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Abstract

We prove the emergence of asymptotic spatial patterns in magnetic dynamos generated by unsteady fluid flows. The patterns
emerge because solutions of the dynamo equation converge exponentially to a time-dependent inertial manifold. This inertial
manifold exists for general time-aperiodic velocity fields under a spectral gap condition on the associated Stokes operator. For
time-periodic velocity fields, we show that the inertial manifold is spanned by Floquet eigenmodes that are analogous to the
strange eigenmodexbserved in the mixing of diffusive tracers. This result gives an affirmative answer to the long-standing
guestion of completeness of Floquet solutions in time-periodic dynamo problems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction
1.1. The dynamo equation

The magnetic fields of cosmic bodies, such as the Sun and the Earth, are generated and maintained against
dissipation by dynamo action in the electrically conducting fluid inside these bodies. The governing equation for
such magnetic fields is the dynamo equation

B, + (V- V)B=nV°B+ (B-V)v, V-B=0, B(x, 0) = Bg(X), (1)

whereB(x, 1) is the magnetic fields the magnetic diffusivity, ane(x, ) the velocity field of the fluid that satisfies
the incompressibility condition

V-v=0 (2
on a three-dimensional spatial domain(see, e.g[2, Chapter 1J.

* Corresponding author. Tek:1-617-4523064; fax4-1-617-2588742.
E-mail addressghaller@mit.edu (G. Haller).

0167-2789/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2003.03.002



298 W. Liu, G. Haller/ Physica D 194 (2004) 297-319

The growth or decay of the fieH is usually quantified by the exponent

y(n) = suplim sup 21 In EQ®),

BO 11— 00 t

with the magnetic energ¥(r) defined as
E(t) = %/ IB|?dV.
Q

The velocity fieldv is akinematic dynaméor, simply, adynamg if y(n) > 0 for somen > 0. In other wordsy is

a dynamo if it generates exponentially growing magnetic energy for a nonzero value of the magnetic diffusivity. If
y(n) remains positive and bounded away from zerg as 0, then the dynamo is calldest, otherwise it is called
slow(se€[25] or [2]).

1.2. Eigenmodes in the dynamo equation

Special solutions t¢1) are often sought in the form

B(x, 1) = e e, 1), (3)
with the expectation that a general solution can be represented as
o
BX.0) =) cx € e (X, 1). 4)
k=1

If such an infinite expansion exists, then estimating the growth rate of the magnetic field simplifies to studying the
exponents.y.

The above approach has been widely employed in experimental and numerical dynamo studies. For instance
Galilitis et al.[6] assume a solution

B(1) = ay €M sin(2xf1r + 1) + ap €2 sin (2 far + ¢2)

for the case of a helical flow generated by a propeller in a closed volume of molten sodium. Peffl@Bgpalstulate
the infinite expansiorf4), and estimate the leading eigenvaluefrom their experiments. Dudley and Janig}
show that a number of stationary velocity models lead to positivexponents. For a time-periodic version of
the classic Ponomarenko dynamo ($2@]), Normand[16] assume a solution of the for8) and determine.
numerically.

In earlier work, Otan[17] observed avild eigenmodéa solution(3) with a spatially complicated(x, 7)) for a
dynamo with the stretch-fold-shear (SFS) mechanism. Later, Ki@Fased the fornf4) to prove that a kinematic
dynamo cannot exist for a purely poloidal magnetic field. These and additional uses of the eigenmode ansatz are
surveyed by Childress and Gilbé?{.

For a steady velocity field(x) and forp > 0, the ansat#4) is justifiable: the spectrum of the magnetic field
consists of a countable number of eigenvaliigseach of finite multiplicity. The corresponding eigenfunctions
e, (x) are known to be complete ib?.

Most of the studies cited above, however, are concerned with dynamo action generated by time-periodic velocity
fields. For such fields, the existencesoimeesigenmodes of the forifB) follows from the results in Yudovicf24],
but the completeness of those eigenmodes has been an open question.

Without a completeness result on the eigenmodes, all prior work that assumes the ultimate prevalence of a
single growing eigenmode is on loose mathematical ground. This is because in the absence of completeness, on
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cannot view a general solution as a finite linear combination of eigenmodes plus a small error term; that error
term may very well be large, invalidating any conclusion obtained from the eigenmodes. This lack of completeness
for time-periodic flows, Childress and Gilbg®] observe, has also hindered the study of fast dynamo action with
arbitrary time dependence.

1.3. Results

This paper fills the above theoretical gap by proving the completeness of eigenmodes of th@)féom
time-periodic velocity fields. We obtain this completeness result under conditions on the spectrum of a Stokes
operator associated with the dynamo equation. These conditions hold for two- and three-dimensional geometries,
such as rectangles and cubes, but typically place bounds on the magnitude of the veloaitgriddhe magnetic
diffusivity 7 is fixed.

More specifically, we first prove the existence of an inertial manifold¥pm the case whewn(x, ) is a bounded
velocity field witharbitrary time dependencé&his implies that solutions of the dynamo equation converge to those
of a time-dependent linear system of ordinary differential equations (ODES). A set of fundamental solutions to this
ODE then serves as an asymptotically emerging set of aperiodic eigenmodes for the dynamo equation. Out of these
aperiodic eigenmodes, the fastest growing one will dominate for fast dynamos.

If v(x, r) is continuous and periodic in time, then so is the ODE on the inertial manifold. As a result, for arbitrary
smalle > 0, classic finite-dimensional Floquet theory guarantees an asymptotic expansion

N
B, = Y et € [b0x, 1) + tb(x, 1) + - + PP x, 0] + Rx. 1), RO 2 < e expl-vr],
k=1

Whereb,{(x, 1) are functions that arg-periodic in time and only depend on the velocity figld, 7) and the domain
£2. The constants; depend on the initial conditioBg(x); the indexi(k) > 0 is an integer-valued function @f
the integerN > 1 and the constant > 0 both depend on. It follows that any fast dynamo action is necessarily
confined to the inertial manifold.

If the Floquet exponents of the ODE on the inertial manifold are all simple,/{tagra= O for all k. In that case,
the eigenmode with the largest prevails asymptotically. We show that such an eigenmodes generates the Floquet
solution

Boo(X, 1) = €*HP egy(x, 1), (5)

where the complex functioey(x, ) is T-periodic in time, and the real constaatand g satisfy

’ B e — )

o = ~Veoll? + Re(eo. (& - V)V) g a||Reep||? + nl|ReVep||? — (Reen, (Reep - V)v)
lleoll (Reep, Im ep)

with the star referring to complex conjugation, the overbar denoting averaging over one time-peridd,-Jand
denotingL? inner product (for the precise definition, s@). As formula(5) shows,Bs (X, 7) is time-periodic if
2r7/p andT are rationally dependent, and is quasiperiodic otherwise.

These results establish a close relationship betweestttiege eigenmodeaxbserved by Pierrehumbéit9] for
the time-periodic advection—diffusion equation, and the wild eigenmodes described bji@tamd Childress and
Gilbert[2] for the dynamo equation. In particular, both types of complex recurrent patterns arise from convergence
to Floquet eigenmodes on an inertial manifold (&#]).
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2. Notation and definitions

In this section we collect the main ingredients we need to state our main result.

2.1. Boundary conditions and function spaces

We assume the spatially periodic boundary conditions
VX+ L, =v(X1), B(x+ L, =B(X,1 (6)

for Eq. (1) HereL = (IL1, mLy, nL3) is an arbitrary vector with integeks, m, n) and real numbers;. We shall
use the notatio®2 = [0, L1] x [0, L2] x [0, L3] c R for the basic three-dimensional cell over whicandB are
defined. The measure (area or volumeydis given by

Kk = meg) =/ dv.
2

Appended with the boundary conditions, the dynaqaation (1)assumes the form
B, + (V- V)B=nV2B+ (B-V)v, V-B=0, B(x+L,n=B(X,1), B(x,0) = Bo(x), (7)

wherev is a spatiallyl -periodic incompressible velocity field.
Direct integration of(7) shows thai(d/dr) [, BdV = 0, i.e., the spatial mean of the initial conditi@y(x) is
preserved in time. As is customary in the case of periodic boundary conditiofig]jcfve shall assume

<Bo>=3/QBdV=o 8)

K

throughout most of this paper. The case of nonZ8) is discussed iBection 3.5

In order to define an appropriate phase space for the evolatjoation (7)) we first recall the notatiol” (§2)
for the Sobolev space of scalar-valued square-integrable functions thatadopitare-integrable distributional
derivatives on2 (see, e.g[1]). To accommodate the spatially periodic boundary condit{6hswve also recall the
notion of the spacéfy(2), which is composed of functions that are trijlyperiodic in the spatial variabbe and
are elements off” (U) for any open bounded sét C £2. By definition, we haveLger(Q) = ngr(sz).

We consider the evolutioequation (7)defined for vector-valued functioiswhose coordinate components are
all in H&er(Q), and whose divergence and mean vanisiiorEpecifically, in dealing witl{7), we shall use the
function spaces

V(2) = {B € Hyel($2) X Hyel($2) x Hye(2)|V -B =0, /Q BdV = 0} ,

H(£2) = the closure oV (£2) in Lie/(82) x L3g(£2) x Lie(£2).
and the inner product

(B1,B2) = /QBl -BadV 9)
onH(£2). For notational simplicity, we also introduce

L(£2) = Lig(£2) X Lie($2) x Lie/(£2).
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As discussed by Temaf@2], the orthogonal complement bff(£2) in L (§£2) can be written as

HL(2) = {Volp € CL(2, R)}, (10)

where{ ] refers to the closure df} in L(£2).
2.2. The Stokes operator

In our analysis, it will be convenient to eliminate the second equatidh)iby projecting the first equation in
(1) onto the space of divergence-frBdields. Below we survey the properties of the corresponding projected
operator.

Let P : L(£2) — H(£2) denote the orthogonal projection fran(2) to H(£2). Then the Stokes operatdris
defined as

A=—PV? (11)
on the domain
D(A) = H(£2) N (HZe(82) X Hpo(2) x H2e((£2))

of the phase spade(£2).

Temam[22] shows thatA is a self-adjoint positive operator with an inverse that is compadi @2) (see also
[21]). As a result,A has an unbounded set of discrete eigenvalues 21 < pu2 < --- < u, < --- with the
corresponding real eigenfunctioegx), ... , €,(X), ... forming an orthonormal basis i (£2).

For later use, we point out that the eigenvalues ahd— V2 coincide on the spadé(s2). To see this, we selectan
eigenvalue. of the A with the corresponding eigenvec®iThen, by the definition oA, there exist§/¢ € H+(£2)
such that-V2e = Ae + V¢. Therefore, for anp € H(£2), we have

(=V?e, b) = (—PV?e+ V¢, b) = (Ae, b) = (re, b),

implying thatx is an eigenvalue of V2. Conversely, if-V2e = re € H(£2), then— PV2e = 1 Pe = Ae, therefore
A is an eigenvalue oA.

3. Main results
3.1. Invariant and inertial manifolds

We now eliminate the second equation fr¢m) by applying the projectiorP to both sides of the first equation
in (7). We obtain the equivalent set of equations

Bi = —nAB — P[(v- V)B] + P[(B - V)V], B(x, 0) = Bo(X) (12)

on the state spade(s2).

We aim to decomposg@ 2) into a finite-dimensional and an infinite-dimensional invariant subsystem, with the
former system describing the evolution of time-dependent eigenmode-type solutions, and with the latter system
admitting exponentially decaying solutions.

Forv = 0, any finite-dimensional eigenspacetdnd its orthogonal complement render the above decomposition
of H(£2). Indeed,

H(£2), = spanfe}}_,, H(£2), = spane;}2,

are invariant subspaces fiag. (12)for vanishingv.
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Forv # 0, the above eigenspaces are no longer invariant. To decompose the dynamo equation in this case, we
seek time-dependent invariant subspaces as perturbations of the slightly smaller eigenspaces

V) =H@ NV, V), =H(®), NV,

with the norm inherited fronV (£2). A perturbative approach is appropriate, because the second and third terms
on the right-hand side dfL2) involve operators whose norm 0A(£2), is much smaller than the norm efpA,
provided that: is selected large enough.

To state our results on the invariant decompositio(lL@), we define the quantities

up= sup [Vv(x, 1], vo= sup |V(x, 1], wo = Vo + ’40/‘11/2-

x,neRxR x,HeN2xR

We assume thatg is bounded.
By a time-dependeritivariant manifold M (¢) for the dynamo equation we mean a one-parameter family of
manifolds{ M () C V(£2)};cr such thaB(z) € M (r) for somer impliesB(z + s) € Mt + s) for all s € R.

Theorem 3.1.

(i) Suppose that for some integer the eigenvalues.y and uyy1 of the Stokes operator A satisfy the gap
condition
2 1 n
+ < —.
VINFL T A UN RN+ WO

Then the dynamo equation admits an N-dimensional linear invariant man¥6{g and a codimension-N
linear invariant manifoldV(z) such that

(13)

M) ® N = V(£2) (24)

for any t. The manifolds\(r) and A(¢) depend continuously on t. Furthermoii v(x, ¢) is periodic or
quasiperiodic in timethen so areM (r) and V(7).
(iiy Assume further that the stronger gap condition
2 n 1 n
< —
SENTL— BN JUNf1 3wo

holds. ThenM(¢) is an inertial manifold: it is an N-dimensional invariant manifold that attracts all solutions
of (12).

(15)

We prove this theorem iAppendices A and B

Theorem 3.knables us to decompose the dynamo equations into a finite-dimensional system with components
in M(#), and an infinite-dimensional system with exponentially decaying componenf&)nBecauseM () is a
linear subspace ar(d2)is a linear equation, solutions owl(¢) satisfy a finite-dimensional linear ODE.

Koksch and SiegmunfiL0-12] show the existence of inertial manifolds for a general class nonautonomous
nonlinear evolution equations by assuming the existence of certain invariant projections for the linear semiflow.
Our proof of Theorem 3.5hows that such invariant projections do exist for the dynamo equation (see the operators
LN () and L (r) defined inAppendices A and B As a result, the inertial manifolds we have constructed will
survive under uniformly bounded nonlinear perturbations§do(12)by the results of Koksch and Siegmufid ].
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3.2. Completeness of Floquet eigenmodes

If the linear ODE governing the dynamics @#1(¢) is continuous and'-periodic int, then its solutions are linear
combinations ofloquet solution®f the form

B(1) = €"[fo(t) + tf1(t) + - - + 'y, (16)
wherel is a honnegative integera complex parameter, afidzr) are continuoug'-periodicH (£2)-valued functions.
The exponent is usually called th&loquet exponertorresponding to theigenmodeéo (1) + 1f1 (1) + - - - + 11, (7).

The integel is the dimension of the Jordan block corresponding to the canonical form of the matrik in the
Floguet decomposition

B(r) = €M I1(1)B(0),

wherelIl (?) is a continuousT -periodic matrix-valued function.
The above imply that an arbitrary solution @f2) attains an asymptotically valid Floquet decomposition while
it converges toM (r). The theorem below states this result in precise terms.

Theorem 3.2. Assume that the velocity fieldx, ¢) is T-periodic and continuous in time. Assume further that for
any positive integeN*, there exists an intege¥ > N* such that the gap conditiof15) is satisfied. Therfor any
¢ > 0,there exist an integeN(¢) and eigenmodes

e, 1) = 006, 1) + 1f} o, ) + - + 1 PEP ¢, k=1,..., NGe)

with Floquet exponents;, such that any solutioB(x, ¢) of Eq. (12)can be written as

N(e)

B(x, ) = ) ek en(x, ) +R(x, 1, (17)
k=1

IR® v < &expl—(0.5nune)+1 — 4t e V2w, (18)

where the coefficients, depend on the initial conditioBg(x).

We prove this theorem iAppendix C

The proofs ofTheorems 3.1 and 3.@re motivated by the work of Chow et 48] on Floquet solutions of
one-dimensional parabolic PDEs. An alternative approach to infinite-dimensional Floquet theory is offered by
Kuchmen{13]. While evolution equations of the ty|f€) are formally covered by the resultd 8], the completeness
of Flogquet solutions in the dynamo equation only follows from those results(for) = 0 (see[14] for details).

3.3. Generic form of Floquet solutions

We now consider the generic case in which the magneticBeéldr) converges to a simple Floquet solution, i.e.,
to one with/ = 0 in (16). From now on, an overbar will refer to time-averaging over the interval'T0i.e., we write

T
a= %/0 a(f) dr.

We have the following result on the relation between Floquet exponents and the corresponding Floquet eigenmodes.

Theorem 3.3. For a generi¢ two-dimensionaltime-periodi¢ incompressible velocity field defined on the spatial
domaing2, the magnetic field8(x, r) converges to a Floquet solution of the form

Boo (X, 1) = €A gy(x, 1), (19)
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whereep(X, 1) and Vep(X, t) are square-integrable complex functions fora# 0, and

o — ~IVeoll? + Re(eo. (& - V)V) e a||Reep||? + nl|ReVep||? — (Reep, (Reep - V)V)

- (20)
lleoll? (Reep, Im eg)

We prove this theorem iAppendix D

Eqg. (19)shows thaB is either time-periodic oguasiperiodic The latter case occurs if Iflg), the imaginary
part of the exponent iiL9), is nonzero and rationally independent af/Z", whereT is the time-period of. If
Im(Ao) and 2r/ T are rationally dependent, th&a, is again time-periodic, but with a period equal to the maximum
of 2/Im(xp) andT. Therefore, 2/Im(ig) > T results in asubharmonid-loquet solution.

3.4. Evaluating the gap conditions

Theorems 3.1 and 3r2ly on spectral gap conditions for the Stokes operatditere we evaluate these conditions
for two specific types of spatial domains.

3.4.1. Example: two-dimensional rectangular domains
Consider the two-dimensional square dom&ir= [0, 27] x [0, 27]. The eigenvectors of the operateivV2 on
L2(£2) have the form

e = (e1, e2) = (p11(IX)p12(MY), P21(IX)P22(MY)),

wheregjj (p) is either sin(p) or cos(p), andl, m are nonnegative integers. The eigenvalue correspondiegito
L2(£2) can be written as

n(l, m) = 2 + m?2.

When we restrict the operaterV? to the function spackl (§2), we have to enforce the divergence-free condition
V - e = 0 on the eigenvectof®?2). This implies the relation

1$11(1X)p12(MY) + m1(IX)p(My) = 0,
which then gives
al+bm=0,

wherea, b = 1,0, 0r—1. Ifa = b = 0, then = m andw(l, m) = [2. Otherwiseu(l, m) = [2+m? = (bm)? = 212,

Since all numbers of the forrit are eigenvalues, the largest spectral gap is this example is at most one. The
largest spectral gap would be strictly smaller than one if there were eigenvalue of thesf8mmitBin every adjacent
eigenvalue pait/?, (I + 1)%). We want to show that one can find arbitrary large such eigenvalue pairs with no other
eigenvalue falling between them. In other words, we want to show that for any iltegfeere exists ah> N such
that/2m ¢ [I, 1 + 1] for all integersn.

Assuming the contrary, we see that there must exist an intégarch that for any integer > 0, there exists
another integem (i) such thaty/2m(i) € [N + i, N + i + 1]. Sincem(i) # m(i — 1) andm(i) > m(i — 1), we
obtainm() > m(@{ — 1)+ 1fori =1, 2,.... We then have

m(@)>m@0)+i fori=12....

Sincev/2m(0) € [N, N + 1] andv/2m(i) € [N + i, N 4 i + 1], we obtain }/2m(0), v2m(i)] C [N, N +i + 1].
Consequentlyy/2m (i) — v/2m(0) < N+i+1— N =i+ 1, implying+/2 < (i + 1)/(m (i) — m(0)) < (i + 1)/i
for anyi. This last inequality, however, fails for large enouglvhich establishes a contradiction.
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We conclude that for any integ@¥, there exists > N such that /it, 51 — /fin =+ ( + 1)2 — V2 =1.Thus
the gap conditior{15) holds for an appropriate choice of> N if

< S 2.
i1 3wo
Sinceu,, — oo asn — oo, this last inequality will hold for large enoughif
wo < %n. (21)

Consequently, for any integ@f > 0 we can find another integer> N, such that the gap conditig@1)is satisfied
for n.

3.4.2. Example: three-dimensional cubic domain
As another example, consider the three-dimensional cubic dafhain0, 2] x [0, 2n] x [0, 27]. The eigen-
vectors of the operater V2 on L2(£2) have the form

e = (e1, 2, e3) = (P11(1X)Pp12(MYP13(ND), P21(IX)P22(MY)P23(N2), P31(IX)P32(MY)P33(N2)), (22)

wheregj (p) is either sin(p) or cos(p), andl, m, n are nonnegative integers. The eigenvalue correspondiag to
onL2(£2) can be written as

o(l,m,n) = 12 + m? + n?. (23)
Enforcing the divergence-free conditidh- e = 0 on the eigenvector®2) gives

1911 P12(MY)P13(N2) + MmP21(1X) P (MY P23(N2) + n31(IX)Pp32(MY)P33(N2) = 0O,
which then yields

al + bm+cn=0, (24)
whereq, b, c = 1, 0 or —1. For instance, if

e1 = sin(Ix) cos(my) sin(nz), e2 = cos(Ix) sin(my) sin(n2), e1 = cos(IxX) cos(my) cos(nz),

then(24)gives! +m —n = 0.
From(23) and (24)ve find that the eigenvalues fV2 on the spackl (2) are equal to eithgr (I, m, n) = 2+ m?
if c=0,o0rto

wld,m,n) =1 +m?+n?=12+m?+ (cn? = 1?4+ m? + (al + bm? = 2° + 2m? + 2ablm_ if ¢ # 0.

Using the above result, we plot the functigt) = 2/(/tn+1 — /i) + 1/ /11 in Fig. 1for integers up to
n = 50. The figure shows thg{(2) < 4, therefore, if the velocity field and diffusivity n satisfy

1
wo < 1—27’],

then the gap conditio(il5) holds for N = 2. As a result, a two-dimensional inertial manifold exists for velocity
fields small enough in norm.

3.5. Maghnetic fields of nonzero mean

For the proofs of our main results, the zero mean cond{@is essential. (A main tool used in our estimates,
the Poincaré inequality, would not be valid otherwise.) In addition, the zero mean condition is preferred for physical
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Fig. 1. The functiorg(n) forn = 1, ..., 50.
reasons in the case of the periodic boundary conditiong2apf. For completeness, however, we now discuss the

implications ofTheorems 3.1 and 3f2r initial conditions of nonzero mean.
If (Bo) # 0, then we let

B =B — (Bo) (25)
and observe thd satisfies
B, + (V- V)B =nV2B+ (B- V)V + ((Bg) - V)V, V-B=0, B(X, t0) = Bo(X) — (Bo) (26)

and that(B) = 0 holds for all times. Thus the evolution Bfcan be understood by adding a source-type term to the
right-hand side of the mean-zero dynasguation (7)
Let B be the solution of the dynamo equation with initial dBg(x) — (Bo):

B+ (v-V)B=nVB+ (B-V)v, V.B=0, B(X, 10) = Bo(X) — (Bo).
Also, letB be the solution of the special initial value problem

B, + (V- V)B=nV2B+ (B- V)V + ((Bg) - V)V, V.-B=0, B(x, 70) = 0. (27)
We then have

B=B+B, (28)

whereB(x, 1) is the solution 0{26).
To describe the structure 8 we consider the three-parameter family of PDEs
B/ + (v -V)B/ =nV3B/ + B/ - V)v+ (e - V)V, V.B/I=0, B/(x, 10) = O, (29)

wheree! = (1,0, 0), € = (0, 1,0), ande® = (0,0, 1).
Multiplying the jth PDE in the family(29) by (Bj) (the jth coordinate component of the me&By)), then
summing overj, we find that

B = (B})B" + (B3)B? + (B3)B3 (30)
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is the solution of the special initial value probld@v). ThusB always lies in a time-dependent finite-dimensional
invariant subspacé(r) of dimension

M = dim[spar{B!, BZ, B3}].

Here M is zero for mean-zero initial data, but varies between 1 and 3 otherwise.

From(25), (28) and (30yve conclude that the full magnetic fieBix, ¢) is the sum of the meafBo) of the initial
dataBy, the solutionB = E?:lwé)éf obtained from(29) with zero initial data, and the solutidd(x, #) of the
dynamo equation with initial datag(x) — (Bo).

Now the solution componetii(x, 7) admits a complete Floquet expansion under the gap conditifhedrem
3.2, thus for anye > 0, we have

3 ) ' o N(e)
B, 1)) =) (Byle/ +B/(x, 0]+ )_ & e(x, 1) + R(x, 1),
j=1 k=1

IR® v < &expl-(une+1 — 4r?wdi],

where the functionB/(x, 7), as solutions 0f29), only depend on the velocity fieldx, r) and the domaim2. Thus
magnetic fields of nonzero mean converge tavan) + M-dimensional time-dependent inertial manifold.

4. Conclusions

In this paper, we have examined whether solutions of the time-periodic dynamo equation indeed admit an asymp-
totic Floquet decomposition, as often assumed. We have proved that they do, provided that the Stokes operator
associated with the dynamo equation has large enough spectral gaps. The Floquet modes span a time-periodic
inertial manifold M (7) to which all solutions of the dynamo equations converge. Instabilities associated with fast
dynamo action are therefore always confinedar).

The divergence-free property of the magnetic fiBld, r) forces the Stokes operator to have fewer eigenvalues
on the spacél (£2) than the Laplacian operator has bf(£2). For this reason, our spectral gap conditions are less
restrictive than analogous conditions for the time-periodic scalar advection—diffusion equatifii{see

We have shown how our gap conditions can be verified for two types of spatial domains: two-dimensional
rectangles and three-dimensional cubes. For these types of domains, the spectral gap conditions translate to &
smallness requirement on the velocity field. These requirements can be weakened by sharpening the general estimate
in our proofs for specific geometries and velocity fields.

By the smoothing property of the parabolic dynamo equationgd@gany square-integrable initial d&Ba(x) =
B(X, tp) becomes a function iH (£2) immediatehafter the initial timep. Theorems 3.1 and 3&e therefore strong
enough to apply for any realistic choice of the initial magnetic field.

Strictly speaking, we have proved the existence of the inertial manifald) for general velocity fields that
are aperiodic in time. In such cases, the solutions of the dynamo equation tend to a finite number of aperiodic
eigenmodes that form a fundamental set of solutions for a linear system of ODES©ON

We have also derived a general expression for Floquet eigenmodegHiiior the case of time-periodic velocity
fields. Our results further underline the need to study eigenmodes of discrete dynamo maps that serve as models of
a Poincaré map of a time-periodic flow (4&¢).

Due to mathematical and physical considerations, the magnetiBfielssually assumed to have zero spatial mean
in the case of periodic boundary conditions. We have briefly discussed the case of nonzero spatial mean, concluding
that solutions then converge to a larger inertial manifold that contains up to three eigenmodes that are not Floquet type.
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Little is known analytically about the importamt— 0 limit of the weakest Floquet exponent = «+i8. Moffatt
and Proctof15] show that a topological constraint, the conservation of magnetic helicity, precludes a poSitive
n=0.

In then — 0 limit, our gap conditions require unbounded spectral gaps and hence break down. We still believe
that the framework presented here should be helpful in proving the existence of fast dynamos: one hopes that ¢
refinement of the estimatesAppendices A and Beads to a uniform bound on the dimension of the inertial manifold
in then — 0 limit. In that case, any fast dynamo behavior is captured by a finite-dimensional ODE.
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Appendix A

Here we prove statement (i) @heorem 3.1We shall only construct the manifoli1 (r) explicitly, because the
construction of\(¢) is analogous.

A.1. Some definitions

We start by introducing the constants

p = 3(Un+1+ 1N),

that measure the mean of adjacent eigenvalues of the Stokes operaiterse constants will simplify our notation
in the upcoming estimates.
We let P and P,” denote the orthogonal projections fratiis2) to H(£2),;" and toH (£2),,, respectively, and let

+ —
Ar =Alayr A=Al

denote the appropriate restrictionsAfo H(£2)," andH (£2);, .
We also recall that for anB = ), a;€(x), the fractional powen /2 of A is defined as

o0
AY2B =" aiu%e (),
i=1
with the domain

D(AY?) = {B =Y agX)

i=1

oo
2
> lailfpi <00},

i=1

as discussed, for example, by Hei@y and Sell and YoUi22, Section 3.7]
By (10), for anyB € D(A), we have

V°B = PV?B + V¢
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for someV¢ € HL(£2). We then obtain

o
IVBII2, = _f B-V?BdA = / B (AB—Ve)dA =) au; = |AY?B|2,. (A1)
§2 2 i=1
By a density argument, one can show ttatl) also holds for anyB = > 7°; a;& € D(AY?). As a result, we
obtain thatA/2B remains bounded in the? norm precisely wheB remains bounded in th&! norm. Therefore,
D(AY2) = Vv (2).
Finally, we define the function space

X, = {f : (=00, 0] = V(2)|f € C°, supe”|f|lv(a) < oo (A.2)
t<0

with the norm

Ifllx, = SU(EJ e llvie)-
=

This complete metric space contains functions that grow slower in backward timetifadees. If nonemptyX ;
is an invariant set fof12) by definition.
We want to construct aN-dimensional time-dependent invariant manifdléi(r) for Eq. (12)with solutions that
do not grow faster than#@”’ in backward time. In other words, we want to so(I&) on the spac& , toobtaina
finite-dimensional manifold of solutions that either grow, or decay slower to the zero solution than other solutions do.

A.2. Integral equation formulation

We introduce a phase parametiee R to account for solutions launched at an arbitrary initial tugne- 6 and

rewrite (12) as follows
U, = —nAU — P[(V(O + 1) - V)U] + P[(U - V)V(O + 1)]. (A.3)

(Recall that in the definition ok ;, the time variable is restricted to nonpositive values.) The manifold(r)
will be constructed as the set of points through which the solutiori.8) do not grow faster thané*’ does as
t — —oo.

For some fixed but yet unspecified inte@érwe splitU into two components: one H(Q); andone irH(£2).
In terms of these two solution componens,3) splits into a coupled set of two equations. Using the variation of
constants formula, and taking the liniit— —oo for the initial timezo of the solution component iH (£2),,, one
obtains the integral equation

t
U(r) = e "n'p + fo g AN (=) PiA=P[(V(0 + 5) - VIU($)] + PL(U(s) - VIV(O + 5)]} ds

t —
+ / e vl po (= P[(V(O + 5) - VIU(S)] + P[(U(s) - VIV(O + )]} ds, (A.4)
—00

with p = P;U(O). This integral equation is equivalent to the restriction of the dynamo equation to thg set
A.3. Solving the integral equation

Defining the mapF’ by the formula

t
F(U,p,0) =e "np 4 /O g MAN(=S) PY{=PL(V(O + 5) - VIU(S)] + PL(U(s) - VIV(O + )]} ds

t
+ f_ g MAnl=9) p L {=PLVE +5) - VIU©)] + P[(U(s) - VIV + )]} ds, (A.5)
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we observe that solutions (4.4) are(p, 6)-dependent fixed points @f(-, p, 6). To prove thaf (-, p, 6) has a unique
fixed point, we shall show thdf(-, p, 0) is a contraction mapping from the spakg into itself.
To estimate the first term on the right-hand sidéAb), note that

oAt _
€7 pllv 2y < €N ||pllv(g)- (A.6)

To estimate the remaining two integral termgfifU, p, 6), we shall use three ingredients. First, we recall that (see,
e.g.[4, Chapter 2, Lemma 1.1]

|AY2e AN | o < uyP e, 1 <0, A7)
Second, we recall from Sell and Y¢22, p. 94]the inequality
1 1
~ — O<r< 3 ,
||(T]A)1/2 e_ﬂANJr]_[”L2 S (pN+1([) — A/ 26'[ UNN+1 (A8)

<rI<x

/N1 @ AN+1T

2nun+1
and, forx < nun+1, the relations

o0
2
O dt = —,
/0 on A/ ENUN+1
Third, by (A.1), we have

o0
1 </
/ ony1(H) € dt < + MN+L (A.9)
0 ~TTUN+1 NUN+1 — Y

t
/0 g AN PiA=PL(V(0 + 5) - VIU($)] + P[(U(s) - VIV(O + 5)]} ds

B ‘ L?
Using(A.7) and (A.10) we estimate the second term in the definitiorFef, p, 6) as follows:

V(2)

(A.10)

t
AY/? /O e—"AM'—S)P;{—P[(v(e +5) - VYU(9)] + P[(U(s) - VIV(O + 5)]} ds

t
/0 g AN (=) Py{=PL(V(O + 5) - VIU(s)] + PL(U(s) - VIV(O + 5)]} ds

V(2)

0
< / Jx/Z @MVETD I P((v(0 + 5) - VIU(s)) + P((U(s) - VIV(O + 5))]| 2 d
t

0
< / 12 €N G0 (o AY2U (s) [l 12 + uollU(9) | 2) ds (note thagey?[|U[ 2 < |AY2U]l,2)
t

0 0
1/2 — 1/2 —f)—nps
< wo / 2 €N U)oy ds < wory IVl / NS d
1/2 1/2
SOEN__ |y e @k o 1) < 0K

~ (o — ) n(p — un)
Using (A.8)—(A.10), it then follows that

Ul e ™. (A.11)

t
H /_ e MM P (= PLV(O +5) - VIUs)] + PL(U(s) - VIV(O + )]} ds

V(£2)

t
< / 1" Y20n 10t — )| — P{(V(O +5) - VIU)] + P[(U(s) - VIV(O + )]l .2 ds

—00

t t
< wo / n2en41(t = 9 UG) v ds < woll Uy / 2Nt —s5) €7 ds
—00 —0

o0 1 </
= won Y?||U| - e f oN+1(s) €5 ds < won_lllUIIX< 4 VN ) e (Al2)
’ 0 P \JVUN+1  UN41— P
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The estimategA.6), (A.11) and (A.12)together imply thatF(U, p, 6) is bounded, and henc&U, p, 6) indeed
maps intoX ;.

Next, we want to show that defines a contraction mapping &} . From(A.11) and (A.12)wve see that for any
U, U2 € X,

2wo(JIIN + /AiN+D) | wo
N(UN+1 — UN) NJIN+1
But (A.13) and condition(13) together establish thdt is a contraction mapping ok .

As a contraction mapping on a complete metric sp&téas a unique fixed pointl(z; p, 6) for any 6 andp,
implying a unique solution fofA.4) in X ;. Denote

2wo(\/UN + /IN+1) 4 Wo
N(UN+1 — 1UN) NJHENTL

Then for such a fixed poirti(¢; p, 6), the estimateéA.6) and (A.13)give

1F(U1, p, ) — F(Uz, p, ) x> < ( > U1 = Uzllx - (A.13)

K(wo, n, un+1, UN) =

< K(wo, n, pin+1, i) U1l + IPlIvie),

which in turn gives

1
Ull,- < . A.14
Pl = T %o, 7, AN+1, o PV (A1)

Then, based 0(A.12) and (A.14)the linear operator

t
LNt +0p= /_ e Mval=I o (= P[(v(O + 5) - VU] + P[(U(s) - VIVO + )]} ds

0 _
=/; e”AN+1fP,;+1{—P[(v(0 +t+1-VHUE+ 1]+ P[UE+1)- V)VO +1t+ 1)]}de

(A.15)
satisfies the estimate
K(wo, 0, UN+1, UN)
ILY (t + 0)pllvie) < K(wo, 0, in+1, kn) U]l x- < IPllv(e),
@ * X0 = 1— K(wo, 0, AN+1, UN) @
which implies
ILY (r + Ol vy V@) < K(wo, . pav1, i) . (A.16)
1- K(wo, n, UN+1, UN)

In addition, ifv(x, 1) is T-periodic inz, then so idJ(s; p, 6) in 6 by (A.4). Hence, by(A.15), L(r + 6) is T-periodic
in 6, and so is the set

M@ +6) ={p+ LN +0plp e V()5). (A.17)
A.4. Invariance ofM (¢)

To show thatM (¢) is an invariant manifold foEqg. (12) it suffices to show that
U p.6) = P{U®: p. 0) + LY (1 + ) Py U(t: . ). (A.18)

For simplicity, we now fix9 = 0 in our argument. The same argument carries through for arbitrarydixed
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Using the variable change= s — ¢, we obtain from(A.4) that
t
U(r: p, 0) = e "4N1p + / e AN P PL(v(s) - V)U(s; p, O] + P[(U(s; p, 0) - V)v(s)]} dis
0

0 _
+ [ e”ANHTP[;Jrl{—P[(V(t +1)-VUE+1;p, 0]+ P[(UE+1;p,0) - VIV + 1]} dt.

—00

(A.19)

Replacing by ¢ + 7 in Eq. (A.4)gives

t+t
UGt +1;p, 0) = 14N+ 4 fo e AN P P[(v(s) - V)U(s; p, 0)]
t+t

+ P[(U(s: p, 0) - V)V(s)]} ds + f e NI P = PLV(s) - V)UGs; p, 0)]

—00

+ P[(U(s; p, 0) - V)V(s)]} ds.

We pass to the new variabte= s — ¢ of integration to find that

Ut + 7: p. 0) = "V PLU(: p, 0) +f e AN pH_PL(V(t + 1) - VIU(t + 73 p, 0)]
0
+ P[(U(t+r;p,0) - V)IV(t + )]} dr

N f e MnaltD po (—P[(V(t + 1) - VIU(@ + 75 p, O)]

oo

+ P[(U@E+r;p,0) - VIV(t+ )]} dr,
which implies that
U+t p, 0) = U(z; PEU( p, 0), ).

It follows, therefore, fron(A.19) that

0 _
U(s; p, 0) = PyU(; p, 0) + / v Py (= Pl(V(t + 1) - VIU(T: PRU( p. 0), 1)]

—0o0

+ P[(U(z; PU(t; p, 0), 1) - VIV(t + D]} dr = PYU(#; p, 0) + LY () Py U(; p, 0),

thus(A.18) indeed holds. Note that the uniqueness of the fixed point of the(&phas been crucial in showing
the invariance ofM (z).

To complete the proof of statement (i) Bieorem 3. 1it remains to show that the direct sum decompositict)
holds. This is relegated thppendix B

Appendix B

Here we complete the proof of statement (i)Tadfeorem 3.1and also prove statement (ii). We shall introduce
new coordinates that align with the manifoldi$(r) andA/(r), then show that the coordinate in the directioo\f)
decays to zero exponentially along solutions of the dynamo equation.
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B.1. Preliminary estimates and lemmas
We begin by noting that the manifoll(r) admits a representation analogous to that6ff) given in(A.17):
Nit+0) ={q+ L7 +6)qlq € V() 1} (B.1)

whereL>(t +0) : V() y, 4 — V(Q); is a bounded linear operator that depends continuoustyamd satisfies
the estimate (cf(A.16))

— K(wo, 0, UN+1, UN)

L%t + O)|| Bv(2).v(2) < 1 (B.2)

We now fix6 = 0 for simplicity; the arguments below are similar fog 0.
With the help ofL°°(f), we define the linear operatdry () : V(£2) — V(£2) by letting

An®B = LN (Hp + L™(1)q,

withp = P;,“B € V(Q); andq = Py B € V(). Ifthe stronger gap conditiai15)is satisfied, then estimates
(A.16) and (B.2)guarantee the boundednessg§ (7). More specifically, we have the bound

2K (wo, 0, [AN11, LN)
IAN® BV, v(2) <
VENVE) = 77K (wo, 1, LN+1, AN)

<1 (B.3)

In addition, A v (7) is continuous and’-periodic int whenevewn(x, 1) is T-periodic, because” (r) and L (1) have
similar properties.
As a direct consequence (8.3), the operator

DNt =1+ An() (B.4)
has the following properties.

LemmaB.1. Suppose that the gap conditi¢tb) is satisfied. Then

1. The inverse;b;,l(t) of the operator® y (¢) is a bounded linear operator for atle R.

2. ¢1‘V1(t) is continuous and T-periodic in t¥f(x, ¢) is T-periodic

3. IoenMllBv@.ve) < 2 and ||<D;1(t)||3(v(g),v(g)) < C for all + € R, where the constanf > 0 is
independent of t

We aim to decomposgg. (12)into coordinate components aligned witl (1) andN(z). The following lemma
shows that such a decomposition is possible, and completes the proof of statemenh@pfm 3.1

LemmaB.2. For eachr € R, we have the direct sum

V(2) = M@ & NQ®). (B.5)
Proof. Since

[+ AN®] "B =PI+ Ay®)] "B+ Py, [+ An(®] B,
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we have

B=[/+ AN@OUPYII + AN 'B + Py 4[I + An(H] B}

=PI+ AN B+ Py 41+ AN B+ LN Py + Anv(0]'B
+L®(t) Py [+ An (D) YB. (B.6)

Observe that

PHIT+ Ay B+ LN P+ An(®] 1B € M),

Pyl + AN B+ L@ Py [ + An() 1B € M.

Thus, by(B.6), anyB can be written as the sum of two vectors, ongvif(r) and one in\/(z).
As a result, to provéB.5), it suffices to show thaM () N N(¢) = {0}. Let B € M () N N(¢). Then there exist
p € V(2)} andg € V(2)y,, such that

B=p+0+LY0p+L®®)0=q+0+ LY#)0+ L*¥(1)q,
which gives
I+ An@®)p= U+ An())Q.

Hence we have = q, which is only possible ip = q =0byLemmaB.1 d
B.2. Decay of solutions td1(z)

As mentioned earlier, we shall establish the decay of all solutions by wikiimgterms of coordinates aligned
with M (r) and A(?), and then by proving that the latter coordinate component decays exponentially. The reader
may findFig. 2helpful in interpreting the new coordinates we introduce. In our forthcoming argument, we-g&t
for simplicity; a similar argument is valid for the cagez 0.
Projecting an arbitrary initial conditio@;l(O)Bo € V(£2) onto the subspacéS(Q); andV(Q)]§+1,we obtain
the vectorgo = PIJ\;cpg,l(O)Bo andqo = Py <1>;,1(0)Bo, respectively, with the magy defined in(B.4). As a
result, we have

+1

Bo = [/ + An(0)](po + do) = po + LY (0)po + go + L (0)qo.

V(Q);H

M)

Cy V()5

Fig. 2. The definition of the coordinat€y andC,.
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LetP(r) andQ(r) be the solutions dq. (12)with the initial conditiongo+ L " (0)po andgo+ L (0)qo, respectively.
It then follows from(A.18) that

B() =P() + Q1) = PYP(1) + LN () P{P(1) + Py, ,Q(1) + L™(1) Py, Q(1)
=[I4+ AN PYP® + Py ,,1Q()].

Using the above observation, we now introduce the coordinates in which we shall study the decay of solutions to
M(1). We let

C(H) = & (0B = PYP() + Py, 1Q). Cn(1) = PYC() = PP,
Coo(t) = Py 1C(0) = Py ,Q(). (B.7)

The geometry of these coordinates is shown schematicafigirn2.
To show the decay of solutions 1ot (7), it suffices to show tha(r) decays to zero. In turn, since

QW =[I+ AN®][Py 1 Q] = [ + AN(1)]Coo (1),

it suffices to show that, decays to zero.
We start by noting tha® = Py, P(t) + L (1) Py, P(t) is a solution 0f(12), therefore

[PYP@) + LY () PY PO + PV - V[ PEP®) + LN () PEP(1)]}
= —nA[PYP(®) + LY (1) PR P(®)] + P{(PYP® + LY () P P(®)] - V)V}.

Applying the projectionP;? to both sides of this last equation, and noting that

PELY (1) PYP() =0,
we obtain a finite-dimensional homogeneous linear system of ODEs

Cni+ Py P[(v - V)@ (DCy] = —nA{Cy + Py PL(@Nn(1)Ch - V)V] (B.8)
for the dynamics oo\ (r). A similar argument that use®,  , leads to the equation

Coot + Py 1 PLV - V)®N()Co] = 1Ay, 1Co0 + Py 1 [P(@N()Coo - V)V] (B.9)

for the dynamics on the manifol(z).
To show that the coordina@,, decays to zero along solutions(@2), we first estimate 1 (z) defined in(A.8).
For this, we observe that

510
maxffe = (=) e
>0 b

for anys, b > 0. It then follows that for O< ¢ < 1/2nuy+1,

—1/
@ MN+/2 giiin+t/2 < € @ HN+1t/2

1
)= — <
Nl =58 = Jat NG
and for 1/2nun+1 < t < 00,
—1/2

(S)
— -1/2 — 2.1/2 — 2 — 2
§0N+1(t) — /nMN+1e NUN+1E NAN+1E / e NUN+1t/ t / e NAN+11/ < 7 e nuN+1t/ .
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Therefore, we deduce fro(A\.8), (B.2) and (B.9}that

— l —
ICs (M llviea) < ll€7"N+1'Coo (O)lIvi(2) + H /0 e MmO PY L {POV(s) - V)T + L®($)]Coo(s))} ds

V(£2)

N < € VAT Cog (0) v (s2)

t
/ e M9 po PUT + L®(5)]Coo(s) - V)V(s)} ds
0 V(R)
t
+ /0 1™ 2N 420 = )| Py (PVGs) - VI + L)) Coo ()} 2 ds
t
+ /0 N V2N a(t — )| Py, P{UT + L®()]Coo(s) - VIV($)} 2 ds < & "8+ Cou (0) v (2)
+o / Y25 41(t — $)IIVL + L()]Coo (5)]] 2 ds
+Mo/ n Y

This implies

o

t
n
t

2on41(t — )T+ L= (5)]Coo(5) .2 Os.

o

t
ICo (Vi) < € ™V ||Coo (0) lv () + 2v0 / 1" Y20n11(1 = )[Coo(5) llv(e2) ds
0
t
—-1/2 — _ _ _
+ 217 Y uo / 1™ Y205 410t — 9)[Coo(8) V() s < €N+ |Co () lv () + 2won™ Y2 e~ V4
0

t
x [ =R I, 5 v b
0
leading to
t
ICoo (D) lIv (@) €M% < |Cos(0)llv () + 2won~ Y2 e /4 / (t — )" Y2 &N +15/2||C g (5) v () Os.
0
(B.10)

To integrate this last inequality, we recall a modified form of the classic Gronwall inequality (see, e.g., Henry
[8, Lemma 7.1.1)] Suppose that, » > 0,6 > 0, and the functio(r) is nonnegative and locally integrable on
[0, +00), satisfying

t
o) <a+ b/ (t— s)‘s_ld)(s) ds, 0<t< +o0.

Then
¢(1) < aks(6n), 0<r1< oo, (B.11)
where
6 =IO, Esx) = i € asi oo
—Ins+1) 8

The generalized Gronwall inequali¢®.11) applied to(B.10) gives

ICo0 () lIv (@) €"¥+1/2 < ||Coo(0)lv(e2) E1/2((Ruon~ Y2 e Y4 /1))
< ClICoo(0)llv () exp(4mn L e~ 2w3n), (B.12)
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or, equivalently,
ICx®llvi@) < ClICao(0)llvie) eXPl-(0.5nun 11— 4mn~ L & 2wh)], (B.13)
whereC denotes a positive constant. Under the gap cond(tié) we have
3 2 1 n
= + <5
VENTL T JEN+1— BN BN+ 3wo

and themjuy4+1/2 > 40w3/n > 4wn~te Y/2w3. Hence(B.13) shows the exponential decay of the coordinate
component transverse ot (r), completing the proof of statement (ii) #heorem 3.1

Appendix C

Here we proveheorem 3.2

By the assumptions dfheorem 3.2for any smalk > 0, we can select an integ¥i¢) such that the gap condition
(15) holds and

ICocOllvie) = | Py ;125 OBollvie) = 5= (C.1)
where the coordinat€,, and the mappin@ ) are defined ir{B.7) and (B.4) respectively, and’ is the constant
appearing in the estimafB.13). The inequality(C.1)follows because the remainder term\gk)th-order expansion
of cb;,l(O)Bo with respect to the eigenfunctions afcan be made arbitrarily small for large enougte).

For the above choice df(¢), Theorem 3.Igives the existence of aN(s)-dimensional linear inertial manifold
M(1). Restricting the dynamo equation to this manifold yieldsNa)-dimensional, homogenous set of linear
ODEs, which we wrote out ifEq. (B.8) The coefficient matrix of this set of equations is continuous by
assumption.

Invoking the classical Floquet theory for ordinary differential equations (seq24)y. we obtain that solutions
of the ODE onM () are linear combinations of Floquet solutions of the form

fex, 1) = 1006, 1) + 1o, ) + -+ PR 0, k=10, Nee),

wheref,f(x, t) areT-periodic in time. This means that a solution.#m(s) can be written as

N(e)

Crey = Y cx € Tr(x, 1),

k=1

wherei, denotes the Floquet exponent correspondirfg @, 7).
We then obtain that

& (X, 1) = Dy (OF(X, 1) = Dy OFXX, 1) + 1D neey DFEX, 1) + - - + P Dy OF P (x, 1),
k=1,...,N(),
are eigenmodes &q. (12)with eigenvalues., and that the full solution ofL2) can be written as

N(e)
B(X, 1) = ®ne) () (Cy + Coo) = Y ck €& (X, 1) + Do) (1) Coo,
k=1

which proveg17). The estimat€18) then follows from(B.13).



318 W. Liu, G. Haller/ Physica D 194 (2004) 297-319

Appendix D

Here we provélheorem 3.3
In the generic case, the Floquet exponents associated with the linear flow on the inertial métifplale not
repeated. In that case, substitution of the simple Floquet solutiéen &, 1) into the dynamaequation (1)gives

dio + Xoeo + (V- V)ep = nV%ep + (€0 - V)V. (D.1)
Multiplying this equation byej (the complex conjugate @) leads to

& - 90 + Aoleol® + € - (V- V)ep = el - Vep + € - (e V)V.
We add this last equation to its complex conjugate, and integrate over the d@nbaiobtain

d

g/ |e0ll” =—2Retolleo]* / V- V(leol® dv + 2n/ & VZepdV +2 Re/ & (eo- V)vdV

2 2 2
—~2Reioleol” - 21 Vel + 2Re [ & (e VIvay, 0:2)

where we used the incompressibility\ofs well as the boundary conditions wandey.
By the T-periodicity of the functiorey, integration of(D.2) with respect ta over [0, T] gives

— 2 o
o« = Reig — nllVeoll + Re(ep, (€ V)V>’ (D.3)

lleoll
which proves the first formula i(20).
Next, we spliteg andig into real and imaginary parts by letting

e(X, 1) =g(X, 1) +ih(X, ), ro=a+ip,

wherex andg are real constants, argcandh are real vector-valued functions that satisfy the boundary conditions,
and areT-periodic inz. Substitution intqD.1) then gives a complex equation whose real part is

g + (V- V)g = —ag + ph+ Vg + (g- V)V.
Multiplying this equation byg, integrating over the domaif?, then averaging in time as before leads to

Tal2 - Va2 — T (o
ﬁzallgll + Vgl - (9. (@ V)V>7 (D.4)
(9, h)

which proves the second formula(20).
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