31 = −2,

l32 = 4(3𝜁𝜔 − 𝜁i𝜔i),

l33 = 2𝜔2 − 𝜔2
i
+ 8𝜁i𝜔i𝜁𝜔 − 16(𝜁𝜔)2.

(F.1)

The determinant of Li can be expressed as

D ≔ −
(

4𝜁2𝜔2 − 4𝜁𝜁i𝜔𝜔i +𝜔2
i

)(
8𝜔2𝜔2

i

(
2𝜁2 + 2𝜁2

i
− 1

)
− 32𝜁𝜁i𝜔

3𝜔i − 8𝜁𝜁i𝜔𝜔
3
i
+ 16𝜔4 + 𝜔4

i

)
. (F.2)

The construction of the SSM breaks down exactly when Li becomes singular. This implies that the determinant D is zero, which

will be the case for a 1:2 resonance (𝜁i = 𝜁 , 𝜔i = 2𝜔). Note that a 1:1 resonance is allowed by the SSM theory.

The modal non-modeling coordinate 𝜂i (E.6), for 𝜈 = 1, can be written as

𝜂i = wi(x, ẋ, 𝜙) =

⟨[
x

ẋ

]
,

[
w11,i w12,i

w12,i w22,i

][
x

ẋ

]⟩
+ 𝜀Wi(𝜙) +(|(x, ẋ)|3, 𝜀|(x, ẋ)|, 𝜀2) (F.3)

Differentiating equation (F.3) with respect to time and plugging in 𝝃̈ = ẍ from equation (E.14) gives

𝜂̇i = w̃i(x, ẋ, 𝜙) =

⟨[
x

ẋ

]
,

[
w̃11,i w̃12,i

w̃12,i w̃22,i

][
x

ẋ

]⟩
+ 𝜀𝜕𝜙Wi(𝜙)Ω +(|(x, ẋ)|3, 𝜀|(x, ẋ)|, 𝜀2), (F.4)

with

w̃11,i = −2𝜔2w12,i,

w̃12,i = w11,i − 2𝜁𝜔w12,i − 𝜔2w22,i, (F.5)

w̃22,i = 2w12,i − 4𝜁𝜔w22,i.
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We rewrite equations (F.3) and (F.4) using the Kronecker product notation

𝜂i =
⟨[

w11,iw12,iw12,iw22,i
]⊤
, z⊗2

⟩
+ 𝜀Wi(𝜙) +(|(x, ẋ)|3, 𝜀|(x, ẋ)|, 𝜀2), (F.6)

𝜂̇i =
⟨[

w̃11,iw̃12,iw̃12,iw̃22,i
]⊤
, z⊗2

⟩
+ 𝜀𝜕𝜙Wi(𝜙)Ω +(|(x, ẋ)|3, 𝜀|(x, ẋ)|, 𝜀2), (F.7)

where

z = [x, ẋ]⊤ ∈ ℝ2, z⊗2 =
[
x2, xẋ, ẋx, ẋ2

]⊤ ∈ ℝ4. (F.8)

The modal non-modeling positions and velocities can be written in vector form as

𝜼 =
[
w11 w12 w12 w22

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

W

z⊗2 + 𝜀W(𝜙) +(|(x, ẋ)|3, 𝜀|(x, ẋ)|, 𝜀2), (F.9)

𝜼̇ =
[
w̃11 w̃12 w̃12 w̃22

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

W̃

z⊗2 + 𝜀𝜕𝜙W(𝜙)Ω +(|(x, ẋ)|3, 𝜀|(x, ẋ)|, 𝜀2). (F.10)

The reduced model is obtained by substituting y = 𝚽2𝜼 and ẏ = 𝚽2𝜼̇ into equation (30)

mẍ + cẋ + kx + P(x, ẋ,𝚽2𝜼,𝚽2𝜼̇) +(|(x, ẋ)|4) = 𝜀F1 sin(𝜙) (F.11)

Note that the y and ẏ dependency in the cubic part of P leads to at least fourth-order terms in (x, ẋ), therefore they are omitted

from the third-order reduced model. The polynomial function P, can explicitly be written as

P = p2000x2 + p1100xẋ + p0200ẋ2 +
⟨(

𝚽2W
)⊤ (

xp10I0 + ẋp01I0

)
, z⊗2

⟩
+

⟨(
𝚽2W̃

)⊤ (
xp100I + ẋp010I

)
, z⊗2

⟩
+ p3000x3 + p2100x2ẋ + p1200xẋ2 + p0300ẋ3 +(|(x, ẋ)|4, 𝜀|(x, ẋ)|, 𝜀2).

(F.12)

Substituting (F.12) into equation (F.11) yields the SSM-reduced model stated in Theorem 3.1. □

G. Proof of Theorem 4.1

We rescale equation (40) for small vibrations,

ẍ +𝜔2
0

x + 𝜖p20x2 + 𝜖2
(
(p30 + p̂30)x3 + ŝ12xẋ2

)
= 0. (G.1)

Theorem 2.4 guarantees the existence of periodic orbits in the third order reduced dynamics around the fixed point. We extract

the backbone curve from the periodic orbits by continuing these orbits from the linear equation as an unperturbed limit of

equation (G.1) using the Lindstedt perturbation method [22].

We denote the, 𝜖 dependent, angular frequency with

𝜔(𝜖) = ω0 + 𝜖𝜔1 + 𝜖2ω2 +(𝜖3), (G.2)

where 𝜔0 is the linear angular frequency. Introducing a rescaling in time as 𝜏 = 𝜔(𝜖)t, we obtain

𝜔2(𝜖)x′′ + 𝜔2
0
x + 𝜖p20x2 + 𝜖2

(
(p30 + p̂30)x3 + ŝ12𝜔(𝜖)xx′2

)
= 0, (G.3)

where the prime denotes differentiation with respect to the rescaled time. We expand x(𝜏) in 𝜖,

x(𝜏) = 𝜙0(𝜏) + 𝜖𝜙1(𝜏) + 𝜖2𝜙2(𝜏) +(𝜖3), (G.4)

and substitute the result into equation (G.3), after which we set 𝜙(0) = r, 𝜙′(0) = 0 to define an initial value problem. Collecting

terms of (1), satisfying the initial conditions, leads to

𝜙0(𝜏) = r cos(𝜏). (G.5)

Collecting terms of (𝜖), and substituting the solution for 𝜙0(𝜏), leads to the following equation

𝜔0
2𝜙1′′(𝜏) + 𝜔0

2𝜙1(𝜏) =
p20r2

2
(cos(2𝜏) + 1) − 2r𝜔0𝜔1 cos(𝜏). (G.6)

We set𝜔1 in equation (G.6) equal to 0 in order to avoid having an external resonance, which would lead to an aperiodic solution.

This results in the following solution for 𝜙1(𝜏)

𝜙1(𝜏) = −p20r2

2𝜔0
2
+ p20r2 cos(𝜏)

3𝜔0
2

+ p20r2 cos(2𝜏)
6𝜔0

2
. (G.7)
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Finally, collecting terms of (𝜖2), we obtain the resulting equation for 𝜙2(𝜏), where we immediately observe that in order to

avoid having an external resonance, we must have that

𝜔2 =
9(p30 + p̂30)𝜔2

0
− 10p2

20
+ 3̂s12𝜔

4
0

24𝜔3
0

r2, (G.8)

which completes the second order approximation of the backbone curve and proves Theorem 4.1. □
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