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Data-driven modeling and prediction of non-
linearizable dynamics via spectral submanifolds
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We develop a methodology to construct low-dimensional predictive models from data sets

representing essentially nonlinear (or non-linearizable) dynamical systems with a hyperbolic

linear part that are subject to external forcing with finitely many frequencies. Our data-driven,

sparse, nonlinear models are obtained as extended normal forms of the reduced dynamics on

low-dimensional, attracting spectral submanifolds (SSMs) of the dynamical system. We

illustrate the power of data-driven SSM reduction on high-dimensional numerical data sets

and experimental measurements involving beam oscillations, vortex shedding and sloshing in

a water tank. We find that SSM reduction trained on unforced data also predicts nonlinear

response accurately under additional external forcing.
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Low-dimensional reduced models of high-dimensional non-
linear dynamical systems are critically needed in various
branches of applied science and engineering. Such simplified

models would significantly reduce computational costs and
enable physical interpretability, design optimization and efficient
controllability. As of yet, however, no generally applicable pro-
cedure has emerged for the reliable and robust identification of
nonlinear reduced models.

Instead, the most broadly used approach to reducing nonlinear
dynamical systems has been a fundamentally linear technique, the
proper orthogonal decomposition (POD), followed by a Galerkin
projection1–3. Projecting the full dynamics to the most energetic
linear modes, POD requires the knowledge of the governing
equations of the system and hence is inapplicable when only data
is available. As purely data-based alternatives, machine learning
methods are broadly considered and tested in various fields4–7.
While the black-box approach of machine learning might often
seem preferable to a detailed nonlinear analysis, the resulting
neural network models require extensive tuning, lack physical
interpretability, generally perform poorly outside their training
range and tend to be unnecessarily complex8. This has inspired a
number of approaches that seek a blend of machine learning with
a priori information about the underlying physics9,10. Still within
the realm of machine learning, sparse regression has also shown
promise in approximating the right-hand sides of low-dimen-
sional, simple dynamical systems with functions taken from a
preselected library4. Another recent approach is cluster-based
network modeling, which uses the toolkit of network science and
statistical physics for modeling nonlinear dynamics11.

A popular alternative to POD and machine learning is the
dynamic mode decomposition (DMD)12, which approximates
directly the observed system dynamics. The original DMD and its
later variants fit a linear dynamical system to temporally evolving
data, possibly including further functions of the original data,
over a given finite time interval13. DMD provides an appealingly
simple yet powerful algorithm to infer a local model near steady
states where the nonlinear dynamics is always approximately
linear. This linear model is also more globally valid if constructed
over observables lying in a span of some eigenfunctions of the
Koopman operator, which maps observables evaluated over initial
states into their evaluations over current states14–16. This rela-
tionship between DMD and the Koopman operator has moti-
vated an effort to machine-learn Koopman eigenfunctions from
data in order to linearize nonlinear dynamical systems globally on
the space of their observables17–19.

Finding physically realizable observables that fall in a Koop-
man eigenspace is, however, often described as challenging or
difficult20. A more precise assessment would be that such a find is
highly unlikely, given that the probability of any countable set of a
priori selected observables falling in any Koopman eigenspace is
zero. In addition, those eigenspaces can only be determined
explicitly in simple, low-dimensional systems. In practice, there-
fore, DMD can only provide a justifiable model near an attracting
fixed point of a dynamical system. While Koopman modes still
have the potential to linearize the observer dynamics on larger
domains, those domains cannot include more than one attracting
or repelling fixed point19–21. Indeed, DMD and Koopman mode
expansions fail to converge outside neighborhoods of fixed points
even in the simplest, one-dimensional nonlinear systems with two
fixed points20,22. In summary, while these data-driven model
reduction methods are powerful and continue to inspire ongoing
research, their applicability is limited to locally linearized systems
and globally linearizable nonlinear systems, such as the Burgers
equation23.

The focus of this paper is the development of data-driven,
simple and predictive reduced-order models for essentially

nonlinear dynamical systems, i.e., nonlinearizable systems.
Determining exact linearizability conclusively from data is
beyond reach. In contrast, establishing that a dynamical system is
nonlinearizable in a domain of interest is substantially simpler:
one just needs to find an indication of coexisting isolated sta-
tionary states in the data. By an isolated stationary state, we mean
here a compact and connected invariant set with an open
neighborhood that contains no other compact and connected
invariant set. Examples of such stationary states include hyper-
bolic fixed points, periodic orbits, invariant spheres and quasi-
periodic tori; closures of homoclinic orbits and heteroclinic
cycles; and chaotic attractors and repellers. If a data set indicates
the coexistence of any two sets from the above list, then the
system is conclusively non-linearizable in the range of the avail-
able data. Specifically, there will be no homeomorphism (con-
tinuous transformation with a continuous inverse) that
transforms the orbits of the underlying dynamical system into
those of a linear dynamical system. While this is a priori clear
from dynamical systems theory, several studies have specifically
confirmed a lack of convergence of Koopman-mode expansions
already for the simplest case of two coexisting fixed points, even
over subsets of their domain of attraction or repulsion20,22.

Non-linearizable systems are ubiquitous in science, technology
and nature. Beyond the well-known examples of chaotic dyna-
mical systems and turbulent fluid flows1, any bifurcation phe-
nomenon, by definition, involves coexisting steady states and
hence is automatically non-linearizable. Indeed, aerodynamic
flutter24, buckling of beams and shells25, bistable microelec-
tromechanical systems26, traffic jams27 or even tipping points in
climate change28 are all fundamentally non-linearizable, just to
name a few. Figure 1 shows some examples of non-linearizable
systems emerging in technology, nature and scientific modeling.

We will show here that a collection of classic and recent
mathematical results from nonlinear dynamical systems theory
enables surprisingly accurate and predictive low-dimensional
modeling from data for a number of non-linearizable phenom-
ena. Our construct relies on the recent theory of spectral sub-
manifolds (SSMs), the smoothest invariant manifolds that act as
nonlinear continuations of non-resonant eigenspaces from the
linearization of a system at a stationary state (fixed point, periodic
orbit or quasiperiodic orbit29). Using appropriate SSM
embeddings30–32 and an extended form of the classic normal
form theory33, we obtain sparse dynamical systems describing the
reduced dynamics on the slowest SSMs of the system, which are
normally hyperbolic and hence robust under perturbations34.

We construct the extended normal form within the slowest
SSM as if the eigenvalues of the linearized dynamics within the
SSM had zero real parts, although that is not the case. As a result,
our normalization procedure will not render the simplest possible
(linear) normal form for the SSM dynamics, valid only near the
underlying isolated stationary state. Instead, our procedure yields
a sparsified nonlinear, polynomial normal form on a larger
domain of the SSM that can also capture nearby coexisting sta-
tionary states. This fully data-driven normalization algorithm
learns the normal form transformation and the coefficients of the
normal form simultaneously by minimizing an appropriately
defined conjugacy error between the unnormalized and normal-
ized SSM dynamics.

For a generic observable of an oscillatory dynamical system
without an internal resonance, a two-dimensional data-driven
model calculated on the slowest SSM of the system turns out to
capture the correct asymptotic dynamics. Such an SSM-reduced
model is valid on domains in which the nonlinearity and any
possible external forcing are strong enough to create non-
linearizable dynamics, yet are still moderate enough to render the
eigenspace of the linear system relevant. More generally,
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oscillatory systems with m independent internal resonances in
their spectrum can be described by reduced models on
2 mþ 1ð Þ-dimensional SSMs. In both the resonant and the non-
resonant cases, the models can be refined by increasing the degree
of their nonlinearity rather than by increasing their dimension.
As we show in examples, the resulting SSM-based models are
explicit, deterministic and even have the potential to predict
system behavior outside the range of the training data away from
bifurcations. Most importantly, we find that the models also
accurately predict forced response, even though they are only
trained on data collected from unforced systems.

We illustrate the power of data-driven SSM-reduced models on
high-dimensional numerically generated data sets and on
experimental data. These and further examples are also available
as MATLAB® live scripts, which are part of a general open-source
package, SSMLearn, that performs this type of model reduction
and prediction for arbitrary data sets.

Results
Spectral submanifolds and their reduced dynamics. A recent
result in dynamical systems is that all eigenspaces (or spectral
subspaces) of linearized systems admit unique nonlinear con-
tinuations under well-defined mathematical conditions. Specifi-
cally, spectral submanifolds (SSMs), as defined by29, are the
unique smoothest invariant manifolds that serve as nonlinear
extensions of spectral subspaces under the addition of non-
linearities to a linear system. The SSM formulation and termi-
nology we use here is due to29; the Methods section “Existence of
SSMs” discusses the history of these results and further technical
details.

We consider n-dimensional dynamical systems of the form

_x ¼ Ax þ f0ðxÞ þ ϵf1ðx;Ωt; ϵÞ; f0ðxÞ ¼ Oð xj j2Þ; 0≤ ϵ � 1;

ð1Þ
with a constant matrix A 2 Rn ´ n; and with class Cr functions
f0 : U ! Rn and f1 : U ´T‘ ! Rn, where T‘ ¼ S1 ´ ¼ ´ S1 is
the ℓ-dimensional torus. The elements of the frequency vector

Ω2R‘ are rationally independent, and hence the function f1 is
quasiperiodic in time. The assumed degree of smoothness for the
right-hand side of (1) is r 2 Nþ ∪ 1; af g, with a referring to
analytic. The small parameter ϵ signals that the forcing in system
(1) is moderate so that the structure of the autonomous part is
still relevant for the full system dynamics. Rigorous mathematical
results on SSMs are proven for small enough ϵ, but continue to
hold in practice for larger values of ϵ as well, as we will see in
examples. Note that eq. (1) describes equations of motions of
physical oscillatory systems. It does not cover phenomenological
models of phase oscillators, such as the Kuramoto model35.

The eigenvalues λj ¼ αj þ iωj 2 C of A, with multiplicities
counted, are ordered based on their real parts, Reλj, as

Reλn ≤Reλn�1 ≤ ¼ ¼ ≤Reλ1: ð2Þ
Their corresponding real modal subspaces (or eigenspaces),
Ej � Rn, are spanned by the imaginary and real parts of the
corresponding eigenvectors and generalized eigenvectors of A. To
analyze typical systems, we assume that Reλj ¼ αj ≠ 0 holds for all
eigenvalues, i.e., x= 0 is a hyperbolic fixed point for ϵ= 0.

A spectral subspace Ej1;¼ ;jq
is a direct sum

Ej1;¼ ;jq
¼ Ej1

� Ej2
� ¼ � Ejq ð3Þ

of an arbitrary collection of modal subspaces, which is always an
invariant subspace for the linear part of the dynamics in (1).
Classic examples of spectral subspaces are the stable and unstable
subspaces, comprising all modal subspaces with Reλk < 0 and
Reλk > 0, respectively. Projections of the linearized system onto
the nested hierarchy of slow spectral subspaces,

E1 � E2 � E3 � ¼ ; Ek :¼ E1;¼ ;k; k ¼ 1; ¼ ; n; ð4Þ
provide exact reduced-order models for the linearized dynamics
over an increasing number of time scales under increasing k, as
sketched in panel (a) of Fig. 2. This is why a Galerkin projection
onto Ek is an exact model reduction procedure for linear systems,
whose accuracy can be increased by increasing k. A fundamental
question is whether nonlinear analogues of spectral subspaces

Fig. 1 Examples of non-linearizable systems. a Snap-through instability of a microelectro-mechanical (MEMS) device with three coexisting equilibria
(Sandia National Laboratories). b Wind-tunnel flutter of an airplane prototype, involving a fixed point and coexisting limit cycles (NASA Langley Research
Center). c Swirling clouds behind an island in the Pacific ocean, forming a vortex street with coexisting isolated hyperbolic and elliptic trajectories for the
dynamical system describing fluid particle motion (USGS/NASA). d Phase portrait of the damped, double-well Duffing oscillator €xþ _x� xþ βx3 ¼ 0 with
β > 0, the most broadly used model for nonlinear systems with coexisting domains of attraction (colored), such as the MEMS device in plot (a). e Nonlinear
response amplitude (jxðtÞjmax) in the forced-damped, single-well Duffing oscillator, €xþ _xþ xþ βx3 ¼ f cosωt with β > 0, under variations of the forcing
frequency ω and forcing amplitude f. Coexisting stable and unstable periodic responses show non-linearizable dynamics conclusively for this classic model.
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continue to organize the dynamics under the addition of
nonlinear and time-dependent terms in the full system (1).

Let us fix a specific spectral subspace E ¼ Ej1;¼ ;jq
within either

the stable or the unstable subspace. If E is non-resonant (i.e., no
nonnegative, low-order, integer linear combination of the
spectrum of A∣E is contained in the spectrum of A outside E),
then E has infinitely many nonlinear continuations in the system
(1) for ϵ small enough29. These invariant manifolds are of
smoothness class CΣ(E), with the spectral quotient Σ(E) measuring
the ration of the fastest decay exponent outside E to the slowest
decay exponent inside E (see eq. (13) of the Methods section
“Existence of SSMs”). All such manifolds are tangent to E for
ϵ= 0, have the same quasiperiodic time dependence as f1 does
and have a dimension equal to that of E.

Of these infinitely may invariant manifolds, however, there will
be a unique smoothest one, the spectral submanifold (SSM) of E,
denoted W(E,Ωt; ϵ). This manifold is Cr smooth if r > Σ(E) and
can therefore be approximated more accurately than the other
infinitely many nonlinear continuations of E. In particular, SSMs
have convergent Taylor expansions if the dynamical system (1) is
analytic (r= a). Then the reduced dynamics on a slow SSM, Ek,
can be approximated with arbitrarily high accuracy using
arbitrarily high-order Taylor expansions, without ever increasing
the dimension of Ek, see panel (b) of Fig. 2. Such an
approximation for dynamical systems with known governing
equations is now available for any required order of accuracy via
the open-source MATLAB® package SSMTool36. In contrast,
reduced models obtained from projection-based procedures can
only be improved by increasing their dimensions.

The nearby coexisting stationary states in Fig. 2 happen to be
contained in the SSM. In specific examples, however, these states
may also be off the SSM, contained instead in one of the infinitely
many additional nonlinear continuations, ~WðE;Ωt; ϵÞ, of the
spectral subspace E. The Taylor expansion of the dynamics on
~WðE;Ωt; ϵÞ and W(E,Ωt; ϵ) are, however, identical up to order
Σ(E). Therefore, the reduced models we will compute on the SSM
W(E,Ωt; ϵ) also correctly capture the nearby stationary states on
~WðE;Ωt; ϵÞ, as long as the polynomial order of the model stays
below Σ(E). In large physical systems, this represents no
limitation, given that Σ(E)≫ 1.

Embedding SSMs via generic observables. If at least some of the
real parts of the eigenvalues in (2) are negative, then longer-term
trajectory data for system (1) will be close to an attracting SSM, as
illustrated in panel (b) of Fig. 2. This is certainly the case for data
from experiments that are run until a nontrivial, attracting steady
state emerges, see, e.g., in panel (e) of Fig. 1. Measurements of
trajectories in the full phase space, however, are seldom available
from such experiments. Hence, if data about system (1) is only
available from observables, the construction of SSMs and their
reduced dynamics has to be carried out in the space of those
observables.

An extended version of Whitney’s embedding theorem
guarantees that almost all (in the sense of prevalence) smooth
observable vectors yðxÞ ¼ ðy1ðxÞ; ; :::; ypðxÞÞ 2 Rp provide an
embedding of a compact subset C � WðE;Ωt; ϵÞ of a d-dimen-
sional SSM, W(E,Ωt; ϵ), into the observable space Rp for high
enough p. Specifically, if we have p > 2(d+ ℓ) simultaneous and
independent continuous measurements, y(x), of the p observables,
then almost all maps y : C ! Rp are embeddings of C37, and
hence the top right plot of Fig. 3 is applicable with probability one.

In practice, we may not have access to p > 2(d+ ℓ) independent
observables and hence cannot invoke Whitney’s theorem. In that
case, we invoke the Takens delay embedding theorem38, which
covers observable vectors built from p uniformly sampled,
consecutive measured instances of a single observable. More
precisely, if s(t) is a generic scalar quantity measured at times Δt
apart, then the observable vector for delay-embedding is formed
as yðtÞ ¼ sðtÞ; sðt þ ΔtÞ; :::; s t þ ðp� 1ÞΔt� �� � 2 Rp. We discuss
the embedding, M0 � Rp, of an autonomous SSM, W(E,Ωt0; 0),
in the observable space Rp in more detail in the Methods
section “Embedding the SSM in the observable space”.

Data-driven extended normal forms on SSMs. Once the
embedded SSM,M0, is identified in the observable space, we seek
to learn the reduced dynamics on M0. An emerging requirement
for learning nonlinear models from data has been model
sparsity4, without which the learning process would be highly
sensitive. The dynamics on M0, however, is inherently non-
sparse, which suggests that we learn its Poincaré normal form39

Fig. 2 Linear vs. nonlinear model reduction. a Reduction of linear dynamics via Galerkin projection. The slowest spectral subspace, E1= E1 (green), and the
modal subspace, E2 (black), span together the second slowest spectral subspace, E2= E1⊕ E2. The full dynamics (red curve) can be projected onto E1 to
yield a reduced slow model without transients. Projection of the full dynamics onto E2 (blue curve) yields a reduced model that also captures the slowest
decaying transient. Further, faster-decaying transients can be captured by projections onto slow spectral subspaces, Ek, with k > 1. b Reduction of
nonlinearizable dynamics via restriction to spectral submanifolds (SSMs) in the ϵ= 0 limit of nonlinear, non-autonomous systems forced with ℓ

frequencies. An SSM, W(E,Ωt; 0), is the unique, smoothest, nonlinear continuation of a nonresonant spectral subspace E. Specifically, the slowest SSM,
W(Ek,Ωt; 0) (green), is the unique, smoothest, nonlinear continuation of the slowest spectral subspace, Ek. Nonlinearizability of the full dynamics follows if
isolated stationary states coexist on at least one of the SSMs. The time-quasiperiodic SSMs for ϵ > 0, denotedW(E,Ωt; ϵ), are not shown here but they are
OðϵÞCr-close to the structures shown, as discussed by29.
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instead. This classic normal form is the simplest polynomial form
to which the dynamics can be brought via successive, near-
identity polynomial transformations of increasing order.

Near the origin on a slow SSM, however, this simplest
polynomial form is just the restriction of the linear part of system
(1) to M0, as long as infinitely many nonresonance conditions
are satisfied for the operator A40. The Poincaré normal form on
M0 would, therefore, only capture the low-amplitude, linearized
part of the slow SSM dynamics.

To construct an SSM-reduced model for non-linearizable
dynamics, we use extended normal forms. This idea is motivated
by normal forms used in the study of bifurcations of equilibria on
center manifolds depending on parameters33,41. In that setting,
the normal form transformation is constructed at the bifurcation
point where the system is non-linearizable by definition. The
same transformation is then used away from bifurcations, even
though the normal form of the system would be linear there. One,
therefore, gives up the maximal possible simplicity of the normal
form but gains a larger domain on which the normal form
transformation is invertible and hence captures truly nonlinear
dynamics. In our setting, there is no bifurcation at x= 0, but we
nevertheless construct our normal form transformation as if the
eigenvalues corresponding to the slow subspace E were purely
imaginary. This procedure leaves additional, near-resonant terms
in the SSM-reduced normal form, enhancing the domain on
which the transformation is invertible and hence the normal form
is valid.

We determine the normal form coefficients directly from data
via the minimization of a conjugacy error (see the Methods
section). This least-square minimization procedure renders
simultaneously the best-fitting normal form coefficients and the
best fitting normal form transformation. As we will find in a

specific example, this data-driven procedure can yield accurate
reduced models even beyond the formal domain of convergence
of equation-driven normal forms.

The simplest extended normal form on a slow SSM of an
oscillatory system arises when the underlying spectral subspace E
corresponds to a pair of complex conjugate eigenvalues. Writing
in polar coordinates and truncating at cubic order,42 finds this
normal form on the corresponding two-dimensional, autono-
mous SSM, M0, to be

_ρ ¼ α0ρþ βρ3;
_θ ¼ ω0 þ γρ2:

ð5Þ

This equation is also known as the Stuart–Landau equation
arising in the unfolding of a Hopf bifurcation43–45.

The dynamics of (5) is characteristically nonlinearizable when
α0β < 0, given that a limit cycle coexists with the ρ= 0 fixed point
in that case. Further coexisting steady states will arise when
forcing is added to the system, as we discuss in the next section.
We note that the cubic normal form on two-dimensional SSMs
has also been approximated from data in46. That non-sparse
procedure fits the full observer dynamics to a low-dimensional,
discrete polynomial dynamical system, then performs an analytic
SSM reduction and a classic normal form transformation on
the SSM.

For higher accuracy, the extended normal form on an
oscillatory SSM of dimension 2m is of the form

_ρj ¼ αjðρ; θÞρj;
_θj ¼ ωjðρ; θÞ;

j ¼ 1; 2; :::m; ρ 2 Rm
þ; θ 2 Tm: ð6Þ

If the linearized frequencies are nonresonant, then the functions
αj and ωj only depend on ρ42. Our numerical procedure

Fig. 3 Schematics of SSMLearn. First, he data-driven, SSM-based model reduction algorithm implemented in SSMLearn diagnoses and approximates the
dominant SSM from the input data. Next, it constructs a data-driven reduced-order model as an extended normal form on the SSM. Finally, the algorithm
uses this model to predict individual unforced trajectories and the response of the system under additional forcing.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28518-y ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:872 | https://doi.org/10.1038/s41467-022-28518-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


determines these functions up to the necessary order that ensures
a required accuracy for the reduced-order model on the SSM.
This is illustrated schematically for a four-dimensional slow SSM
(m= 2) in the bottom right plot of Fig. 3.

Predicting forced dynamics from unforced data. With the
normalized reduced dynamics (6) on the embedded SSM, M0, at
hand, we can also make predictions for the dynamics of the
embedded quasiperiodic SSM, MϵðΩtÞ, of the full system (1).
This forced SSM is guaranteed to be an OðϵÞCr-close perturbation
of M0 for moderate external forcing amplitudes. A strict proof of
this fact is available for small enough ϵ > 029, but as our examples
will illustrate, the smooth persistence of the SSM, MϵðΩtÞ, gen-
erally holds for all moderate ϵ values in practice. Such moderate
forcing is highly relevant in a number of technological settings,
including system identification in structural dynamics and fluid-
structure interactions, where the forcing must be moderate to
preserve the integrity of the structure.

We discuss the general extended normal form on MϵðΩtÞ in
the Methods section “SSM dynamics via extended normal forms”.
In the simplest and most frequent special case, the external
forcing is periodic (ℓ= 1) and MϵðΩtÞ is the embedding of the
slowest, two-dimensional SSM corresponding to a pair of
complex conjugate eigenvalues. Using the modal forcing
amplitude f1,1 and modal phase shift ϕ1,1 in the general normal
form (25)47, introduces the new phase coordinate
ψ= θ−Ωt− ϕ1,1 and lets f= f1,1, α= α1, ω= ω1 to obtain the
planar, autonomous, extended normal form on MϵðΩtÞ as

_ρ ¼ αðρÞρþ f sinψ;

_ψ ¼ ωðρÞ � Ωþ f
ρ
cosψ

ð7Þ

at leading order in ϵ. All stable and unstable periodic responses
on the SSM are fixed points of system (7), with their amplitudes
ρ0 and phases ψ0 satisfying the equations

Ω ¼ ωðρ0Þ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

ρ20
� α2ðρ0Þ

s
; ψ0 ¼ tan�1 α ρ0

� �
ω ρ0
� �� Ω

" #
: ð8Þ

The first analytic formula in (8) predicts the forced response
curve (FRC) of system (1), i.e., the relationship between response
amplitude, forcing amplitude and forcing frequency, from the
terms α(ρ) and ω(ρ) of the extended normal form of the
autonomous SSM, M0. These terms are constructed from
trajectories of the unforced system, thus eq. (8) predicts the
behavior of a nonlinearizable dynamical system under forcing
based solely on unforced training data. The stability of the
predicted periodic response follows from a simple linear analysis
at the corresponding fixed point of the ODE (7). The first formula
in (8) also contains another frequently used notion of nonlinear
vibration analysis, the dissipative backbone curve ω(ρ), which
describes the instantaneous amplitude-frequency relation along
freely decaying vibrations within the SSM.

As we will also show in examples, our unforced model-based
predictions for forced periodic response (see the Methods section
“Prediction of forced response from unforced training data”) are
confirmed by numerical simulation or dedicated laboratory
experiments on forced systems.

Examples. We now illustrate data-driven, SSM-based modeling
and prediction on several numerical and experimental data sets
describing non-linearizable physical systems. Further applications
are described in48. Both the numerical and the experimental data
sets were initialized without knowledge of the exact SSM. All our
computations have been carried out by the publicly available

MATLAB® package, SSMLearn, whose repository also contains
further examples not discussed here. The main algorithm behind
SSMLearn is illustrated in Fig. 3, with more detail given in the
Methods section “Summary of the algorithm”.

To quantify the errors of an SSM-based reduced model, we use
the normalized mean-trajectory-error (NMTE). For P observa-
tions of the observable vector yj and their model-based
reconstructions, ŷj, this modeling error is defined as

NMTE ¼ 1
k y k

1
P
∑
P

j¼1
k yj � ŷj k : ð9Þ

Here y is a relevant normalization vector, such as the data point
with the largest norm. When validating the reduced dynamics for
a given testing trajectory, we run the reduced model from the
same initial condition for the comparison. Increasing the order of
the truncated normal form polynomials in eq. (6) generally
reduces the NMTE error to any required level but excessively
small errors can lead to overfitting. In our examples, we will be
allowing model errors in the order of 1%− 4% to avoid
overfitting.

As a first example, we consider a finite-element discretization
of a von Kármán beam with clamped-clamped boundary
conditions49, shown in panel (a) of Fig. 4. In contrast to the
classic Euler-Bernoulli beam, the von Kármán model captures
moderate deformations by including a nonlinear, quadratic term
in the kinematics. We first construct a 33 degree-of-freedom,
damped, unforced finite element model (i.e., n= 66 and ϵ= 0 in
eq. (1)) for an aluminum beam of length 1 [m], width 5 [cm],
thickness 2 [cm] and material damping modulus 106 [] (see
the Supplementary Information for more detail).

Our objective is to learn from numerically generated trajectory
data the reduced dynamics on the slowest, two-dimensional SSM,
W(E1), of the system, defined over the slowest two-dimensional
(d= 2) eigenspace E1 of the linear part. To do so, we generate two
trajectories starting from initial beam deflections caused by static
loading of 12 [kN] and 14 [kN] at the midpoint, as shown in
panel (a) of Fig. 4. The latter trajectory, shown in panel (b) of
Fig. 4, is used for training, the other for testing. Along the
trajectories, we select our single observable s(t) to be the midpoint
displacement of the beam.

The beam equations are analytic (r= a), and hence the SSM,
W(E1), admits a convergent Taylor expansion near the origin.
The minimal embedding dimension for the two-dimensional,
W(E1), as required by Whitney’s theorem, is p= 5, which is not
satisfied by our single scalar observable s(t). We therefore employ
delay-embedding using yðtÞ ¼ sðtÞ; sðt þ ΔtÞ; ¼ ; sðt þ 4ΔtÞð Þ
with Δt= 0.0955 [ms]. By Takens’s theorem, this delayed
observable embeds the SSM in R5 with probability one.

A projection of the embedded SSM, M0 2 R5; onto three
coordinates is shown in panel (c) of Fig. 4. On M0, SSMLearn
returns the 7th-order extended normal form

_ρ ¼ αðρÞρ; αðρÞ ¼ �3:02� 5:79ρ2 þ 57:5ρ4 � 191ρ6;

_θ ¼ ωðρÞ; ωðρÞ ¼ 658þ 577ρ2 � 347ρ4 � 387ρ6;
ð10Þ

to achieve our preset reconstruction error bar of 3% on the test
trajectory (NMTE= 0.027), shown in panel (d) of Fig. 4.

We now use the model (10), trained on a single decaying
trajectory, to predict the forced response of the beam for various
forcing amplitudes and frequencies in closed form. We will then
compare these predictions with analytic forced response compu-
tations for the forced SSM, MϵðΩtÞ, obtained from SSMTool36

and with numerical simulations of the damped-forced beam. The
periodic forcing is applied at the midpoint node; the Taylor
expansion order in SSMTool for the analytically computed
dynamics on MϵðΩtÞ is set to 7, as in (10). Panel (e) of Fig. 4
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shows the FRCs (green) and the backbone curve (blue) predicted
by SSMLearn based on formula (8) from the single unforced
trajectory in panel (b) of Fig. 4. To obtain the relevant forcing
amplitudes f in the delay-observable space, we have followed the
calibration procedure described in the Methods section “Predic-
tion of forced response from unforced training data” for the
forcing values ϵf1

�� �� ¼ 15; 45; 95 [N] at the single forcing
frequency Ω= 103.5 [Hz]. Recall that coexisting stable (solid
lines) and unstable (dashed lines) periodic orbits along the same
FRC are hallmarks of non-linearizable dynamics and hence
cannot be captured by the model reduction techniques we
reviewed in the Introduction for linearizable systems.

The data-based prediction for the FRCs agrees with the analytic
FRCs for low forcing amplitudes but departs from it for higher
amplitudes. Remarkably, as the numerical simulations (red)
confirm, the data-based FRC is the correct one. The discrepancy
between the two FRCs for large amplitudes only starts decreasing
under substantially higher-order Taylor series approximations
used in SSMTool (see the Supplementary Information). This
suggests the use of the data-based approach for this class of
problems even if the exact equations of motion are available.

As a second example, we consider the classic problem of vortex
shedding behind a cylinder8. Our input data for SSM-based
reduced modeling are the velocity and pressure fields over a
planar, open fluid domain with a hole representing the cylinder
section, as shown in panel (a) of Fig. 5. The boundary conditions
are no-slip on the circular inner boundary, standard outflow on
the outer boundary at the right side, and fixed horizontal velocity
on the three remaining sides50. The Reynolds number for this
problem is the ratio between the cylinder diameter times the
inflow velocity and the kinematic viscosity of the fluid.

Available studies8,50,51 report that, at low Reynolds number,
the two-dimensional unstable manifold, Wu(SS), of the wake-type
steady solution, SS, in panel (b) of Fig. 5 connects SS to the limit
cycle shown in panel (c) of Fig. 5. Here we evaluate the
performance of SSMLearn on learning this unstable manifold as
an SSM, along with its reduced dynamics, from trajectory data at
Reynolds number equal to 70. For this SSM, we again have d= 2

and r= a, as in our previous example. There is no external
forcing in this problem, and hence we have ϵ= 0 in eq. (1). In
contrast to prior studies that often consider a limited number
of observables8,51,52, here we select the full phase space of
the discretized Navier-Stokes simulation to be the observable
space for illustration, which yields n= p= 76, 876 in eq. (1).
We generate nine trajectories numerically, eight of which will be
used for training and one for testing the SSM-based model.

The nine initial conditions of our input trajectory data are
small perturbations from the wake-type steady solution along its
unstable directions, equally spaced on a small amplitude circle on
this unstable plane. All nine trajectories quickly converge to the
unstable manifold and then to the limit cycle representing
periodic vortex shedding.

We choose to parametrize the SSM, M0 ¼ WuðSSÞ, with two
leading POD modes of the limit cycle, which have been used in
earlier studies for this problem. The training trajectories projected
onto these two POD modes are shown in panel (d) of Fig. 5. To
limit the modeling error (9) to less than NMTE= 1%,
SSMLearn requires a polynomial order of 18 in the SSM
computations. For this order, our approach can accommodate the
strong mode deformation observed for this problem51, mani-
fested by a fold of the SSM over the unstable eigenspace in panel
(f) of Fig. 5. Panel (g) of Fig. 5 shows the strongly nonlinear
geometry of M0 projected to the observable subspace formed by
the velocities and the pressure of a probe point in the wake.

To capture the SSM-reduced dynamics with acceptable
accuracy, we need to compute the extended normal form up to
order 11, obtaining

_ρ ¼ αðρÞρ ¼ 0:0584ρ� 0:479ρ3 þ 1:27ρ5 þ 6:80ρ7 � 58:9ρ9 þ 108ρ11;
_θ ¼ ωðρÞ ¼ 0:553þ 0:441ρ2 � 3:38ρ4 þ 55:5ρ6 � 321ρ8 þ 626ρ10:

ð11Þ
To describe a transition qualitatively from a fixed point to a limit
cycle, the reduced-order dynamical model should be at least of
cubic order51. Capturing the qualitative behavior (i.e., the
unstable fixed point and the stable limit cycle), however, does
not imply a low NMTE error for the model. Indeed, the data-

Fig. 4 Construction of a data-driven nonlinear reduced-order model on the slowest SSM of a von Kármán beam. (a) System setup and the initial
condition for the decaying training trajectory shown in (b) in terms of the midpoint displacement. (c) The SSM, M0, in the delay embedding space, shown
along with the reconstructed test trajectory in extended normal form coordinates. (d) Zoom of the prediction of the reduced order model for the test
trajectory not used in learning M0. (e) Closed-form backbone curve and forced response curve (FRC) predictions (ϵ > 0, ℓ= 1) by SSMLearn are
compared with analytic FRC calculations performed by SSMTool36 and with results from numerical integration of the forced-damped beam.
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driven cubic normal form for this example gives a reconstruction
error of NMTE= 117% normalized over the limit cycle
amplitude, mainly arising from an out-of-phase convergence to
the limit cycle along the testing trajectory. In contrast, the Oð11Þ
normal form in eq. (11) reduced this error drastically to
NMTE= 3.86% on the testing trajectory, as shown in panel (e)
of Fig. 5.

We show in Section 1.2.3 of the Supplementary Information
that for comparable accuracy, the Sparse Identification of
Nonlinear DYnamics (SINDy) approach of4 returns non-sparse
nonlinear models for this example. Similarly, while the DMD13

can achieve highly accurate curve-fitting on the available training
trajectories with a high-dimensional linear model, that model
only captures linearizable dynamics near the origin. As a
consequence, its trajectories grow without bound over longer
integration times and hence fail to capture the limit cycle.

As a third example, we consider fluid oscillations in a tank,
which exhibit highly nonlinear characteristics53. To describe such

non-linearizable softening effects observed in the sloshing motion
of surface waves, Duffing-type models have been proposed54.
While amplitude variations observed in forced experiments can
be fitted to forced softening Duffing equations, nonlinear
damping remains a challenge to identify55.

The experiments we use to construct an SSM-reduced
nonlinear model for sloshing were performed in a rectangular
tank of width 500 [mm] and depth 50 [mm], partially filled with
water up to a height of 400 [mm], as shown in panel (a) of Fig. 6.
The tank was mounted on a platform excited harmonically by a
motor. The surface level was detected via image processing from a
monochrome camera. As an observable s(t) we used the
horizontal position of the computed center of mass of the water
at each time instant, normalized by the tank width. This
physically meaningful scalar is robust with respect to image
evaluation errors55.

We identify the unforced nonlinear behavior of the system
from data obtained in resonance decay experiments56. In those

Fig. 5 Data-driven nonlinear SSM-reduced model on the unstable manifold of the steady solution of the flow past a cylinder. a Problem setup. b, c
Snapshots of the steady solution and the time-periodic vortex-shedding solution (limit cycle, in magenta). d Trajectories projected on the 2-dim. subspace
spanned by the two-leading POD modes of the limit cycle. e Model-based reconstruction of the test trajectory (not used in learning the SSM) in terms of
velocities and pressures measured at a location q shown in plot a. f The SSM formed by the unstable manifold of the origin, along with some reduced
trajectories, plotted over the unstable eigenspace UE≡ E1; ∥UE⊥∥ denotes the normed projection onto the orthogonal complement UE⊥. g Same but
projected over velocity and pressure coordinates.
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experiments (as in Fig. panel (a) of 6, but with a shaker instead of
a motor), once a periodic steady state is reached under periodic
horizontal shaking of the tank, the shaker is turned off and the
decaying sloshing is recorded. We show such a decaying
observable trajectory (orange line) in panel (b) of Fig. 6, with
the shaker switched off slightly before zero time. This damped
oscillation is close, by construction, to the two-dimensional,
slowest SSM of the system. We use three such decaying observer
trajectories (two for training and one for model testing) for the
construction of a two-dimensional (d= 2), autonomous, SSM-
based reduced-order model for s(t). For delay embedding
dimension, we again pick p= 5, the minimal value guaranteed
to be generically correct for embedding the SSM by Takens’s
theorem. The delay used in sampling s(t) is Δt= 0.033 [s]. For
this input and for a maximal reconstruction error of 2%,
SSMLearn identifies a nearly flat SSM in the delayed observable
space–see panel (c) of Fig. 6–with a cubic extended normal form

_ρ ¼ �0:063179ρ� 0:041214ρ3; _θ ¼ 7:8144� 1:5506ρ2:

ð12Þ
This lowest-order, Stuart–Landau-type normal form, cf. (5),
already constitutes an accurate reduced-order model with
NMTE= 1.88% on the testing data set, see panel (b) of Fig. 6.
The amplitude-dependent nonlinear damping, α(ρ), provided by
this model is plotted in panel (d) of Fig. 6 with respect to the
physical amplitude.

In another set of experiments with the setup of panel (a) Fig. 6,
steady states of periodically forced sloshing were measured in
sweeps over a range of forcing frequencies under three different
shaker amplitudes. As in the previous beam example, we identify
the corresponding forcing amplitude, f, in (7) at the maximal
amplitude response of each frequency sweep. Shown in panels (e,
f) of Fig. 6, the closed-form predictions for FRCs from eq. (8)
(solid lines) match closely the experimental FRCs (dots). Given
the strong nonlinearity of the FRC, any prediction of this curve

from a DMD-based model is bound to be vastly inaccurate, as we
indeed show in Section 1.3 of the Supplementary information.

The phase ψ0 of the forced response relative to the forcing has
been found difficult to fit to forced Duffing-type models55, but the
present modeling methodology also predicts this phase accurately
using the second expression in (8). The blue curve in panel (e) of
Fig. 6 shows the backbone curve of decaying vibrations, which
terminates at the highest amplitude occurring in the training data set.
This plot therefore shows that the closed-form FRC predictions
obtained from the SSM-based reduced model are also effective for
response amplitudes outside the training range of the reduced model.

Discussion
We have described a data-driven model reduction procedure for
non-linearizable dynamical systems with coexisting isolated sta-
tionary states. Our approach is based on the recent theory of
spectral submanifolds (SSMs), which are the smoothest nonlinear
continuations of spectral subspaces of the linearized dynamics.
Slow SSMs form a nested hierarchy of attractors and hence the
dynamics on them provide a hierarchy of reduced-order models
with which generic trajectories synchronize exponentially fast.
These SSMs and their reduced models smoothly persist under
moderate external forcing, yielding low-dimensional, mathema-
tically exact reduced-order models for forced versions of the same
dynamical system. The normal hyperbolicity of SSMs also ensures
their robustness under small noise.

All these results have been implemented in the open-source
MATLAB® package, SSMLearn, which we have illustrated on
data sets arising from forced nonlinear beam oscillations, vortex
shedding behind a cylinder and water sloshing in a vibrating tank.
For all three examples, we have found that two-dimensional data-
driven extended normal forms on the slowest SSMs provide
sparse yet accurate models of non-linearizable dynamics in the
space of the chosen observables. Beyond matching training and
testing data, SSM-reduced models prove their intrinsic,

Fig. 6 Data-driven nonlinear reduced-order model on the slowest SSM of fluid sloshing in a tank. a Setup for the sloshing experiment55. b Decaying
model-testing trajectory and its reconstruction from an unforced, SSM-based model c The geometry of the embedded SSM d Nonlinear damping α(ρ) from
the SSM-reduced dynamics e, f Closed form, SSM-based predictions of the FRCs and the response phases ψ0 for three different forcing amplitudes (solid
lines), with their experimental confirmation superimposed (dots).
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qualitative meaning by predicting non-linearizable, forced steady
states purely from decaying, unforced data.

In this brief report, examples of higher-dimensional SSMs and
multi-harmonic forcing have not been considered, even though
SSMLearn is equipped to handle them. Higher-dimensional
SSMs are required in the presence of internal resonances or in
non-resonant problems in which initial transients also need to be
captured more accurately. A limitation of our approach for non-
autonomous systems is the assumption of quasiperiodic external
forcing. Note, however, that even specific realizations of sto-
chastic forcing signals can be approximated arbitrarily closely
with quasiperiodic functions over any finite time interval of
interest. A further limitation in our work is the assumption of
smooth system dynamics. For data from non-smooth systems,
SSMLearn will nevertheless return an equivalent smooth
reduced-order model whose accuracy is a priori known from the
available mean-squared error of the SSM fitting and conjugacy
error of the normal form construction. We are addressing these
challenges in ongoing work to be reported elsewhere. Further
applications of SSMLearn to physical problems including
higher-dimensional coexisting steady states (see, e.g.,57) are also
underway.

Methods
Existence of SSMs. In the context of rigid body dynamics, invariant manifolds
providing generalizations of invariant spectral subspaces to nonlinear systems were
first envisioned and formally constructed as nonlinear normal modes by58 (see59

for a recent review of related work). Later studies, however, pointed out the
nonuniqueness of nonlinear normal modes in specific examples (60,61).

In the mathematics literature,62 obtained general results on the existence,
smoothness and degree of uniqueness of such invariant manifolds for mappings on
Banach spaces. These results use a special parameterization method to construct
the manifolds even in evolutionary partial differential equations that admit a well-
posed flow map in both time directions (see63 for a mechanics application). The
results have been extended to a form applicable to dynamical systems with
quasiperiodic time dependence64. An extensive account of the numerical
implementation of the parametrization method with a focus on computing
invariant tori and their whiskers in Hamiltonian systems is also available65,29

Discussed the existence of the SSM, W(E,Ωt; ϵ), depending on its absolute spectral
quotient,

ΣðEÞ ¼ Int
max

λ2SpectðAjSÞ
jReλj

min
λe2SpectðAjE Þ

jReλej

2
4

3
5; ð13Þ

where Spect(A∣S) is the stable (unstable) spectrum of A if the SSM is stable
(unstable). For a stable SSM, Σ(E) is the integer part of the quotient of the minimal
real part in the spectrum of A and the maximal real part of the spectrum of A
restricted to E.

Based on Σ(E), we call a d-dimensional spectral subspace E non-resonant if for
any set m1; ¼ ;md

� �
of nonnegative integers satisfying 2 ≤ ∑d

j¼1 mj ≤ΣðEÞ, the
eigenvalues, λk, of A satisfy

∑
d

j¼1
mjReλj ≠Reλk; λk 2 SpectðAÞ � SpectðAjEÞ: ð14Þ

This condition only needs to be verified for resonance orders between 2 and Σ(E)64.
In particular, a 1: 1 resonance between E1 and E2 is allowed if
dim E1 ¼ dim E2 ¼ 1, in which case each strongly resonant spectral subspace gives
rise to a unique nearby spectral submanifold.

If E violates the nonresonance condition (14), then E can be enlarged to a
higher-dimensional spectral subspace until the nonresonance relationship (14) is
satisfied. In the absence of external forcing (ϵ= 0), the nonresonance condition
(14) can also be relaxed with the help of the relative spectral quotient,

σðEÞ ¼ Int
max

λ2SpectðAjSÞ�SpectðAjE Þ
jReλj

min
λe2SpectðAjE Þ

jReλej

2
4

3
5; ð15Þ

to the form

∑
d

j¼1
mjλj ≠ λk; λk 2 SpectðAÞ � SpectðAjEÞ; 2 ≤ ∑

d

j¼1
mj ≤ σðEÞ: ð16Þ

This is indeed a relaxation because condition (16) is only violated if both the real
and the imaginary parts of eigenvalues involved are in the exact same resonance
with each other. In contrast, (14) is already violated when the real parts are in
resonance with each other.

If Reλ1<0 in eq. (2) and all Ek subspaces are nonresonant, then the nested set of
slow spectral submanifolds,

WðE1;Ωt; ϵÞ � WðE2;Ωt; ϵÞ � WðE3;Ωt; ϵÞ � ¼ ;

gives a hierarchy of local attractors. All solutions in a vicinity of x= 0 approach the
reduced dynamics on one of these attractors exponentially fast, as sketched in panel
(b) of Fig. 2 for the ϵ= 0 limit. As we will see, non-linearizable dynamics tend to
emerge on W(Ek,Ωt; ϵ) due to near-resonance between the linearized frequencies
within Ek and the forcing frequencies Ω. The specific location of nontrivial steady
states in W(Ek,Ωt; ϵ) is then determined by a balance between the nonlinearities,
damping and forcing.

A resonant Ek subspace can be enlarged by adding the next k0 modal subspaces
to it until Ekþk0 in the hierarchy (4) becomes non-resonant and hence admits an
SSM, WðEkþk0 ;Ωt; ϵÞ. This technical enlargement is also in agreement with the
physical expectation that all interacting modes have to be included in an accurate
reduced-order model. Finally, we note that SSMs are robust features of dynamical
systems: they inherit smooth dependence of the vector field in (1) on parameters29.

For discrete-time dynamical systems of the form

xkþ1 ¼ ~Axk þ ~f0ðxkÞ þ ϵ~f1ðxk;ϕk; ϵÞ; ϕkþ1 ¼ ϕk þ ~Ω; ð17Þ
the above results on SSMs apply based on the eigenvalues μk of ~A. One simply
needs to replace λk with log μk and Reλk with log jμkj in formulas (13)-(16)29.

We close by noting that in a neighborhood of an SSM, an invariant family of
surfaces resembling the role of coordinate planes in a linear system exists66. This
invariant spectral foliation (ISF) can, in principle, be used to generate a nonlinear
analogue of linear modal superposition in a vicinity of a fixed point. Constructing
the ISF from data has shown both initial promise and challenges to be addressed.

Embedding the SSM in the observable space. Originally conceived for autono-
mous systems, the Takens delay embedding theorem38 has been strengthened and
generalized to externally forced dynamics32. By these results, the embedding for a d-
dimensional compact SSM subset, C � WðE;Ωt; ϵÞ, in the delay observable space as
MðΩtÞ is guaranteed for almost all choices of the observable s(t) if p > 2(d+ l) and
some generic assumptions regarding periodic motions on MðΩtÞ are satisfied37.

Of highest importance in technological applications is the case of time-periodic
forcing (ℓ= 1), with frequency Ω ¼ Ω 2 R and period T= 2π/Ω. In this case, the
Whitney and Takens embedding theorems can be applied to the associated period-
T sampling map (or Poincaré map) Pt0

: Rn ! Rn of the system based at time t0.
This map is autonomous and has a time-independent SSM that coincides with the
d-dimensional SSM, MðΩt0Þ, of the full system (1). In this case, by direct
application of the embedding theorems to the discrete dynamical system generated
by Pt0

, the typically sufficient embedding dimension estimate is improved to p > 2d
for Whitney’s and Takens’s theorem.

Technically speaking, the available data will never be exactly on an SSM, as
these embedding theorems assume. By the smoothness of the embeddings,
however, points close enough to the SSM in the phase space will be close to MðΩtÞ
in the observable space under the embeddings. Moreover, as slow SSMs attract
nearby trajectories exponentially, the distance of observable data from the
embedded slow SSM will shrink exponentially fast. Therefore, even under
uncorrelated noise in the measurements, mean-squared estimators are suitable for
learning slow SSMs from data in the observable space, as we illustrate in
the Supplementary Information.

After a possible coordinate shift, the trivial fixed point of the autonomous limit
of system (1) will be mapped into the y= 0 origin of the observable space. To find
an embedded, d-dimensional SSM, M0 2 Rp , attached to this origin for ϵ= 0, we
focus on observable domains in which M0 is a graph over its tangent space T0M0
at the origin y= 0. Such domains always exist and are generally large enough to
capture non-linearizable dynamics in most applications (but see below). Note that
T0M0 coincides with the image of the spectral subspace E in the observable space.

To learn such a graph-style parametrization for M0 from data, we define a
matrix U1 2 Rn ´ d with columns that are orthonormal vectors spanning the yet
unknown T0M0. The reduced coordinates η 2 Rd for a point y 2 M0 are then
defined as the orthogonal projection η ¼ UT

1 y. We week a Taylor-expansion for
M0 near the η= 0 origin, denoting by η2:M the family of all monomials of d
variables from degree 2 to M. For example, if d= 2 and M= 3, then

η2:3 ¼ ðη21; η1η2; η22; η31; η21η2; η1η22; η32ÞT . As a graph over T0M0, the manifold M0
is approximated as y=V1η+Vη2:M, where the matrices V1 and V contain
coefficients for the d-variate linear and nonlinear monomials, respectively.
Learning M0 from a data set of P observations y1,…, yP then amounts to finding
the ðU�

1 ;V
�
1 ;V

�Þ matrices that minimize the mean-square reconstruction error
along the training data:

ðU�
1 ;V

�
1 ;V

�Þ ¼ arg min
U1 ;V1 ;V

∑
P

j¼1
k yj � V1U

T
1 yj � VðUT

1 yjÞ
2:Mk2;

UT
1U1 ¼ I:

ð18Þ

The simplest solution to this problem is U1=V1 with the additional constraint
VT

1V ¼ 0, which represents a basic nonlinear extension of the principal component
analysis67.
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The above graph-style parametrization of the SSM breaks down for larger y
values ifM0 develops a fold over T0M0. That creates an issue for model reduction
if a nontrivial steady state on M0 falls outside the fold, as the limit cycle does in
our vortex shedding example. In that case, alternative parametrization methods for
M0 can be used to enhance the domain of the SSM-reduced model. These methods
include selecting the columns of U1 to be the leading POD modes of the nontrivial
steady state, or enlarging the embedding space with (further) delayed observations.
In these cases, the columns of V1 are still orthonormal vectors spanning T0M0:

In both panels (c) of Figs. 4, 6, the SSM, M0, is nearly flat in the delay-
embedding space. This turns out to be a universal property of delay embedding for
small delays and low embedding dimensions (see the Supplementary Information).

For ϵ > 0 small (i.e., for moderate forcing), the autonomous SSM, M0, already
captures the bulk nonlinear behavior of system (1). Indeed, for this forcing range,
the reduced dynamics on the corresponding SSM can simply be computed as an
additive perturbation of the autonomous dynamics on M0

47,68,69 (see section
“Predicting forced dynamics from unforced data”).

SSM dynamics via extended normal forms. For an autonomous SSM M0, the
reduced dynamics is governed by a vector field

_η ¼ rðηÞ ð19Þ
with a flow map φt

rðηÞ. We can generically assume that the Jacobian Dr(0) is
semisimple, i.e., Dr(0)B= BΛ, where Λ 2 Cd ´ d is a diagonal matrix containing the
eigenvalues of Dr(0). Classic normal form theory would seek to simplify the
reduced dynamics (19) in a vicinity of η= 0 via a nonlinear change of coordinates,
η= h(z), so that the transformed vector field _z ¼ nðzÞ with flow map φt

nðzÞ has a
diagonal linear part and has as few nonlinear terms in its Taylor expansion as
possible. In our present setting, the origin is assumed hyperbolic, in which case the
classic normal form is simply _z ¼ Λz under appropriate non-resonance conditions
that generically hold40. The corresponding normal form transformation h(z),
however, is only valid on a small enough domain in which the dynamics is
linearizable.

To capture non-linearizable behavior, we employ extended normal forms
motivated by those used to unfold bifurcations33. In this approach, we construct
normal forms that do not remove those polynomial terms from (19) whose
removal would result in small denominators in the Taylor coefficients h(z) and
hence decrease its domain of convergence. Instead, we seek a normal form for (19)
of the form

nðz;NÞ ¼ ΛzþNz2:N ;

hðz;HÞ ¼ BðzþHz2:N Þ; h�1ðη;HÞ ¼ B�1ηþH?ðB�1ηÞ2:N ; ð20Þ

where the matrices N, H and H⋆ contain the coefficients for the appropriate d-
variate monomials. To identify near-resonances, we let S2:N be the matrix of
integers whose columns are the powers of the d-variate monomials from order 2 to
N. We then define a matrix Δ2:N containing all relevant integer linear combinations
of eigenvalues as follows:

ðΔ2:N Þj;k ¼ ðImΛÞj;j � ∑
d

s¼1
ðImΛÞs;sðS2:N Þs;k: ð21Þ

Following the approach used in universal unfolding principles41, we collect in a
set S the row and column indices of the entries of Δ2:N for which near-resonances
occur, i.e., for which the corresponding entry of Δ2:N is smaller in norm than a
small, preselected threshold. (The default threshold is 10−8 in SSMLearn.) The
entries of H and H⋆ with indices contained in S are then set to zero but the
corresponding monomial terms are retained in n(z;N). Conversely, coefficients of
non-near-resonant entries of H and H⋆ are selected in a way so that the
corresponding non–near-resonant monomials vanish from the normal form
n(z;N). As a result, the matrix N is sparse, containing only the coefficients of
essential, near-resonant monomials.

For example, if d= 2, N= 3 and the eigenvalues of Dr(0) form a complex pair
λ= α0 ± iω0 with ω0 ¼ Oð1Þ, then we have

S2:N ¼ 21032100120123½ �; Δ2:N

¼ �ω0ω03ω0 � 2ω002ω04ω0 � 3ω0 � ω0ω0 � 4ω0 � 2ω002ω0

� �
:

ð22Þ

Only two elements of Δ2:N are (near-) zero, and hence the reduced dynamics in
extended normal form will require learning the following coefficients:

H? ¼ h 20h11h02h300h12h03
�h02�h11�h20�h03�h120�h30

� �
;

N ¼ 0000h210000000�h210
� �

:
ð23Þ

The corresponding cubic polar form (5) is then obtained from the relations
z= (ρeiθ, ρe−iθ) and h21= β+ iγ.

For a data-driven construction of the extended normal form (20), we first
obtain an estimate for the Jacobian Dr(0) from linear regression. This determines
the matrix B and the types of monomials arising in h−1 and n. Next, we note that
the flow map φt

r of the SSM-reduced dynamics and the flow map φt
n of the

extended normal form are connected through the conjugacy relationship
φt
n ¼ h�1 � φt

r � h. We find the nonzero complex coefficients of h−1 and n by
minimizing the error in this exact conjugacy over the available P data points,
represented in the η coordinates. Specifically, we determine the nonzero elements

of H⋆ and N as

ðH�
?;N

�Þ ¼ argmin
H?

;N∑
P

j¼1
k d
dt

h�1ðηj;H?Þ � nðh�1ðηj;H?Þ;NÞk2;

ðNÞs;k ¼ 0; 8ðs; kÞ 2 S; ðH?Þs;k ¼ 0;8ðs; kÞ =2 S:

ð24Þ

Once h−1 is known, we obtain the coefficients H of h via regression.
As initial condition for the minimization problem (24), we set all unknown

coefficients to zero. This initial guess assumes linear dynamics, which the
minimization corrects as needed. We can compute the time derivative in (24)
reliably using finite differences, provided that the sampling time Δt of the trajectory
data is small compared to the fastest timescale of the SSM dynamics. For larger
sampling times, one should use the discrete formulation of SSM theory, as
discussed in section “Existence of SSMs” and29. In that formulation, the conjugacy
error must be formulated for the 1-step prediction error of the normal form flow
map φΔt

n ðzÞ. The matrix defined in eq. (21) also carries over to the discrete time
setting, with Λ defined as the diagonal matrix of the logarithms of the eigenvalues
of DφΔt

r ð0Þ.

Prediction of forced response from unforced training data. Forced SSMs con-
tinue to be embedded in our observable space, provided that we also include the
phase of the forcing among our observables32. (In the simplest case of periodic
forcing, this inclusion is not necessary, as we pointed out Section “Embedding
SSMs via generic observables”). The quasiperiodic SSM-reduced normal form of
system (1) in the observable space takes the general form

_ρj ¼ αjðρ; θÞρj � ∑
k2K ±

j

f j;k sin hk;Ωit þ ϕj;k 	 θj

� 	
;

_θj ¼ ωjðρ; θÞ þ ∑
k2K ±

j

f j;k
ρj
cos hk;Ωit þ ϕj;k 	 θj

� 	
;

j ¼ 1; 2; :::m; k 2 Z‘; Ω 2 R‘
þ;

ð25Þ
where the terms fj,k and ϕj,k are the forcing amplitudes and phases for each mode of
the SSM and for each forcing harmonic 〈k,Ω〉, while K ±

j are the set containing
the indexes k of the resonant forcing frequencies for mode j (see the Supplementary
Information). The normal form (25) will capture non-linearizable dynamics arising
from resonant interactions between the eigenfrequencies of the spectral subspace E
(which may also contain internal resonances) and the external forcing frequencies
in Ω. One can use numerical continuation70 to find nontrivial co-existing steady
states (such as periodic orbits and invariant tori) in eq. (25) under varying forcing
amplitudes and forcing frequencies.

To predict forced response from the SSM-based model trained on unforced
data, the forcing amplitude f relevant for eq. (7) in the observable space needs to be
related to the forcing amplitude ϵf1

�� �� relevant for system (1) in the physical phase
space. This involves (1) employing a single forcing amplitude-frequency pair
ϵf1
�� ��;Ω� �

in the experiment (2) measuring the periodic observable response y(t)
(3) computing the corresponding normalized reduced and normalized response
amplitude ρ0 (4) substituting ρ0 into the first formula in (8) and (5) solving for f in
closed form. This f can then be used to make a prediction for the full FRC and
response phase via (8) in the experiment for arbitrary Ω forcing frequencies. The
predicted FRC may have several connected components, including isolated
responses (isolas) that are notoriously difficult to detect by numerical or
experimental continuation68.

Summary of the algorithm. The data-driven model reduction method used in this
paper is available in the open-source MATLAB® package SSMLearn. User input is
the measured trajectory data of the autonomous dynamical system (ϵ= 0), the SSM
dimension d, the polynomial orders or approximation (M,N) for the SSM and for
the extended normal form, as well as the type of the dynamical system (discrete or
continuous). If the number of observables is not sufficient for manifold embedding,
the data is automatically augmented with delays to reach the minimum embedding
dimension p= 2d+ 1. If the manifold learning returns poor results (due to, e.g.,
insufficient closeness of the data to the SSM), then the starting value of p can be
increased until a good embedding is found. Then, the algorithm learns the SSM
geometry in observable space and, after unsupervised detection of the required
normal form, identifies the extended normal form of the reduced dynamics. The
level of accuracy can be increased with larger polynomial orders, keeping in mind
that excessive orders may lead to overfitting.

SSMLearn also offers all the tools we have used in this paper to analyze the
reduced dynamics and make predictions for forced response from unforced
training data. In particular, it contains the MATLAB®-based numerical
continuation core COCO70. which can compute steady state and help with the
design of nonlinear control strategies. In principle, there are no restrictions on the
dimensions of the reduced-order model, yet the larger the SSM is, the more
computationally expensive the problem becomes.

Qualitative or partial a priori knowledge of the linearized dynamics (e.g., some
linearized modes and frequencies) helps in finding good initial conditions for
trajectories to be used in SSMLearn. For example, the resonance decay method56

(which we exploited in our sloshing example), targets a specific 2-dimensional,
stable SSM in laboratory experiments. This method consists of empirically isolating
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a resonant periodic motion on the SSM based on its locally maximal amplitude
response under a forcing frequency sweep. Discontinuing the forcing will then
generate transient decay towards the equilibrium in a close proximity of the SSM.
For noisy data, filtering or dimensionality reduction can efficiently de-noise the
data67, provided that the polynomial orders used for the description of the SSM
and its reduced dynamics are not excessively large (see the Supplementary
Information). For higher-dimensional SSMs, it is desirable to collect diverse
trajectories to avoid bias towards specific motions. Good practice requires splitting
the data sets into training, testing and validation parts.

Algorithm 1.
SSMLearn

Input parameters: SSM dimension d, polynomial approximation orders (M,N),
selection among discrete or continuous-time dynamics
Input data: measured unforced trajectories
Output: SSM geometry, extended normal form of reduced dynamics,
predictions for forced response.
1 Embed data in a suitable p-dimensional observable space with p > 2d.
2 Identify the manifold parametrization in reduced coordinates.
3 Estimate the normalized reduced dynamics after an automated identification
of the required type of extended normal form.

4 Run analytics and prediction of forced response on the SSM-reduced and
normalized model.

Data availability
All data discussed in the results presented here is publicly available in the SSMLearn
repository at github.com/haller-group/SSMLearn.

Code availability
The code supporting the results presented here is publicly available in the SSMLearn
repository at github.com/haller-group/SSMLearn.
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