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1 Data availability

All trajectories we use in this Letter are generated with the open-source computational fluid dynamics library
Channelflow [I]. The velocity field u(x,t) is stored in discrete spatial locations u(z;,y;,z;,t) due to the spectral
discretization. A sample of the generated data is available under the link [2]. In addition to the raw data, we also
made available the codes used for the analysis in the form of a commented MATLAB® live script, as a part of the
open-source toolbox SSMLearn [3]. The full data set is available from the authors upon request.

2 Spectral Submanifolds

In this section, we briefly recall the properties of spectral submanifolds (SSMs) in general dynamical systems.

Based on the two periodic directions (along = and z), we discretize the incompressible Navier—Stokes equations [I]
by Galerkin-projection onto a Fourier-Chebyshev basis,
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where T,,,(y) is the m-th Chebyshev polynomial. The sums in are taken over a finite number of wave-numbers
denoted by k., k; and Chebyshev-modes indexed by n,. With this discretization, the time-evolution of the spectral
coefficients is governed by the following ordinary differential equation
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where we have introduced the single vector @ € RY to be collection of all spectral coefficients of all three velocity
components. The matrix A € RV*¥ represents the linear part of the dynamics, and all nonlinear terms are collected
in (), which is a C* smooth function. The matrix A and the coefficients of f can be obtained by substituting
in the Navier—Stokes equations and enforcing incompressibility to eliminate the pressure p.

Equation describes a finite-dimensional dynamical system, to which the results of [4] are applicable. Those results
do extend to infinite dimensions [5] but require technical assumptions that would be challenging to verify for the
Navier-Stokes equations [6].

Let us assume that 0y is a hyperbolic fixed point of . In our case, this could represent the laminar base state,
the lower- or upper branch Nagata invariant solutions. Because of the hyperbolicity of the fixed points representing
these states in the phase space, the local dynamics around 1 is determined by the linear part, which is the matrix
A. We define a spectral subspace as the vector space spanned by a set of eigenvectors of A. Any such subspace is
invariant under the linearized dynamics. Important special cases of spectral subspaces are the stable and unstable
subspace, which are spanned by the eigenvectors of A, whose eigenvalues have strictly negative and strictly positive
real parts, respectively. By the center manifold theorem [7], the nonlinear system has corresponding invariant



manifolds (called stable and unstable manifolds) that are tangent to the unstable and stable subspaces at the fixed
point.

As discussed in [4, [5], such stable and unstable manifolds are further foliated by lower-dimensional invariant sub-
manifolds that are tangent to spectral subspaces of the unstable and stable subspaces. We focus here on the slowest
spectral subspaces spanned by the eigenvectors associated to the eigenvalues with decay rates closest to zero. We
denote by Ey such a d-dimensional spectral subspace, where d = 1,2 will hold in the present paper. A spectral
submanifold (SSM) will then be a d—dimensional invariant manifold, W of the full nonlinear system that is tangent
to E4 at the fixed point tip. There is an abundance of such invariant manifolds already in the linearized system, so
the non-uniqueness of Wy in the nonlinear system is fully expected. Nevertheless, building on prior work by [5], the
theorems of [4] establish the existence of a unique unique smoothest W, under appropriate non-resonance conditions
on the spectrum Spect A of A.

To state these results, we first define the spectral quotient corresponding to the spectral subspaces F, as
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where Spect Ag, = {\1,..., \q} denotes the restriction of the spectrum of A to the spectral subspace E4. In our
present setting, arises from the discretization of the Navier-Stokes equations, and hence its linear part has
eigenvalues with arbitrarily large negative real parts []], making o(Fy) infinite. In practice, o(Fy) is a large positive
number of the order of a 100, whose exact value depends on the level of the discretization used in obtaining eq.
)

We call the spectral subspace E; non-resonant if

d
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hold for any set of nonnegative integers m; € N satisfying 2 < Zle m; < o(E4). We note that the non-resonance
conditions stated here are generically satisfied, i.e., hold with probability 1. Even if the spectrum of the underlying
PDE were resonant due to symmetries, these would not be exact resonances in the finite-dimensional truncation
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The main result of SSM theory is that for any nonresonant E, a (primary) SSM defined above exists that is unique
among all C?(P9)+1 invariant manifolds tangent to E4 at the fixed point 1y. All other invariant manifolds (secondary
SSMs) tangent to Eg4 at Gp are only C” smooth with r < o(Eq) + 1.

We note that although the finite-dimensional representation of the Navier—Stokes was formulated in terms of the
spectral coefficients, the SSMs can also be found in the phase space of velocity measurements. By Whitney’s embed-
ding theorem [9], the SSMs will be smoothly embedded in the high-dimensional space of the velocity measurements
with probability 1.

3 Parametrizing spectral submanifolds with the rate of energy input
and the dissipation

From simulations we note a one-to-one correspondence between the dynamics on the SSMs and that of I and (I, D),
for the one- and two-dimensional SSMs respectively. Hence, we can use these variables to parametrize the SSMs for
the full velocity field. In the main text, we choose J = +/|I| and K = /|D| instead of I and D.

To motivate our choice, we consider the case in which the SSM is one-dimensional, but similar considerations hold
for the other regimes investigated in this Letter. Figure [I] shows the dependence of the flow field on the coordinates
I and J. We display the streamwise velocity (the u component) in 4 spatial locations in the channel. The inset in
the lower right of Fig. [I|shows a power-law type behavior of |u(z;,0, z;)|(I), with exponent 1/2.



Note that in the left panel of Fig. 1, the trajectory has a vertical tangent at the origin, and hence the velocity
components nearl =0 cannot be expressed as a smooth graph ovdr. Due to this singularity, the derivative with
respect to | diverges. The right panel shows that viewing the ow eld as a function over J resolves this issue
as the graph no longer has a vertical tangent atl = J = 0. Therefore, the vector-valued coe cients w in the
parametrizations of the SSM can be expressed as
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where we have parametric dependence in Re, measured from a reference valug Rer regime (I).

To identify the coe cients of the parametrization, we minimize the L? norm of the di erence between the velocity
eld u and its reconstruction. That is, the coe cients are obtained by minimizing the error
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for the Ny, data-snapshots available, whose solution is that of a least-squares minimization problem [10].

4 Additional details of the reduced dynamical models

We use reduced dynamics of the form

Jn+1 = R(Jn;Re) in region (I);
Jn+1 Rl(Jn;Kn) H H
= in region (Il).
Kn+1 R2(Jn;Kn) 9 (In

Figure 1: Dependence of the streamwise velocity on the energy input | and on its square rootJ, measured at 4
points in the channel. The trajectory is initialized on the unstable manifold of the lower-branch and converges to
the base state, at Re = 13452. The inset in the lower right shows the absolute values of the velocity measurements

as a function ofl on logarithmic scales.



In region (1), we allow for Reynolds-number-dependent coe cients in the polynomial expansion of the functionR up
to rst order. We look for R in the form
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where Re = 134:5 is a reference value for the Reynolds number, around which we take the expansion. In the
two-dimensional regime (l1), the reduced dynamics is
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In all cases, we denoted the maximal order in the polynomial expansions by. The coe cients of the reduced
dynamics are obtained from data by SSMLearpand, for cases (I) and (lI), the a priori knowledge of non-trivial xed
points is given to the model identi cation. Speci cally, the discrete time dynamical system ,.1 = r( ,; ) on the
state variable 2 R™ depending on the parameters 2 RY and with Nt, xed points can be identi ed from Ny,
data points by solving the constrained minimization problem
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where | for | = 1;2;:::Nsp, are the Lagrange multipliers and Cy(r) is a regularization term. For the polynomial
representations ofr in Egs. (5,6) and a ridge-type penalty, their coe cients are identi ed by solving problem (7)

in closed form. Speci cally, this representation takes the formr( ; )= + R' ( ; ) where the feature map'

denotes the selectedN, multivariate monomialsin ( ; )and R 2 R™ Nm js a matrix containing their coe cients.

As we center around the base (laminar) state, we need to assume th& = r(0; ), which implies that the monomials
have at least linear dependence on the coordinates. By indicating the k-th component of a vector as ), we
de ne
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and let L 2 RN Nm 3 diagonal matrix whose values are the maximum absolute values taken along the columns of
X 2 RN® Nm  Then, we can reformulate problem (7) using the cost function
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where the parameter is determined via cross-validation [10]. We remark that analogous developments hold for the
case of a vector eld _=r( ; )= R' (; ), in which one would only need to setyy in (9) as a vector of time
derivatives. Table 4 summarizes the maximal polynomial orders for the parametrizationM, and for the reduced
dynamics My with which the results in the main text were obtained.

Figure 2. shows the mappingR(J; Re). In the left panel, we show its value over the {; Re) plane. For training,
we use a total of 6 trajectories, which are initialized on the unstable manifold of the lower-branch xed point for 3
di erent Reynolds numbers, Re = 134:51; 13452, 13453. The right panel show the curve of xed points satisfying
J = R(J; Re), obtained by continuation on the reduced model, that reproduces the saddle-node bifurcation of the



Region (1) | Region (II) | Region (I11)
Mgy 15 4 5
Mp 6 2 5

Table 1: Maximal polynomial orders used in the expressions of the reduced dynamic#Ay) and in the parametrization
of the SSM (M,).

full model. For numerical continuation, we use the MATLAB ® open source continuation core softwarecoco [11].
In Fig. 3, the mapping of the reduced dynamics in region (Il) is plotted. For simplicity, we only plot one of the
components,Ry, in the plane (J;K).

Figure 2: Left panel: the mapping Jo+1 = R(Jn;Re) on the one-dimensional SSM with the three curves of xed

points are shown. Right panel: lower- and upper-branch xed points in the (; Re) plane obtained by numerical

continuation. The blue curve shows the stable branch and the unstable branch is plotted in yellow. Colored circles
indicate the Reynolds numbers at which training trajectories were initialized.

Figure 3: The mapping Jo+1 = R1(Jn;Kp) on the two-dimensional SSM. Colored circles indicate the three xed
points.
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Figure 4: Left panel: streamwise component in the y = 0 plane of a velocity field at ¢t = 184 which was initialized off
the SSM at Re = 134.52. Middle panel: SSM-based prediction of the same velocity field, obtained as a composition
of the reduced dynamics and the parametrization. Right panel: difference between the true velocity field and the
SSM-based prediction.

Finally, we show a complete prediction result. First, we calculate the reduced trajectory for a random initial energy
input rate Iy at Re = 134.52 in the region (I), then lift the trajectory to the full phase space via the parametrization.
Figure |4] shows a comparison of the predicted and true velocity fields after ¢ = 184 time units. The streamwise (u)
components of the velocity fields are shown in the y = 0 plane.

4.1 Region (III)

In region (III), we find that a reduced-order model based on a two-dimensional manifold containing all transitions
cannot be constructed. This is because the unstable manifold of the lower branch spirals onto a limit cycle, and
hence is not a differentiable manifold. To infer the minimal dimension of a higher-dimensional SSM containing the
transition, we show in Table the leading eigenvalues of all coexisting ECSs at Re=146.

Base state Lower branch Upper branch Limit cycle
-0.0323110 0.0406734 0.0016963 + 7 0.0927744 0

-0.0642890 | -0.0492400 + 7 0.1028837 | 0.0016963 — 7 0.0927744 -0.0041905
-0.0676000 | -0.0492400 — % 0.1028837 | -0.0398964 + 7 0.0689366 | -0.0367628 + 7 0.0206478
-0.1292439 -0.0539350 -0.0398964 — 4 0.0689366 | -0.0367628 — 4 0.0206478

Table 2: The leading four eigenvalues of the coexisting ECSs at Re=146. The eigenvalues are in descending order
based on their real parts (decay rate). In the last column, the Floquet exponents of the limit cycle are reported.
These are defined as A\ = % log A, where A is the Floquet multiplier and T is the period of the limit cycle.

Based on the spectrum of the limit cycle, the slowest smooth SSM that captures the lower transition orbit would be
four-dimensional.

Instead of a higher dimensional model, in region (III), we restrict our analysis to a neighborhood of the limit cycle,
which allows us to represent the reduced dynamics via the polar normal form

Int (Mg—1)/2 Int (Mg—1)/2
p= Z Cn02n+1> 0= Z dnp2n7 (11)
n=0 n=0

with the variables (p, @) linked to (J, K) via a nonlinear change of coordinates. The model in Eq. is able to
capture the transition from an unstable fixed point to an attracting limit cycle, and its form is reminiscent of the
Hopf normal form [7] at first sight. Note, however, that in the classic Hopf normal form, the coefficient ¢j is a small
bifurcation parameter, whereas in our setting, ¢ is not small and no closeness to a bifurcation is assumed. Indeed,
we do not perform the classic normal form procedure familiar from center-manifold reduction near non-hyperbolic
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