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Recent developments in dynamical systems theory have revealed long-lived and coherent

Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields.

Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking

patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle

patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects

(i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional

incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent

Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic

coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We

show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface

float trajectories, as well as satellite-derived Sargassum distributions. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928693]

Satellite-tracked drifting buoy trajectories and satellite-

derived algal distributions are commonly used in oceanog-

raphy to infer Lagrangian aspects of the surface ocean

circulation. At the same time, dynamical systems techni-

ques applied to surface ocean velocities inferred from

satellite altimetry reveal persistent coherent Lagrangian

eddies. Paradoxically, buoys and algae display dissipative-

looking patterns in contrast to the conservative-looking

coherent Lagrangian eddies. Here, we show that the dissi-

pative patterns are due to inertial effects superimposed on

the conservative fluid patterns produced by coherent

Lagrangian eddies.

I. INTRODUCTION

The work reported in this paper provides an explanation

for the dissipative behavior of drifting buoys and floating

matter on the ocean surface near coherent Lagrangian (i.e.,

material) eddies. Such eddies impose conservative behavior

on nearby fluid particles in incompressible two-dimensional

flows, which seems at odds with the observed dissipative

patterns.

A revealing example of observed dissipative behavior is

that of two RAFOS floats (acoustically tracked, subsurface

drifting buoys of quasi isobaric type) in the southeastern

North Pacific (Fig. 1). Initially close together, the two floats

(indicated in red and green in Fig. 1) take significantly diver-

gent trajectories on roughly the same depth level (320 m) rel-

ative to the floats positional uncertainty, which does not

exceed 10 km (Garfield et al., 1999 and Collins et al., 2013).

This behavior at first sight might be attributed to sensitive

dependence of fluid particle trajectories on initial particle

positions in a turbulent ocean. But, analysis of satellite altim-

etry measurements reveals that the floats on the date of clos-

est proximity fall within a region of roughly 100-km radius

characterized by a bulge of the sea surface height (SSH) field

(selected isolines are indicated by dashed curves in Fig. 1).

FIG. 1. Trajectories of two RAFOS floats (red and green curves) and

selected snapshots of a westward propagating bulge of the satellite altimetric

sea surface height (SSH) field (dashed curves indicate selected isolines) in

the southeastern North Pacific. The dots indicate the positions of the floats

on the dates that the SSH bulge is shown.
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This SSH bulge propagates westward at a speed slower than

the geostrophically inferred clockwise tangential speed at its

periphery, suggesting the presence of a mesoscale anticy-

clonic eddy capable of holding fluid (Chelton et al., 2011).

Indeed, this SSH eddy may be identified with the surface

manifestation of a California Undercurrent eddy; such

eddies, referred to as “cuddies,” have been argued to be im-

portant transport agents (Garfield et al., 1999). However,

while one float is seen to loop anticyclonically accompany-

ing the eddy very closely, the other float anticyclonically spi-

rals away from the eddy rather quickly, representing a

puzzle.

Even more puzzling is that the two floats actually ini-

tially lie, as we show below, within the same coherent
Lagrangian eddy (Beron-Vera et al., 2013 and Haller and

Beron-Vera, 2013; 2014). Representing an elliptic

Lagrangian coherent structure (LCS; cf. Haller, 2015), the

boundary of such an eddy defies the exponential stretching

of typical material loops in turbulence. In effect, the eddy in

question exhibits minimal filamentation and deformation

over several months and thus is expected to trap and carry

within both floats.

The behavior of one of the floats supports this scenario

and thus the altimetry-derived (i.e., geostrophic) upper-

ocean current representation that sustains the coherent

Lagrangian eddy. Ageostrophic processes of various types

may be acting in the upper ocean, but these cannot explain

the substantively different behavior of the other float.

Indeed, ageostrophic effects cannot be so different on two

initially nearby fluid particles in a region of mostly regular

flow. Therefore, to resolve the puzzle, effects of a different

class must be accounted for.

Here, we argue theoretically, and show both numerically

and observationally, that such effects can be produced by

inertia, i.e., buoyancy and size finiteness. Inertial effects are

commonly considered in atmospheric transport studies.

These range from studies aimed at explaining observed

motion of meteorological balloons (Paparella et al., 1997;

Provenzale, 1999; and Dvorkin et al., 2001) and spread of

volcanic ash (Haszpra and T�el, 2011), to theoretical and nu-

merical studies of particulate matter dispersal (Haller and

Sapsis, 2008; Sapsis and Haller, 2009; and Tang et al.,
2009). In oceanography, inertial effects have been also taken

into account in several problems including sedimentation

(Nielsen, 1994), plankton sinking (Stommel, 1949), patchi-

ness (Reigada et al., 2003), and selfpropulsion (Peng and

Dabiri, 2009). However, they have been rarely considered in

the motion of drifting buoys, macroscopic algae, or debris.

To the best of our knowledge, their potential importance in

influencing the motion of floats was noted only by Tanga

and Provenzale (1994).

Our theoretical results reveal that while the boundary of

a coherent Lagrangian eddy represents a transport barrier for

fluid particles, it does not do so for inertial particles.

Instead, a coherent Lagrangian eddy attracts or repels ini-

tially close inertial particles, depending on the particles’ den-

sity ratio with the ambient fluid and on the polarity (rotation

sense) of the eddy.

We first validate these numerically using altimetry-

derived currents in several regions of the ocean. Next, we use

our findings to explain observed behavior in various ocean

areas starting with the aforementioned floats, then proceeding

with satellite-tracked surface drifting buoys (drifters), and

finally macroscopic algae (Sargassum) distributions.

We emphasize that because our approach uses

observation-based velocity, it enables feature matching and

analysis of specific measurements. Furthermore, our

approach is self-consistent within the realm of incompressi-

ble two-dimensional flows. This is in marked contrast with a

previous approach to surface ocean pattern formation

(Zhong et al., 2012), which considered passive advection by

the surface velocity from a primitive-equation model (i.e., a

truncation of the three-dimensional velocity). This is des-

tined to create dissipative-looking patterns, but no actual

passive tracer follows such a virtual velocity field.

We also note that our results are not applicable to the

problem of accumulation of debris in subtropical gyres,

which has been recently investigated by Froyland et al.
(2014) using probabilistic methods. The so-called great

ocean garbage patches are produced by convergent wind-

induced Ekman transport (Maximenko et al., 2011). The

Ekman dynamics governing basin-scale motions are very dif-

ferent than the quasigeostrophic dynamics governing meso-

scale motions, our focus here. The former can produce

dissipative patterns on the surface ocean by themselves, but

the latter cannot unless inertial effects are taken into account,

as we noted above and demonstrate below.

The remainder of the paper is organized as follows.

Section II A presents the mathematical setup required to for-

mally introduce the coherent Lagrangian eddy notion, which

is briefly reviewed in Section II B. The theoretical results relat-

ing to behavior of inertial particles near coherent Lagrangian

eddies are presented in Section II C. In Section II D, further

insight into inertial particle motion is provided. Numerical val-

idation of the theoretical results is presented in Section III. In

Section IV, the theoretical results are used to explain observed

behavior in the ocean. A summary and discussion is offered in

Section V. Finally, Appendix A includes details of the asymp-

totic analysis leading to our theoretical results, Appendix B is

reserved for the description of the several data sets employed,

Appendix C gives some details of the various numerical com-

putations performed, and Appendix D presents an extended

analysis for the float data set.

II. THEORY

A. Mathematical setup

We consider an incompressible two-dimensional veloc-

ity field, v(x, t), where position x ranges on some open do-

main of R2 and time t is defined on a finite interval.

Specifically, we consider

v ¼ g

f
r?g; (1)

where gðx; tÞ is the SSH; the constants f and g stand for

Coriolis parameter (twice the local vertical component of the
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Earth’s angular velocity) and acceleration of gravity, respec-

tively; and ? represents a 90�-anticlockwise rotation. The

velocity field (1) is representative of quasigeostrophic

motions in the upper ocean, i.e., characterized by a small

Rossby number, Ro :¼ V=Ljf j, where L and V are typical

length and velocity scales, respectively. In particular, (1) is

suitable to investigate transport near mesoscale eddies, our

focus here. Fluid particles evolve according to

_x ¼ v: (2)

Let Ft
t0
ðx0Þ :¼ xðt; x0; t0Þ be the flow map that takes time

t0 positions to time t positions of fluid particles obeying (2).

An objective (i.e., frame-invariant) measure of material

deformation in (2) is the right Cauchy–Green strain tensor

C :¼ ðDFÞ>DF; (3)

where D stands for differentiation with respect to x0. For any

smooth v, F represents a diffeomorphism, which ensures

invertibility of DF and thus positive definiteness of C.

Furthermore, incompressibility of v implies det C ¼ 1.

Consequently, eigenvalues fkig and normalized eigenvectors

fnig of C satisfy

0 < k1 � k2 �
1

k1

; ni � nj ¼ dij i; j ¼ 1; 2: (4)

B. Coherent Lagrangian eddies

Haller and Beron-Vera (2013) seek elliptic LCS as

material loops with small annular neighborhoods showing no

leading-order variation in averaged material stretching (Fig. 2).

Solving this variational problem reveals that elliptic

LCSs are uniformly stretching: any of their subsets are

stretched by the same factor k under advection by the flow

from time t0 to time t. The time t0 positions of k-stretching

elliptic LCS turn out to be limit cycles of one of the following

two objective ODE for parametric curves s 7! rðsÞ:

r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

k2 � k1

s
n16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k1

k2 � k1

s
n2; (5)

where the prime stands for s differentiation. More geometri-

cally, limit cycles of (5) are closed null geodesics of the met-

ric tensor C� k2Id, which is Lorentzian in the domain

satisfying k1 < k2 < k2. This provides a relativistic interpre-

tation of coherent Lagrangian eddies (for details, cf. Haller

and Beron-Vera, 2013; 2014).

The limit cycles of (5) will either grow or shrink under

changes in k, forming smooth annular regions of noninter-

secting loops. The outermost member of such a band of

coherent Lagrangian loops will be observed physically as the

boundary of the coherent Lagrangian eddy. We refer to these

maximal elliptic LCSs as coherent Lagrangian eddy
boundaries.

Limit cycles of (5) tend to exist only for k � 1. Material

loops characterized by k¼ 1 resist the universally observed

material stretching in turbulence: they reassume their initial

arc length at time t. This conservation of arc length, along

with the conservation of the enclosed area in the incompres-

sible case, creates extraordinary coherence for elliptic LCS.

C. Inertial effects near coherent Lagrangian eddies

The Maxey–Riley equation (Maxey and Riley, 1983)

describes the motion of inertial (i.e., buoyant, finite-size)

particles, which can deviate substantially from that of fluid

(i.e., neutrally buoyant, infinitesimally small) particles

(cf. Cartwright et al., 2010). Here, we consider a simplified

version of the Maxey–Riley equation appropriate for inertial

particle motion in a quasigeostrophic flow. We further derive

a reduced form of this equation, which will allow us to assess

behavior near a coherent Lagrangian eddy.

Specifically, ignoring added mass effects, the Basset

history term, and so-called Faxen corrections, the Maxey–Riley

equation for the motion of a small spherical particle in the flow

produced by (1) is given by

€x þ f _x? ¼ df v? � s�1ð _x � vÞ; (6)

where the constants

d :¼ q
qp
; s :¼ 2a2

9�d
: (7)

Here, q and � are the fluid’s density and kinematic viscosity,

respectively, and qp and a are the inertial particle’s density

and radius, respectively. The left-hand-side of (6) is the iner-

tial particle’s absolute acceleration. The first and second

terms on the right-hand-side of (6) are the flow force and

Stokes drag, respectively.

The simplified form of the Maxey–Riley equation (6)

was priorly considered by Provenzale (1999) with the fol-

lowing differences. First, the fluid relative acceleration,

qð@tvþ v � rvÞ, was included. This term is one order of

magnitude smaller in Ro than f v? and thus is conveniently

neglected here. Second, a centrifugal force term was

included too, but this is actually balanced by the

FIG. 2. A closed material curve c (red) at time t0 is advected by the flow

into FðcÞ at time t. The advected curve remains coherent if a thin material

belt around it (light blue) shows no leading-order variation in averaged

stretching after advection.
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gravitational force on the horizontal plane. Third, a vertical

buoyancy force term was considered, but this in the end

played no role as the focus was on motion on a horizontal

plane, as here.

We introduce the small nondimensional parameter

e :¼ s
V

L
¼ 2

9d
a

L

� �2

Re ¼ St

d
� 1; (8)

where Re and St are Reynolds and Stokes numbers, respec-

tively. Consistent with the quasigeostrophic scaling assump-

tions leading to the fluid velocity field (1), we can set

e ¼ OðRoÞ: (9)

In Appendix A, we show that inertial particle motion charac-

terized by (9), e.g., the motion of particles much smaller

than the typical length scale of the flow, is controlled at

leading order by

_x ¼ vp ¼ vþ sðd� 1Þf v?; (10)

which is the reduced form of the Maxey–Riley equation we

shall use. This reduced equation is valid up to an Oðe2) error,

after particles reach the vicinity of an attracting slow mani-

fold exponentially fast.

Comparison of (2) and (10) reveals that the fluid veloc-

ity, v, and inertial particle velocity, vp, differ by a dissipative

OðeÞ term. In the northern hemisphere (f> 0), this term acts

to deflect the motion of positively buoyant (d > 1) finite-size

or light particles to the left of the motion of fluid particles,

while it acts to deflect the motion of negatively buoyant

(d < 1) finite-size or heavy particles to the right; in the

southern hemisphere (f< 0), it acts the opposite way (Fig. 3).

Inertial effects, therefore, should promote divergence

away from, or convergence into, coherent Lagrangian eddies

when otherwise fluid particles circulate around them.

Specifically, let c be the boundary of a coherent

Lagrangian eddy at time t and Uc the region c encloses. Up

to an Oðe2Þ error, the flux across c is given by

Uc ¼
þ

c
ðv� vpÞ � dx?

¼
ð

Uc

r � ðvp � vÞ d2x

¼ sð1� dÞf
ð

Uc

x d2x; (11)

where the loop integral is taken anticlockwise and x :¼
�r � v?ð¼gf�1r2gÞ is the fluid’s vorticity. Inspection of

expression (11) leads to the following conclusions:

(1) cyclonic (fx > 0) coherent Lagrangian eddies attract

(Uc < 0) light (d > 1) particles and repel (Uc > 0) heavy

(d < 1) particles; while

(2) anticyclonic (fx < 0) coherent Lagrangian eddies attract

(Uc < 0) heavy (d < 1) particles and repel (Uc > 0) light

(d > 1) particles.

Our results concerning heavy particles confirm the

numerical observations of Provenzale (1999) and extend

them to the behavior of light particles.

Our computations below are based on the reduced

Maxey–Riley equation (10), which we refer to as the inertial
equation. This follows the terminology of Haller and Sapsis

(2008), who obtained the reduced form of a system similar

to (6) in a nonrotating frame. Considering (10) is advanta-

geous computationally and, as we will show, sufficiently

accurate for the verification of our theoretical results.

D. Inertial Lagrangian coherent structures

While motion of inertial particles is not constrained by

LCS, it is tied to analogous exceptional invariant curves

referred to as inertial LCS (or iLCS; cf. Haller and Sapsis,

2008).

Of particular interest for our purposes here are hyper-

bolic iLCSs of attracting type. These can be obtained by

applying recent LCS theory results (Haller and Beron-Vera,

2012; Farazmand and Haller, 2013; Farazmand et al., 2014;

and Haller, 2015) on system (10). Specifically, iLCSs at time

t0, which attract nearby inertial particle trajectories over

½t0; t	, are invariant curves s 7! rðsÞ that satisfy

r0 ¼ np
1 or r0 ¼ np

2 (12)

and ffiffiffiffiffi
kp

2

q
> 1 or

ffiffiffiffiffi
kp

1

q
< 1 (13)

for t < t0 or t > t0, respectively. Here, fkp
i g and fnp

i g are

eigenvalues and eigenvectors, respectively, of the

Cauchy–Green tensor, Cp, derived from system (10), which

is an objective measure of deformation in that system. In for-

ward time, segments of these invariant lines squeeze and

FIG. 3. Velocity contributions to iner-

tial particle’s velocity: light (heavy)

particle motion deflects to the left

(right) of fluid particle motion in the

northern hemisphere and vice versa in

the southern hemisphere.
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stretch, respectively. As a result, they can be referred to as

inertial squeezelines and inertial stretchlines, respectively.

In a similar manner as the k-lines discussed above, these

invariant lines admit a null geodesic interpretation. In this

case, the relevant Lorentzian metric tensor is given by

CpX� XCp, where X is a 90�-anticlockwise rotation matrix

(Farazmand et al., 2014).

III. SIMULATIONS

Here, we present numerical results that confirm our

theoretical predictions for the motion of inertial particles

near coherent Lagrangian eddies in the ocean.

In each of our numerical tests, a coherent Lagrangian

eddy was detected assuming that fluid trajectories are

governed by (2) with the velocity field given in (1); the SSH

field is constructed using satellite altimetry measurements

(Fu et al., 2010). All eddies were detected from 90-day for-

ward integration and found to have k¼ 1. Successive posi-

tions of the boundaries of the eddies past the detection time

were obtained from advection. Inertial particles were

assumed to have a¼ 0.25 m, which is a realistic radius value

for commonly employed spherical drifting buoys. Both light

and heavy particles were considered, with d ¼ 1:1 and 0.9,

respectively. For typical oceanic mesoscale eddies, with

diameter L 
 150 km and tangential velocity at the boundary

V 
 0:1 m s�1, these inertial particle parameter choices give

e 
 0:01. This e value turned out to be small enough for

particle motion obeying the Maxey–Riley equation (6) to

exhibit behavior qualitatively similar to that satisfying the

inertial equation (10) employed in our simulations.

We begin by discussing the results of tests involving

light and heavy particles initially located on the same posi-

tion on the boundary of a coherent Lagrangian eddy. The

results are summarized in Fig. 4, which consider a cyclonic

(left panel) and an anticyclonic (right panel) eddy, both indi-

cated in light blue. The eddy in the left panel is identifiable

with a cold-core Gulf Stream ring, while that in the right

panel with an Agulhas ring. The arc length of the boundary

of each eddy on the detection date is reassumed 90 days after

(recall that the eddies have k ¼ 1). Coherence is nevertheless

observed well beyond 90 days consistent with previous anal-

yses of the satellite altimetry data set (Beron-Vera et al.,
2013 and Haller and Beron-Vera, 2013). This is evident from

the complete absence of filamentation. The light (green) and

heavy (red) particles behave quite differently than the fluid

particle (yellow) initially lying on the same position as the

inertial particles on the boundary of each eddy. The fluid

particle remains on all dates shown on the boundary of the

Lagrangian eddy carrying the particle. Consistent with our

predictions, the light (heavy) particle spirals into (out of) the

cold-core Gulf Stream ring, while it spirals out of (into) the

Agulhas ring.

We now provide more explicit support to our predictions

by presenting the results from the computation of the point-

wise flux of inertial particles across the boundary of a coher-

ent Lagrangian eddy. Across a material loop c, the pointwise

flux of inertial particles is given by ðvp � vÞ � nc, where nc is

the outer unit normal to c. Taking c as the boundary of the

eddy identified above as an Agulhas ring, the latter is plotted

in Fig. 5 on 24 November 2006 as a function of the boundary

parameter s, chosen to be an azimuthal angle. The pointwise

fluxes of light (solid green) and heavy (solid red) particles

are everywhere inward and outward, respectively, along the

boundary of the anticyclonic eddy in question. Thus, our

sign predictions for the total flux extend to the pointwise flux

in this example.

We now turn to illustrate in Fig. 6 that the evolution of

inertial particles is tied to attract iLCS. This is done for

patches of light (green) and heavy (red) particles lying ini-

tially outside the coherent Lagrangian Agulhas ring dis-

cussed above (light blue). Shown attracting iLCSs (black)

were computed as most stretching inertial stretchlines

through each patch. This was done on the eddy detection

time from a 90-day-forward integration. The evolution of

each inertial stretchline was determined by advection. After

experiencing substantial stretching, the light particle patch is

repelled away from the eddy. By contrast, the heavy particle

patch spirals into the eddy. As expected, the attracting iLCS

forms the centerpiece of the patch in each case. For com-

pleteness, the evolution of a fluid patch (yellow) is also

shown. In this case, too, the patch evolution is tied to its

FIG. 4. Simulated trajectories of light

(green), heavy (red), and fluid (yellow)

particles initially on the boundaries of

two mesoscale coherent Lagrangian

eddies (light blue) extracted from

altimetry-derived velocity. Advection

for the fluid particles is supplied by the

altimetry-derived velocity, and heavy

and light particle motion is controlled

by the inertial equation (10). The

eddies are identifiable with a cyclonic

cold-core Gulf Stream ring (left panel)

and an anticyclonic Agulhas ring (right

panel).
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centerpiece attracting LCS, computed also as the most

stretching stretchline through patch. Consistent with the ma-

terial nature of the boundary of the coherent eddy, the fluid

patch spirals around the eddy without penetrating it.

Finally, we show that for the parameters chosen, the qual-

itative behavior near a coherent Lagrangian eddy described by

the Maxey–Riley (6) equation is captured by the inertial equa-

tion (10). This is illustrated in Fig. 5, where the dashed lines

correspond to pointwise flux calculations based on the

Maxey–Riley equation. This calculation involves trajectories

started earlier, with a small (10% of the fluid velocity) pertur-

bation to the velocity given in (10). While strict convergence

of inertial- and Maxey–Riley-equation-based flux calculations

has not been attained after 30 days of integration, both flux

calculations agree in sign and share a similar structure. The

slow convergence to the inertial manifolds arises from the

highly unsteady nature of the altimetry-derived flow. Under

such conditions, pronounced convergence is only observable

near sufficiently persistent attracting sets. This is illustrated in

Fig. 7, which shows trajectories of light (green) and heavy

(red) particles lying on 24 November 2006 at the same posi-

tion on the boundary of the coherent Lagrangian Agulhas ring

considered in the pointwise flux calculations. As in Fig. 5,

solid and dashed curves correspond to calculations based on

inertial and Maxey–Riley equations, respectively. Once again,

while details of inertial- and Maxey–Riley-equation-based

trajectories are different and convergence can only be

expected when particles are heavy, our predictions are seen to

hold well: the heavy particle is attracted by the anticyclonic

coherent Lagrangian eddy in question, whereas the light

particle is repelled away from it.

IV. OBSERVATIONS

In this section, we discuss four sets of ocean observations

that can be explained using our predictions for the motion of

inertial particles near mesoscale coherent Lagrangian eddies.

The first set of observations, discussed in the Introduction,

concern two RAFOS floats in the southeastern North Pacific.

The floats took divergent trajectories despite their initial prox-

imity within an anticyclonic mesoscale eddy. Revealed as a

region of closed altimetric SSH streamlines, this eddy may be

the Eulerian footprint on the SSH field of a coherent

Lagrangian California Undercurrent eddy or “cuddy.” In effect,

FIG. 5. Pointwise flux on 24 November 2006 of simulated light (green) and

heavy (red) particles across the boundary of the anticyclonic coherent

Lagrangian eddy identified in the previous figure as an Agulhas ring. Solid

and dashed curves correspond to simulations based on the inertial (10) and

Maxey–Riley (6) equations, respectively.

FIG. 6. Simulated evolution of patches

of light (green), heavy (red), and fluid

(yellow) particles initially outside of

the coherent Lagrangian Agulhas ring

in the previous figures (light blue).

Centerpiece attracting iLCS and LCS

for the inertial and fluid particle

patches, respectively, is indicated in

black. Advection for fluid the particles

is supplied by altimetry-derived veloc-

ities, and inertial particle motion is

controlled by (10).
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as we anticipated in the Introduction and now explicitly show

in the top panel of Fig. 8, the altimetry-derived velocity field

sustains a coherent Lagrangian eddy in nearly the same posi-

tion as the SSH eddy. The eddy, obtained from a 90-day-for-

ward integration with k¼ 1, is depicted (in light blue) on the

detection date and two subsequent dates. The trajectory of each

of the two floats is indicated by a curve, with their initial posi-

tion highlighted by a dot. The divergent behavior of the float

trajectories can be explained by inertial effects as follows.

The bottom-left panel of Fig. 8 reveals that the float

indicated in green experiences a net ascending motion from

24 July 2003, the beginning of the record, through about 10

October 2003, roughly when the float escapes the coherent

Lagrangian eddy, detected from altimetry on 21 August

2003. By contrast, the bottom-right panel of Fig. 8 shows

that the float indicated in red oscillates about a constant

depth over this period but experiences a net descending

motion from 10 October 2003 till the end of the observatio-

nal record, 18 March 2004. Positive overall buoyancy can

thus be inferred for the green float from the beginning of the

observational record until about 10 October 2003. By con-

trast, negative overall buoyancy, preceded by a short period

of neutral overall buoyancy, can be inferred for the red float

over the entire observational record. Appendix D provides

quantitative confirmation for these qualitative inferences

and further shows that these are not sensitive to the time

windows considered.

The sign of the overall buoyancy of each float can be

used to describe its behavior qualitatively through the inertial

equation (10). The green float remains within the anticy-

clonic coherent Lagrangian eddy from 21 August to around

10 October 2003, nearly when it leaves the eddy and does

not come back during the total observational record (about 6

months). This is qualitatively consistent with the behavior of

a light particle. Beyond 10 October 2003, the buoyancy sign

for this float is not relevant, given that it is already outside

the eddy. In contrast, the red float remains inside the

Lagrangian eddy over the whole observational record.

This is qualitatively consistent with the behavior of a heavy

particle. We note that there are shorter, intermittent periods

of positive buoyancy for the red float within this observatio-

nal record. The float, however, does not have to leave the

eddy during these periods. Rather, these intervals signal a

nonuniformity in the stability for the underlying eddy core,

which nevertheless prevails as a net attractor over the obser-

vational period. Appendix D includes results from simula-

tions using the inertial equation, which provide support to

these qualitative inferences.

The second set of observations concerns trajectories of

satellite-tracked surface drifters deployed in the Gulf of

FIG. 7. Simulated trajectories of light (green) and heavy (red) particles ini-

tially lying on the same location on the boundary of the coherent Lagrangian

Agulhas ring of the previous figures (light blue) based on inertial (solid) and

Maxey–Riley (dashed) equations.

FIG. 8. (Top panel) Trajectories of the

two RAFOS floats in Fig. 1 (green and

red) and snapshots of an anticyclonic

coherent Lagrangian eddy detected

from altimetry (light blue). The dots

indicate the positions of the floats on

the dates that the eddy is shown.

(Bottom-left panel) Depth of the green

float as a function of time. (Bottom-

right panel) As in the bottom-left

panel, but for the red float.
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Mexico ahead of hurricane Rita in September 2005. The

drifters were deployed inside a Loop Current ring detected

from its Eulerian footprints in the altimetric SSH field. A

30-day-forward integration of the altimetry-derived velocity

field reveals that the anticyclonic SSH eddy contains a k¼ 1

coherent Lagrangian eddy with a radius of roughly 100 km,

about 25-km smaller than that of the approximately circular

area occupied by the SSH bulge. Figure 9 shows the coherent

Lagrangian eddy (light blue) on the detection date and two

subsequent positions obtained from advection. The trajecto-

ries of the drifters (a total of nine) are depicted in green (posi-

tions on the date shown are indicated by dots). Hurricane Rita

made landfall about one week prior to the detection date, so

neither the altimetry signal nor the motion of the drifters is

affected by the high winds associated with this tropical

cyclone system. Three drifters lie inside the eddy on the

detection date, while the remaining six are located outside of

the eddy, but close by its boundary. Overall, the drifters

undergo growing looping trajectories. More than one month

after the detection date, all nine drifters are found away from

the center of the eddy, with three lying on its border and six

lying well away from it. Noting that the drifters maintain

afloat on the ocean surface, this behavior can be expected,

given that anticyclonic coherent Lagrangian eddies repel

away light particles according to our results.

The third set of observations involves the trajectory of a

surface drifters tracked by the Argos satellite system, which

was deployed inside an Agulhas ring, named Astrid, as part

of the Mixing of Agulhas Rings Experiment (MARE) (van

Aken et al., 2003). (Two additional drifters were deployed

during MARE whose trajectories have not been possible to

access. However, all three drifters behave similarly as it can

be seen in Fig. 6 of van Aken et al. (2003).) Detected from

its Eulerian footprints in the altimetric SSH field, ring Astrid

was subjected to a detailed survey. Hydrographic casts

across ring Astrid indicated the presence of a warm and

saline core. Acoustic Doppler current profiling revealed that

Astrid had, in addition to the baroclinic flow around its core,

a significant barotropic component. A 30-day forward inte-

gration of the altimetry-derived velocity field reveals a

coherent Lagrangian eddy with k¼ 1. This eddy has a mean

radius of roughly 100 km, about half that of the approxi-

mately circular region spanned by the SSH bulge. Figure 10

shows selected snapshots of the coherent Lagrangian eddy

(light blue) on three dates starting from the detection date.

The trajectory of the Argos-tracked surface drifter is

indicated in green (dots indicate the positions of the drifter

on the corresponding dates). The drifter is seen to develop

counterclockwise looping trajectories. This grows in radius

and quite quickly the drifters abandon the vicinity of the

eddy. The coherent Lagrangian eddy is rather short lived,

thereby not revealing the presence of a well-developed

Agulhas ring (possibly consistent with the lack of a well-

defined core in the in-situ velocity measurements). However,

over the lifespan of the eddy, the drifters’ behavior is

consistent with our predictions for a light particle. Therefore,

our results offer an explanation for its motion.

Finally, the fourth set of observations involves distribu-

tion of floating Sargassum on the sea surface in the western

North Atlantic inferred from the Medium Resolution

Imaging Spectrometer (MERIS) aboard Envisat (Fig. 11, top

panel). Sargassum corresponds to Maximum Chlorophyll

Index (MCI) values exceeding �0.25 mW m�2 sr�1 nm�1.

Detected on 4 October 2006, the feature of interest takes a

spiraled shape and lies inside a coherent Lagrangian cold-

core Gulf Stream ring as revealed from altimetry. In the

bottom-left panel of Fig. 11, the material boundary of this

cyclonic coherent ring is shown overlaid on the Sargassum
feature in question. This was obtained in Section III

from advection of a coherent Lagrangian eddy boundary

FIG. 9. Trajectories of satellite-tracked

surface drifters (green curves) and

snapshots of a coherent Lagrangian

Loop Current ring detected from altim-

etry (light blue). The dots indicate the

positions of the drifters on the corre-

sponding date.

FIG. 10. Trajectory of an Argos-

tracked surface drifter (green curve)

and snapshots of a short-lived coherent

Lagrangian Agulhas ring detected

from altimetry (light blue). A dot indi-

cates the position of the drifter on the

corresponding date.
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computed on 5 August 2006 from a 90-day-forward integra-

tion of the altimetry-derived velocity field (cf. Fig. 4, top-

right panels). The accumulation of the floating Sargassum
inside the Gulf Stream ring is consistent with the behavior of

inertial particles near cyclonic coherent Lagrangian eddies,

which attract light particles according to our results. The

spiraled shape of the Sargassum distribution inside the ring

is consistent too with the spiraled shape acquired by

altimetry-based attracting light iLCS (parameters are as in

Section III). Selected iLCSs are shown overlaid on the

Sargassum distribution in the bottom-right panel of Fig. 11.

These were obtained as backward-time light inertial squeeze-

lines initialized along the boundary of the Gulf Stream ring

on the date shown. The direction of the spiraling inertial par-

ticle motion along these iLCS is inward, as direct integration

of the inertial particle equation reveals.

V. SUMMARY AND DISCUSSION

In this paper, we have provided an explanation for the

observed tendency of drifting buoys and floating matter on

the surface of the ocean to produce dissipative-looking

patterns. This resolves an apparent paradox with the

conservative-looking distributions that tracers passively

advected by a rotating two-dimensional incompressible flow

display. Our explanation takes into account inertial effects,

i.e., those produced by the buoyancy and size finiteness of an

object immersed in such a flow. These are described by a

simplified Maxey–Riley equation consistent with a flow pro-

duced by a quasigeostrophic velocity where the pressure

field is entirely due to differences in sea surface height.

Because the latter are readily available from satellite altime-

try measurements, our approach enables feature matching

and analysis of specific observations. Furthermore, our

approach is self-consistent within the realm of two-

dimensional incompressible flows.

We have found that anticyclonic coherent Lagrangian

eddies attract (repel) heavy (light) particles, while cyclonic

ones behave the opposite way. We verified these results

numerically using mesoscale SSH fields constructed from

satellite altimetry measurements in various places of the

ocean. Our findings also explained dissipative-type behavior

shown by four sets of observations: divergent motion of

subsurface floats initially inside a California Undercurrent

eddy or “cuddy,” dispersion of surface drifters away from a

Loop Current ring, ejection of surface drifters out of a well-

studied Agulhas ring, and accumulation of sargassum inside

of a cold-core Gulf Stream ring.

Beyond the reach of the Maxey–Riley description is

motion of arbitrarily shaped objects; no known theory

accounts for their effects. At the Maxey–Riley level, there

are terms and aspects that we have ignored, which may

contribute to narrow the gap between theory and observed

motion. One such term is the memory term, but this only

tends to slow down the inertial particle motion without

changing its qualitative dynamics fundamentally (Daitche

and T�el, 2011). Another neglected aspect is the dependence

of fluid density on spatial position and time. Time varying

density effects were investigated previously in idealized set-

tings and found to be of importance (Tanga and Provenzale,

1994). The observational possibility to account for these

effects is provided by satellite sensing of sea surface temper-

ature and salinity. An additional aspect is the effect of sub-

mesoscale perturbations on the mesoscale motions of interest

to us here. These may be of fully ageostrophic and possibly

three-dimensional nature (McWilliams, 2008) or still be

balanced to leading order, and thus essentially two-

dimensional and incompressible (Klein and Lapeyre, 2009).

The latter is particularly interesting as it opens the way to

a potentially more accurate observation-based velocity

representation when high-resolution wide-swath altimetry

becomes operational (Fu and Ferrari, 2009). The only obser-

vational improvement over altimetry-derived velocities may

then be expected from the addition of an Ekman drift compo-

nent estimated from satellite scattometer wind measure-

ments. This typically small correction is regularly included,

but in such a way as to match observed drifting buoy veloc-

ities (Lagerloef et al., 1999), which is not consistent with our

inertial particle approach.

We finally note that a larger sample of drifting buoys

and floating matter than that considered here is required to

further validate our predictions, possibly improved by the

consideration of fluid density variations and Ekman drift

effects.

FIG. 11. (Top panel) Maximum Chlorophyll Index (MCI) in the western

North Atlantic inferred from the Medium Resolution Imaging Spectrometer

(MERIS) aboard Envisat on 4 October 2006. Floating Sargassum corre-

sponds to MCI values in excess of �0.25 mW m�2 sr�1 nm�1. (Bottom-left

panel) Boundary of a coherent Lagrangian cold-core Gulf Stream ring

detected from altimetry (black) overlaid on the Sargassum distribution.

(Bottom-right panel) Altimetry-based attracting light iLCS (black) overlaid

on the Sargassum distribution.
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APPENDIX A: REDUCED MAXEY–RILEY EQUATION

The second-order ODE (6) is equivalent to the following

first-order ODE set:

_x ¼ vp; _vp ¼ f ðdv� vpÞ? þ s�1ðv� vpÞ: (A1)

Taking L and L/V as length and time scales, respectively, and

making sjf j ¼ 1 so that e ¼ sV=L ¼ Ro� 1, the nondimen-

sional form of (A1) reads

_x ¼ vp; e2 _vp ¼ sign f eðdv� vpÞ? þ v� vp: (A2)

Inspection of (A2) reveals that x is a slow variable that

changes at O(1) speed, while vp is a fast variable varying at

Oðe�2Þ speed. Consequently, (A2) represents a singular per-

turbation problem. To regularize it, we displace and rescale

time as e�2ðt� t0Þ. Denoting with a circle differentiation

with respect to this fast time variable, (A2) transforms into

x̊¼ e2vp; v̊p ¼ sign f eðdv� vpÞ? þ v� vp; t̊¼ e2: (A3)

The e ¼ 0 limit of system (A3) has a manifold of fixed

points. This manifold is normally attracting and hence sur-

vives for small e > 0 in the form

vp ¼ vþ ev1 þ Oðe2Þ: (A4)

Plugging this asymptotic series expansion into the right-

hand-side equation of system (A3) and equating OðeÞ terms,

it follows that

v1 ¼ sign f ðd� 1Þv?: (A5)

Inserting this expression in the left-hand-side equation of

system (A3), the inertial equation (10) follows once dimen-

sional variables are recovered.

Particle dynamics governed by the inertial equation (10)

evolve, over the finite-time interval of interest, on a two-

dimensional manifold, Me, in the phase space with coordi-

nates ðx; vp; tÞ. This manifold is often referred to as slow
because (10) restricted to it is a slowly varying system of the

form x̊¼ e2vpjMe
¼ e2vþ e3v1 þ Oðe4Þ. As shown in Haller

and Sapsis (2008), this slow manifold attracts all inertial

particle motions exponentially.

APPENDIX B: DATA

The altimetric SSH data employed in this paper consist

of background and perturbation components. The back-

ground SSH component is steady, given by a mean dynamic

topography constructed from satellite altimetry data, in-situ
measurements, and a geoid model (Rio and Hernandez,

2004). The perturbation SSH component is transient, given

by altimetric SSH anomaly measurements provided weekly

on a 0.25�-resolution longitude–latitude grid. This perturba-

tion component is referenced to a 20-year (1993–2012)

mean, obtained from the combined processing of data

collected by altimeters on the constellation of available

satellites (Le Traon et al., 1998). Mean dynamic topography

and altimetry data are distributed by AVISO at http://

www.aviso.oceanobs.com.

The RAFOS float trajectory data belong to the extensive

data set constructed from float deployments in the California

Undercurrent over the period 1992–2010 (Collins et al.,
2013). Acoustically tracked, these RAFOS floats are quasi-

isobaric, with their density varying with ambient temperature

changes as a result of differing thermal expansions of the

glass hull and aluminum end cap of the floats (Rossby et al.,
1986). As opposed to seawater parcels, the floats sink when

they warm and rise when they cool (Swift and Riser, 1994).

The specific floats considered in this paper are shallow (300

db) floats, numbers 105 and 106, obtained from http://

www.oc.nps.edu/npsRAFOS.

The surface drifters in the Loop Current ring were

deployed from air by the 53rd Hurricane Hunter Squadron

ahead of hurricane Rita. Equipped to monitor surface condi-

tions, these drifters were of Minimet (drogue at 15 m) and

ADOS (with a 100-m-long thermistor chain hanging below)

types. The trajectories of these drifters are available from the

NOAA Global Drifter Program at http://www.aoml.noaa.-

gov/phod/dac.

Three surface drifters were deployed in ring Astrid dur-

ing the MARE-1 cruise. These were standard spherical

WOCE/TOGA drifters, fitted with an 8-m-long holey sock

drogue at 15 m, with their positions tracked using the Argos

satellite system (Sybrandy and Niiler, 1991). The trajectories

of these drifters are not available from any database. The tra-

jectory of the drifter considered in this paper was digitalized

from Fig. 4 of van Aken et al. (2003) and spline fitted. We

have not been able to reliably digitalize from this figure the

other two trajectories, which exhibit a qualitatively similar

behavior.

Finally, the MERIS image shown in Fig. 11 is of L1b

MCI, a spectrometer parameter traditionally used to detect

and track Sargassum (Gower and King, 2008). MERIS

imagery is available from ESA Earth Online at https://earth.

esa.int/web/guest/data-access.

APPENDIX C: COMPUTATIONAL DETAILS

The flow maps associated with (2) and (10) were

obtained from integration for initial positions on a regular

0.5-km-width grid covering the domain of interest. This was

done using a stepsize-adapting fourth-order Runge–Kutta

method with interpolations obtained using a cubic scheme.

The derivative of the flow maps was computed using finite

differences on an auxiliary 0.1-km-width grid of four points

neighboring each point in the above grid. Integrations of (5)

and (12) were carried out using the same method while

enforcing a unique orientation for the corresponding

vector fields at each integration step (recall that these are
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constructed from eigenvector fields, which are not globally

orientated). Detailed algorithmic steps for the extraction of

coherent Lagrangian eddies are outlined in Haller and

Beron-Vera (2013). The numerical computation of attracting

iLCS involves the same algorithmic steps as those for attract-

ing LCS; these are outlined in Haller and Beron-Vera (2012)

and Farazmand and Haller (2013).

APPENDIX D: EXTENDED ANALYSIS FOR THE RAFOS
FLOAT DATA SET

As noted in Appendix B, the RAFOS floats considered

here are designed to travel on isobaric surfaces, but these

differ from constant depth surfaces due to ambient density

changes, which induce small buoyancy variations for the

floats. As a result, knowledge of the volume of a float is not

sufficient to determine its buoyancy. To provide a rough

quantitative confirmation for the sign of the float buoyancy,

we assume a simplified model, whereby the vertical float

motion decouples from (10) and is controlled by gravity and

buoyancy, subject to Stokes drag. Under this approximation,

the float’s vertical position, z, satisfies the equation of motion

€z ¼ ðd� 1Þg� s�1 _z, where g is the gravity. The general

solution to this equation is zðtÞ ¼ z0 þ ðd� 1Þgs ðt� t0Þ
þ a0 exp s�1ðt� t0Þ for some constants z0 and a0. Nonlinear

regressions of this general solution to the observed floats’ depth

histories are attained with d� 1 � ð0:4860:13Þ � 10�10

and �ð0:1260:11Þ � 10�10 for the green and red floats,

respectively. These values were found by taking a¼ 0.2 m, the

radius of a sphere whose volume matches that of a typical

RAFOS float, which gives s � 0:1 d�1. Uncertainties noted

are of one standard deviation, resulting from considering

regressions over time windows as short as 5 weeks (about

twice the eddy turnover timescale) sliding over relevant obser-

vational time intervals. For the green float, the relevant obser-

vational time interval goes from the beginning of the record

until the time the float escapes the eddy (11 weeks), while for

the red float it is entire record (34 weeks). The black curves in

the bottom panels of Fig. 12 correspond to regressions over the

entire relevant time intervals. These results provide further

confirmation to the visually inferred buoyancy signs, which we

inferred only from the net vertical displacements of the floats

between the endpoints of these intervals.

To match the actual shape of observed float trajectories,

we would need to include further terms (such as nonlinear

drag, added mass, horizontal–vertical coupling, etc.). These

terms, however, would all bring in unknown parameters,

thereby increasing the uncertainty in the inferred buoyancy.

Instead, we proceed by solving (10) using a priori specified

d values, with the signs inferred above, but with magnitudes

enhanced to a level that produces motions similar to the

observations. Specifically, in the top panels of Fig. 12, we

show simulated inertial particle trajectories of (10) with d ¼
1:001 (left) and 0:999 (right) starting from several initial

positions inside the coherent Lagrangian eddy on 21 August

2003 rather than just the floats’ initial positions. This repla-

ces a single trajectory model for the observed behavior with

an ensemble of model trajectories. For both light and heavy

particles, we have chosen (as above) s ¼ 0:1 d�1. This is

roughly the inverse of the local Coriolis parameter, which

makes e small enough for (10) to hold asymptotically, as

shown in Appendix A. The mean inertial particle trajectory

inferred from the ensembles is indicated in each top panel of

Fig. 12 by a thick curve. This ensemble averaged behavior is

consistent with the observed float behavior, thereby justify-

ing our buoyancy choices for modelling purposes. These

choices might be improved by further optimization.

We close by noting that dealing with noisy observations

is challenging and that while the behavior of the observed

floats is consistent with the inertial equation derived here,

more such observations with float pairs would be desirable to

more thoroughly test the inertial equation predictions.
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FIG. 12. (Top-left panel) Trajectories (thin) and corresponding mean trajectory (thick) for an ensemble of light particles obeying the inertial equation (10)

with initial positions inside the coherent material eddy on 21 August 2003 of Figs. 1 and 8. (Top-right panel) As in the top-left panel, but for heavy particles.

(Bottom-left panel) As a function of time, depth of the green float and that of an equivalent light particle under the action of gravity, buoyancy, and Stokes

drag over the period in which the float remains inside the eddy (black). (Bottom-right panel) As in the bottom-left panel, but for the red float and a heavy

particle.

087412-11 Beron-Vera et al. Chaos 25, 087412 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.132.172.206 On: Tue, 01 Sep 2015 13:22:24

http://dx.doi.org/10.1175/JPO-D-12-0171.1
http://dx.doi.org/10.1175/JPO-D-12-0171.1
http://dx.doi.org/10.1016/j.pocean.2011.01.002


Collins, C. A., Margolina, T., Rago, T. A., and Ivanov, L., “Looping

RAFOS floats in the California Current System,” Deep Sea Res., Part II

85, 42–61 (2013).

Daitche, A. and T�el, T., “Memory effects are relevant for chaotic advection

of inertial particles,” Phys. Rev. Lett. 107, 244501 (2011).

Dvorkin, Y., Paldor, N., and Basdevant, C., “Reconstructing balloon trajec-

tories in the tropical stratosphere with a hybrid model using analysed

fields,” Q. J. R. Meteorol. Soc. 127, 975–988 (2001).

Farazmand, M., Blazevski, D., and Haller, G., “Shearless transport barriers

in unsteady two-dimensional flows and maps,” Physica D 278-279, 44–57

(2014).

Farazmand, M. and Haller, G., “Attracting and repelling Lagrangian coher-

ent structures from a single computation,” Chaos 23, 023101 (2013).

Froyland, G., Stuart, R. M., and van Sebille, E., “How well-connected is the

surface of the global ocean?” Chaos 24, 033126 (2014).

Fu, L. L., Chelton, D. B., Le Traon, P.-Y., and Morrow, R., “Eddy dynamics

from satellite altimetry,” Oceanography 23, 14–25 (2010).

Fu, L.-L. and Ferrari, R., “Observing oceanic submesoscale processes from

space,” Eos 89, 488–489 (2008).

Garfield, N., Collins, C. A., Paquette, R. G., and Carter, E., “Lagrangian ex-

ploration of the California Undercurrent, 1992–95,” J. Phys. Oceanogr. 29,

560–583 (1999).

Gower, J. and King, S., “Satellite images show the movement of floating

Sargassum in the Gulf of Mexico and Atlantic Ocean,” in Nature

Precedings, see http://hdl.handle.net/10101/npre.2008.1894.1, 2008.

Haller, G., “Lagrangian coherent structures,” Ann. Rev. Fluid Mech. 47,

137–162 (2015).

Haller, G. and Beron-Vera, F. J., “Geodesic theory of transport barriers in

two-dimensional flows,” Physica D 241, 1680–1702 (2012).

Haller, G. and Beron-Vera, F. J., “Coherent Lagrangian vortices: The black

holes of turbulence,” J. Fluid Mech. 731, R4 (2013).

Haller, G. and Beron-Vera, F. J., “Addendum to ‘Coherent Lagrangian vorti-

ces: The black holes of turbulence’,” J. Fluid Mech. 755, R3 (2014).

Haller, G. and Sapsis, T., “Where do inertial particles go in fluid flows?”

Physica D 237, 573–583 (2008).

Haszpra, T. and T�el, T., “Volcanic ash in the free atmosphere: A dynamical

systems approach,” J. Phys.: Conf. Ser. 333, 012008 (2011).

Klein, P. and Lapeyre, G., “The oceanic vertical pump induced by mesoscale

eddies,” Ann. Rev. Mar. Sci. 1, 351–375 (2009).

Lagerloef, G. S. E., Mitchum, G., Lukas, R., and Niiler, P., “Tropical pacific

near-surface currents estimated from altimeter, wind and drifter data,”

J. Geophys. Res. 104, 23313–23326, doi:10.1029/1999JC900197 (1999).

Le Traon, P. Y., Nadal, F., and Ducet, N., “An improved mapping method

of multisatellite altimeter data,” J. Atmos. Oceanic Technol. 15, 522–534

(1998).

Maxey, M. R. and Riley, J. J., “Equation of motion for a small rigid sphere

in a nonuniform flow,” Phys. Fluids 26, 883 (1983).

Maximenko, A. N., Hafner, J., and Niiler, P., “Pathways of marine debris

derived from trajectories of lagrangian drifters,” Mar. Pollut. Bull. 65,

51–62 (2012).

McWilliams, J. C., “Fluid dynamics at the margin of rotational control,”

Environ. Fluid Mech. 8, 441–449 (2008).

Nielsen, P., “Suspended sediment particle motion in coastal flows,” Coastal

Eng. Proc. 1, 2406–2416 (1994).

Paparella, F., Babiano, A., Basdevant, C., Provenzale, A., and Tanga, P., “A

lagrangian study of the antarctic polar vortex,” J. Geophys. Res. 102,

6765–6773, doi:10.1029/96JD03377 (1997).

Peng, J. and Dabiri, J. O., “Transport of inertial particles by Lagrangian

Coherent Structures: Application to predator-prey interaction in jellyfish

feeding,” J. Fluid Mech. 623, 75–84 (2009).

Provenzale, A., “Transport by coherent barotropic vortices,” Annu. Rev.

Fluid Mech. 31, 55–93 (1999).

Reigada, R., Hillary, R. M., Bees, M. A., Sancho, J. M., and Sagues, F.,

“Plankton blooms induced by turbulent flows,” Proc. R. Soc. London, Ser.

B 270, 875–880 (2003).

Rio, M.-H. and Hernandez, F., “A mean dynamic topography computed over

the world ocean from altimetry, in situ measurements, and a geoid model,”

J. Geophys. Res. 109, C12032, doi:10.1029/2003JC002226 (2004).

Rossby, T., Dorson, D., and Fontaine, J., “The RAFOS system,” J. Atmos.

Ocean. Technol. 3, 672–679 (1986).

Sapsis, T. and Haller, G., “Inertial particle dynamics in a hurricane,”

J. Atmos. Sci. 66, 2481–2492 (2009).

Stommel, H. J., “Trajectories of small bodies sinking slowly through con-

vection cells,” J. Mar. Res. 8, 24–29 (1949).

Swift, D. D. and Riser, S. C., “RAFOS floats: defining and targeting surfaces

of neutral buoyancy,” J. Atmos. Ocean. Technol. 11, 1079–1092 (1994).

Sybrandy, A. L. and Niiler, P. P., “WOCE/TOGA Lagrangian drifter con-

struction manual,” Technical Report SIO Reference 91/6 (Scripps

Institution of Oceanography, La Jolla, CA, 1991).

Tang, W., Haller, G., Baik, J.-J., and Ryu, Y.-H., “Locating an atmospheric con-

tamination source using slow manifolds,” Phys. Fluids 21, 043302 (2009).

Tanga, P. and Provenzale, A., “Dynamics of advected tracers with varying

buoyancy,” Physica D 76, 202–215 (1994).

van Aken, H. M., van Veldhoven, A. K., Veth, C., de Ruijter, W. P. M., van

Leeuwen, P. J., Drijfhout, S. S., Whittle, C. P., and Rouault, M.,

“Observations of a young Agulhas ring, Astrid, during MARE in March

2000,” Deep Sea Res., Part II 50, 167–195 (2003).

Zhong, Y., Bracco, A., and Villareal, T., “Pattern formation at the ocean sur-

face: Sargassum distribution and the role of the eddy field,” Limnol.

Oceanogr. 12, 12–27 (2012).

087412-12 Beron-Vera et al. Chaos 25, 087412 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.132.172.206 On: Tue, 01 Sep 2015 13:22:24

http://dx.doi.org/10.1016/j.dsr2.2012.07.027
http://dx.doi.org/10.1103/PhysRevLett.107.244501
http://dx.doi.org/10.1002/qj.49712757314
http://dx.doi.org/10.1016/j.physd.2014.03.008
http://dx.doi.org/10.1063/1.4800210
http://dx.doi.org/10.1063/1.4892530
http://dx.doi.org/10.5670/oceanog.2010.02
http://dx.doi.org/10.1029/2008EO480003
http://dx.doi.org/10.1175/1520-0485(1999)029<0560:LEOTCU>2.0.CO;2
http://hdl.handle.net/10101/npre.2008.1894.1
http://dx.doi.org/10.1146/annurev-fluid-010313-141322
http://dx.doi.org/10.1016/j.physd.2012.06.012
http://dx.doi.org/10.1017/jfm.2013.391
http://dx.doi.org/10.1017/jfm.2014.441
http://dx.doi.org/10.1016/j.physd.2007.09.027
http://dx.doi.org/10.1088/1742-6596/333/1/012008
http://dx.doi.org/10.1146/annurev.marine.010908.163704
http://dx.doi.org/10.1029/1999JC900197
http://dx.doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2
http://dx.doi.org/10.1063/1.864230
http://dx.doi.org/10.1016/j.marpolbul.2011.04.016
http://dx.doi.org/10.1007/s10652-008-9081-8
http://dx.doi.org/10.1029/96JD03377
http://dx.doi.org/10.1017/S0022112008005089
http://dx.doi.org/10.1146/annurev.fluid.31.1.55
http://dx.doi.org/10.1146/annurev.fluid.31.1.55
http://dx.doi.org/10.1098/rspb.2002.2298
http://dx.doi.org/10.1098/rspb.2002.2298
http://dx.doi.org/10.1029/2003JC002226
http://dx.doi.org/10.1175/1520-0426(1986)003<0672:TRS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1986)003<0672:TRS>2.0.CO;2
http://dx.doi.org/10.1175/2009JAS2865.1
http://dx.doi.org/10.1175/1520-0426(1994)011<1079:RFDATS>2.0.CO;2
http://dx.doi.org/10.1063/1.3115065
http://dx.doi.org/10.1016/0167-2789(94)90259-3
http://dx.doi.org/10.1016/S0967-0645(02)00383-1
http://dx.doi.org/10.1215/21573689-1573372
http://dx.doi.org/10.1215/21573689-1573372

