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Abstract In the circular restricted three-body problem, periodic orbits, stable and unstable
manifolds, chaotic regions, and other dynamical features have all proven useful for engi-
neering applications. These phase-space structures can be identified because the system is
autonomous in a rotating frame. In more complex multi-body and high-fidelity models, clas-
sic invariant sets are not readily identifiable and new approaches are required. The approach
here exploits the anisotropy of the growth or decay of perturbations to the trajectories, build-
ing on recent ideas from the theory of hyperbolic Lagrangian coherent structures. The present
framework yields a mechanism to construct transfers in multi-body systems. In particular, it
is applied to a restricted four-body problem and transfers are constructed requiring smaller
Δv values than are necessary to accomplish the corresponding shift in Jacobi constant values
for the associated embedded three-body problems.

Keywords Multi-body dynamical systems · Spacecraft trajectory design · Cauchy–Green
strain tensor · Finite-time Lyapunov exponent · Lagrangian coherent structures ·
Flow control segments

1 Introduction

Of fundamental importance in aerospace engineering, particularly within the field of astro-
dynamics, is a geometrical understanding of the possible motions a spacecraft or a satellite
can assume under the influence of gravitational forces. In the presence of one body, the Kep-
lerian motion of the massless body is integrable and yields explicit analytical solutions. In
the case of the circular restricted three-body problem (CRP, or simply “restricted problem”

B Cody R. Short
crshort@purdue.edu

1 School of Aeronautics and Astronautics, Purdue University, 701 West Stadium Avenue,
West Lafayette, IN 47907-2045, USA

2 Department of Mechanical and Process Engineering, Institute for Mechanical Systems,
ETH Zurich, Leonhardstrasse 21, Zürich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10569-015-9617-4&domain=pdf


214 C. R. Short et al.

throughout), the equations of motion are autonomous in a rotating frame, revealing periodic
orbits, invariant manifolds, chaotic regions, and other classic phase-space structures. In more
intricate gravitational fields, however, classical dynamical systems approaches do not apply.
The goal of this work is to introduce new geometric techniques for such complex models.

A common technique for investigation in the restricted problem is leveraging the conser-
vation of the Jacobi constant to generate a Poincaré section on a two-dimensional subsurface
�. In more complex gravitational models, new strategies are required since (1) the trajectory
may never return to� due to the lack of a conserved quantity, and (2) if, by chance, a trajectory
does return to� at a point p, the map still depends on the initial time at which the trajectories
are launched. Iterations may no longer be relevant: if Fto(p) denotes the first return to � of
a point p, then Fto(Fto(p)) has no physical meaning if the system is not autonomous in the
given frame. The gravitational forces at time to differ from those at the time of the first return
to Fto(p).

Previous efforts to geometrically describe different trajectory behaviors employ the Finite-
Time Lyapunov Exponent (FTLE) scalar field (Gawlik et al. 2009; Short et al. 2011; Pérez
et al. 2012; Short and Howell 2014), which measures the locally largest stretching in the
flow. The direction of largest stretching is also considered in this paper. These directions are
exploited to identify useful paths of motion from an initial point and to parameterize regions
that separate distinct trajectory patterns using the related notions of stretchlines associated
with the largest stretching direction as well as reduced strainlines, respectively. These exten-
sions aremotivated by the recent notions of hyperbolic LagrangianCoherent Structures (LCS)
developed in Haller (2011), Farazmand and Haller (2012), and Blazevski and Haller (2014).

One advantage of the new concepts focused on stretchlines is the development of a mech-
anism to build low-energy transfer trajectories directly in many-body systems and models
incorporating any degree of fidelity. This notion is illustrated through the construction of
transfers from Oberon to Titania in a bicircular four-body model. Transfers are identified
withΔv values smaller than those necessary to supply the theoretical energy change between
the initial and final Jacobi constant values. In the process, the approach established here also
clarifies the underlying dynamical structures.

The problem formulation and implementation of the methodology are described in detail
throughout this document. In Sect. 2, related work is highlighted and the notion of LCS, as
well as some underlying mathematical concepts, are discussed. Subsequently, in Sects. 3–4,
details of particular multi-body formulations and mapping strategies are summarized. Some
background material follows directly from Short et al. (2011) as well as Short and Howell
(2014). Given an initial point with a known maneuver to transport to a target, exploration of
the nearby phase space using flow control segments (FCS) to shorten transfer arc durations
or reduce maneuver costs is considered in Sect. 5.1. Specifically, application of FCS and a
targeting strategy, introduced by Schroer and Ott (1997) and further explored by Grebow
(2010), are compared. A more generic example using FCS is also useful. The principal result
from this analysis, featured in Sect. 5.2, is a system-to-system transfer between two Uranian
moons that illustrates the extension of FCS to more complex, nonautonomous systems.

2 Stretching in the linear flow

2.1 Singular stretching directions and values

Techniques using dynamical systems theory to investigate behavior in the CRP inherently
rely on the iteration of a single map to assess the long-term dynamics, typically a Poincaré
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map on a two-dimensional surface�. In more complex gravitational fields, there is generally
no low-dimensional map for which iterations can easily reflect the evolution of trajectories in
the system. As an example, in the restricted problem, a fixed point p of the Poincaré map is a
periodic orbit, yet for more complicated gravitational fields, points that satisfy φ

to+T
to (p) = p

generally will not represent a periodic orbit unless the gravitational field itself is periodic.
Even if the gravitational field is periodic in time in a certain frame, techniques to search for
periodic orbits and invariant manifolds are limited.

In the current analysis a fixed interval of time, T , is considered and the flow map, φto+T
to ,

is evolved over [to, to+T ]without iterating the map. The linear flow from the state transition
matrix (STM), Dφ

to+T
to , yields a first-order approximation to trajectories near a reference

path. Perturbations can exhibit dramatically distinct patterns of divergence, compression or
lack of either. The characterization of such behavior is encoded in the singular values σi and
the unit length singular vectors ξ i and θ i of Dφ

to+T
to satisfying,

Dφ
to+T
to ξ i = σiθ i . (1)

The term singular reflects that σi are stationary values of the function,

σ =
∣
∣
∣Dφ

to+T
to ξ

∣
∣
∣

|ξ | , (2)

with respect to changes in the direction ξ . The singular vectors ξ i are also eigenvectors of

the Cauchy–Green Strain Tensor (CGST), Cto+T
to =

(

Dφ
to+T
to

)T
Dφ

to+T
to (Smith 1993), and

the corresponding eigenvalues of Cto+T
to are λi = σ 2

i (the notation T indicates the matrix
transpose). The largest singular value σn corresponds to the largest possible growth of a
perturbation, with the growth exponent

FTLE = 1

|T | log σn = 1

|T | log
√

λn (3)

defined as the finite-time Lyapunov exponent. The eigenvalues and eigenvectors of Cto+T
to

are computed to implement the strategies in the following analysis.
Both the FTLE and the eigenvectors of the CGST are related to the recent notion of

Lagrangian Coherent Structures (LCS) in fluid dynamics. The LCS-based methodology
developed here extends previous work by introducing the notions of Flow Control Segments
(FCS; Sect. 2.2) and tensorlines in an astrodynamical context (Sect. 2.3). These concepts
appear in a number of examples and supply a framework for targeting and transfer problem
analysis in nonautonomous multi-body systems. In previous investigations, Anderson et al.
(2003) discuss the application of FTLE over relatively short time spans, denoting the met-
ric as the Local Lyapunov Exponent (LLE), to identify sensitive regions along a trajectory.
Improved patch point placement for differential corrections strategies using FTLE values is
investigated by Harden (2013) and Harden et al. (2014). Various authors, including Lara et al.
(2007), Villac (2008), and Villac and Broschart (2009), all apply the Fast Lyapunov Indicator
(FLI), a metric similar in form to FTLE, for preliminary spacecraft trajectory design and
stability analyses in multi-body environments. Detection of the Arnold web in phase space
using the FLI is offered by Froeschlé et al. (2001). In an application more closely associated
with this investigation, Gawlik et al. (2009) examine LCS in the mixed position–velocity
phase space of the planar elliptic restricted three-body problem. Additional efforts to apply
FTLE and LCS methods in the three-body problem within the context of periapse mappings
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Fig. 1 Forward–Backward
method of Shinbrot et al. (1990)
[figure reproduced from Schroer
and Ott (1997) with publisher’s
permission]

are offered by Short et al. (2011). Pérez et al. (2012) also examine the detection of invari-
ant manifolds from LCS in the circular restricted three-body problem. An examination of
the impact of increasing the fidelity of the multi-body model on FTLE analysis and LCS-
guided design is investigated by Short and Howell (2014). Identification of linked orbits in
the four-body problem using LCS is considered by Oshima and Yanao (2014).

2.2 Flow control segments

The notion of control segments is introduced by Shinbrot et al. (1990) with further extensions
by Schroer and Ott (1997). In Schroer and Ott, the authors employ small lines or circles about
specific points on a Poincaré map to join two periodic orbits from different regions in the
chaotic CRP phase space. Working in the planar CRP, a map is defined in terms of position
and velocity (Cartesian x and ẋ) states in the rotating frame. A strategy where a segment and
circle are simultaneously iterated forward from the vicinity of an initial orbit and backward
from a target orbit on the map is utilized. As the segments are advected under the flow,
their pre- or post-images grow until, after some (likely different) number of forward and
backward iterations, an intersection occurs. This process is illustrated in Fig. 1, reproduced
from Schroer and Ott (1997) with permission.

Such an intersection is a connection in all components of the planar CRP state and
represents an end-to-end trajectory joining the orbits with small velocity discontinuities at
departure and insertion. In Grebow (2010), the example from Schroer and Ott is revisited.
Grebow observes that the natural stretching of the target circle quickly collapses it to an
arc. Thus, the process is equally well served by employing segments for both forward and
backward evolution.

In the present paper, similar flow control segments (FCS) are constructed along the eigen-
vector, ξn , associated with the largest eigenvalue of the Cauchy–Green tensor (these FCS are,
in fact, applied stretchlines of the tensor). Assuming an appropriate time scale for calculating
the CGST, stretching occurs in the phase space along the eigenvector, ξ i , proportional to√

λi , that is,
∣
∣
∣Dφ

to+T
to ξ i

∣
∣
∣ = √

λi
∣
∣ξ i

∣
∣ , (4)

thus, ξn supplies the most-stretching direction in the flow, and represents the optimal choice
for divergent behavior. Consequently, the images resulting from evolving ξn-aligned seg-
ments intersect after fewer iterations yielding a shorter time-duration transfer. This notion is
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Fig. 2 Stretching associated
with eigenvectors of the
Cauchy–Green tensor

illustrated in Fig. 2, where the double-headed red arrow represents ξn and the double-headed
blue arrow conveys the remaining directions.

2.3 Tensorlines of the Cauchy–Green strain tensor

Curves tangent to direction fields associated with Cto+T
to are tensorlines, and tensorlines that

are tangent to the direction of largest stretching are termed stretchlines. On the other hand,
in two-dimensional flows, for example, curves tangent to ξ1 are orthogonal to the largest
stretching direction ξ2 and maximally repel nearby trajectories at each point (Farazmand and
Haller 2012)—these lines are repelling strainlines. A generalization to three-dimensional
flows is given in Blazevski and Haller (2014), where reduced repelling strainlines are com-
puted on two-dimensional restrictions of the initial conditions. The reduced strainlines in
Blazevski and Haller (2014) are obtained by seeking intersections of surfaces orthogonal to
the most stretching direction ξ3 with a 2D set of initial conditions.

A further generalization of the reduced field approach of Blazevski and Haller (2014)
is accomplished by similarly computing reduced strainlines on select 2D surfaces of initial
conditions. More specifically, given a two-dimensional set of initial conditions �, let n1 and
n2 be two linearly independent vectors orthogonal to� to produce a four-dimensional planar
phase space. For any point p on �, the unique direction ξ̂4, orthogonal to n1, n2 and ξ4, is
the intersection of repelling Lagrangian coherent structures with the set� (Haller 2011). The
approach in thiswork to compute intersections of three-dimensional surfaces orthogonal to ξ4,
generalizes themethod of Blazevski andHaller (2014) for computing analogous intersections
in 3D flows. For the spatial restricted problem, four linearly independent directions normal
to � are required and, then, the unique direction orthogonal to the four normal vectors and
ξ6, ξ̂6, can be constructed.

2.4 Computing the CGST, FTLE and strainlines

Since strainlines are curves tangent to a direction field obtained from the eigenvectors of
CGST, an accurate computation of the tensor is necessary. In line with Farazmand and Haller
(2012) as well as Blazevski and Haller (2014), the CGST is computed on a grid Xi of
points using finite differencing. At each point, a uniform h is used for the finite difference
approximation, and h need not be the distance between the grid cell

∣
∣Xi − X j

∣
∣ (it is generally

several orders of magnitude smaller for the examples in this paper). This approach is typically
more accurate and numerically robust than computing the CGST by integrating the equations
of variation. This additional numerical stability is a consequence of the fact that the grid
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approach reflects the actual fate of each perturbation, while the entries of the propagated
STM can grow exponentially.

At each point Xi , the FTLE is computed from Cto+T
to using Eq. (3). Reduced strainlines

are computed by integrating the reduced field ξ̂n ; however, the field is defined only up to a
sign. An additional step is required to clarify the sign ambiguity. As for the two- and three-
dimensional phase-space flows (Farazmand and Haller 2012; Blazevski and Haller 2014),
the differential equation is solved for parameterizations r of reduced strainlines,

d

ds
r (s) = sign

(〈

ξ̂n (r (s − Δ)) , ξ̂n (r (s))
〉)

ξ̂n (r (s)) . (5)

Thus, to compute curves tangent to ξ̂n , the previous orientation of ξ̂n is assessed to accom-
modate a sign change in ξ̂n at the next time step if appropriate.

3 System models

The computation of the CGST is not contingent on any assumptions in the derivation of
the system differential equations and, thus, can be applied to systems modeled with various
levels of fidelity. Analysis based on the Cauchy–Green tensor remains valid regardless of
the complexity of the model. Flow control segments are investigated in examples within the
context of the circular restricted problem aswell as a bicircular four-body system in this paper.
Selected results are transitioned through various levels of fidelity and are ultimately validated
in a partial ephemeris model. Some necessary considerations for eachmodel are summarized.

3.1 The restricted three-body model

Some key space environments involve multiple gravity fields. Therefore, it is often necessary
to incorporate as many of these gravity fields as possible into the governing models to ensure
accurate simulation and to capture the essential features of the dynamical interactions.

The CRP is the simplest model for the motion of a massless object in the presence of
two massive bodies. Though it offers no closed-form analytical solutions (Diacu 1996), it
has been thoroughly studied numerically, and has been of significant practical importance in
applications. For completeness, the definition and parameters of the CRP are recalled. The
two primary bodies that appear in the model are designated as P1 and P2. Position variables,
x , y, and z describe the position of the third body, the spacecraft, with respect to the barycenter
of the primary system, which also serves as the origin of the rotating and inertial reference
frames. The system mass parameter is represented by μ = m2

m1+m2
, a function of the masses

of the primary bodies. Additionally, distances between the third body and each of the two
primaries are denoted ri3. In a coordinate frame that rotates coincident with the circular
primary motion, a system of differential equations that describes the motion of the third body
incorporates the potential function,

U∗ = 1 − μ

r13
+ μ

r23
+ 1

2

(

x2 + y2
)

, (6)

and is written,

ẍ = ∂U∗

∂x
+ 2 ẏ, ÿ = ∂U∗

∂y
− 2ẋ, z̈ = ∂U∗

∂z
, (7)

where the first derivatives in x and y appear as a result of the Coriolis acceleration.
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Fig. 3 Zero velocity curves in
the P2 region

The equations of motion in the restricted problem are consistent with Szebehely (1967)
where they admit a single integral of the motion. This integral is termed the Jacobi integral
and is represented as C in this analysis,

C = 2U∗ − v2, (8)

where v2 = ẋ2 + ẏ2 + ż2, that is, the square of the magnitude of the relative velocity. This
integral allows for a reduction of order in the problem, and frequently serves in an important
role in the definition ofmaps. The Jacobi integral reveals boundaries on themotion of the third
body in the restricted problem. These boundaries are defined when the velocity in Eq. (8) is
zero, separating regions of real and imaginary velocities. An example of the Jacobi limiting
boundaries, or zero velocity curves (ZVC) in the x–y plane (plotted in black), is depicted in
Fig. 3 along with the two libration points near the second primary (in this case, Saturn at 50×
scale in the Sun—Saturn system). These types of boundaries on the motion are intimately
associated with the definitions of the maps employed here.

The restricted problem represents a model of sufficient complexity to exhibit regions
of both chaotic and ordered behavior. Generally, the focus of the analysis in this model is
understanding and exploiting any dynamical structures that are associated with the chaotic
regions to identify useful trajectory arcs. The CRP model is frequently suitable to yield first-
order mission design solutions, but useful information is often difficult to isolate amidst the
chaos.

3.2 The bicircular four-body model

A simplified four-body model, similar to the model utilized by Koon et al. (2002) and further
explored by Blazevski and Ocampo (2012), is also employed here. This model incorporates
the influence of a third massive body simultaneously with the dynamical effects of the two
primary bodies in the circular restricted problem. For a particular planet-moon example,
Uranus, Titania, Oberon and a spacecraft comprise the four-body system. A specific orien-
tation of the relative geometry in such a system, e.g., in a Uranus–Titania rotating frame,
appears in Fig. 4. The orbital angle that defines the initial position of the fourth body, mea-
sured counter-clockwise with respect to the rotating x axis, is denoted θo (in the example
figure, θo = π

4 radians, or 45o).
Under this model, all three massive primaries describe circular orbits about the barycen-

ter of the first and second primaries (Uranus, Titania). The additional massive primary is
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Fig. 4 A sample configuration of
the bicircular four-body problem

designated P4 (Oberon). Although the system is not coherent, the Newtonian inverse-square
gravity of P4 acts on the spacecraft in addition to the gravitational effects of the two CRP pri-
maries. The third primary body does not affect the circular orbits of the other primaries. The
equations of motion remain the same as Eq. (7), but the potential function is now (Guzman
2001),

U∗ = 1 − μ

r13
+ μ

r23
+ μ4

r43
+ 1

2

(

x2 + y2
)

, (9)

where μ4 = m4
m1+m2

.
The bicircular four-bodymodel, while still incorporating significant simplifications, intro-

duces an important transition. The presence of the perturbing fourth body results in a
nonautonomous system. The system is time-periodic and could bemade autonomous through
a temporal or stroboscopic mapping, though this mapping is at least four dimensional, non-
integrable and will typically not allow any conserved quantities to reduce the dimension
of the system. Thus, classical techniques, e.g., locating fixed points of a two-dimensional
Poincaré mapping, are rather limited. Periodic orbits reminiscent of Lyapunov orbits may
exist in the full four-body example (e.g., Blazevski and Ocampo 2012), but only isolated
cases are apparent and there is not yet a systematic procedure to detect families of periodic
orbits, if such a family exists. The goal of this analysis is to highlight the applicabil-
ity of LCS notions to nonautonomous systems, and this work yields a understanding not
obtainable through the use of any temporal stroboscopic mappings. The transition in the
nature of the system decreases or eliminates the applicability of many of the dynamical
systems tools that are available in the CRP. A constant of the motion, and, consequently,
a convenient expression for bounds on the motion, is no longer available. Due to the
time-dependent nature of the underlying flow, the focus now shifts to the initial system
geometry.

3.3 Partial ephemeris model

A partial ephemeris model is selected to be generally consistent with the previous models.
This higher-fidelity model, similar to the model employed by Pavlak and Howell (2012), is
constructed to validate the solution obtained from simpler models by incorporating position
histories for the primary bodies supplied by JPL ephemeris solutions. Themodel is designated
a “partial” ephemerismodel because only the primary bodies of interest (as pointmasses), and
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no higher-order perturbing effects, are included. The governing equations are then derived
as the n-body relative equations of motion,

r̈qs = −μ2b,s + μ2b,q

r3qs
rqs +

n
∑

j=1
j �=s,q

μ2b, j

(

rs j
r3s j

− rq j
r3q j

)

. (10)

whereμ2b is the familiar mass parameter from the two-body problem, nondimensionalized as
appropriate. The position vector, rq j , indicates the position of the j th bodywith respect to the
central body, q; the subscript s is associated with the spacecraft. In this model, states defined
in the restricted problem are transitioned to body-centered J2000 states via an instantaneous
rotating frame defined by ephemerides.

This partial ephemeris model naturally involves six-dimensional state vectors and trajec-
tory propagation proceeds in all spatial dimensions. Additionally, computation of the CGST
employs “auxiliary grid” points about each state variable. Thus, in this model, one CGST
computation involves the propagation of 12 perturbations. Notwithstanding these spatial
considerations, since the maps are transitioned from the planar lower-fidelity model, their
domain remains the same.

Thesemodels illustrate thewide applicability ofLCSanalysis to different types of systems.
Ultimately, this extensibility indicates that this type of strategy can be employed for a full-
ephemeris design and analysis. Such capability is supported by previous literature in other
fields (Mathur et al. 2007; Peacock and Dabiri 2010), which describe the Cauchy–Green
tensor as a tool for directly analyzing empirical flow results (when no underlying dynamical
model is available).

4 Maps

Mapping analysis within the context of multi-body regimes has proven to effectively reveal
design options that are otherwise difficult to identify [see, for example, Davis and Howell
(2012)]. Some advantages of a map-based approach include a broader view of the design
space as well as a cleaner visual that offers easier categorization of the behavior in a specific
region. Themaps employed in this analysis generally employ relatively well-knownmapping
strategies. These maps offer a Lagrangian perspective and essentially reflect the fate of a
grid of initial conditions in terms of their FTLE values associated with some propagation
time.

4.1 State-space maps

Analysis in many systems involves a classical Poincaré mapping to create a puncture plot that
facilitates the investigation. Such amap reveals salient information by reducing the dimension
of the system. Under this Poincaré mapping approach, a hyperplane corresponding to some
value of a single state variable is defined. A grid supplies the relationship between two other
state variables, and the fourth state is constrained by a system integral (for a 4D phase space).

While there are many possible map representations available for observing the behavior
in a system, strategies frequently involve the investigation of position–velocity phase spaces.
For example, a map can be plotted in terms of a position variable and its associated velocity
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component. Maps in the y–ẏ and x–ẋ phase spaces are both used in this investigation, the
former employed for FTLE maps and the latter for puncture plots.

4.2 Stroboscopic FTLE maps and associated strainlines

Traditional stroboscopic maps are constructed as Poincaré maps with a hyperplane condi-
tion selected as a particular time, for example, the characteristic period of a system. The
time should not be arbitrarily defined, however, if the desire is to iterate the map. Con-
sider the map F = φ

to+T
to ; then, F ◦ F , two iterations of F , has no physical meaning,

unless the gravity field is periodic in the frame of integration. Alternatively, composing
F1 = φ

to+T
to and F2 = φ

to+2T
to+T does have meaning since F1◦F2 is physically meaningful, i.e.,

φ
to+2T
to . In this case, though, fixed points of F1 generally have no meaning or interest beyond

to + T .
Rather than searching for periodic orbits and manifolds in systems with complicated

time-dependence, an alternate strategy of exploiting FTLE maps and associated strainlines
is employed here. One essential value of the FTLE for predicting behavior is captured by
examining large groupings of FTLEvalues in a region. This approach leads directly to creating
maps of FTLE values. Aspects from the various types of mapping strategies can be combined
to effectively illustrate the flow in an astrodynamical model. The information that emerges
from these maps is then incorporated into different phases of mission design and analysis.

5 Applications

A few selected examples demonstrate potential strategies for utilizing insight from the largest
stretching direction. Targeting, or control, segments are developed as a first example, both
with and without the flow context provided from the CGST. This comparison is followed by
a generalized example of the implementation of flow control segments. The main result of
the paper highlights the extensions of these schemes to nonautonomous systems.

5.1 FCS targeting

The forward and backward time-advection of small segments bracketing a control point,
denoted control segments, is investigated by Shinbrot et al. (1990), further expanded by
Schroer andOtt (1997) and revisited byGrebow (2010). These control segments are created as
small segments along a particular velocity componentwithout consideration of the underlying
flow behavior. This initialization approach is a consequence of the desire to vary velocity
only in a “feasible” direction while restricting any variation in initial or final position to zero.
However, small adjustments in the direction of the phase space that naturally leads toward
greater flow divergence augments the approach of joining forward and backward segments,
producing a trajectory that can subsequently be corrected with a differential corrections
scheme. Thus, control segments constructed exploiting the flow context may yield a better
result depending on the desired trajectory characteristics.

5.1.1 Comparing control segments with and without flow-based context

Schroer and Ott produce an example to illustrate forward-time control segment advection
and backward-time target region advection to join two periodic orbits in the Earth–Moon
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Fig. 5 Orbits and control
segments. a Candidate orbits for
connection. b Control segment
images on x–ẋ section
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circular restricted three-body problem. In the following example, the mass-parameter and
energy levels are consistent with Schroer and Ott (μ = 0.0123, and C = 3.17948). The
initial and final periodic orbits are generated numerically after observation of the trajectory
characteristics as elaborated by Grebow. The following orbits and the associated map repre-
sentations compare closely with Grebow. The initial orbit, in this case, is a period-3 orbit and
is depicted in green in Fig. 5a, along with the final orbit about the Moon (red). The initial
points on both orbits are marked with black arrows near the x axis; the forward time evolution
from both points is in the positive y direction. Moreover, the trajectories are subsequently
represented as fixed points (both numbered as iteration “0” for their propagations) on the x–ẋ
phase-space Poincaré map in Fig. 5b. From the control points on the map, small segments
(magnitude 1× 10−4) are created along the map-space components of the eigenvector asso-
ciated with the largest eigenvalue of the Cauchy–Green tensor, that is, along ξ2, in this case.
These segments are, in fact, stretchlines that are used as control segments, and are termed
flow control segments (FCS) given their incorporation of the flow behavior. The CGST is
computed only with respect to the map via finite-difference derivatives in x and ẋ for this
case. The integration time for the Cauchy–Green tensor is generally selected as appropriate
for the time scale of the application. For this example, it is observed that the time to reach
the first crossing of the map is sufficient to yield predictive CG eigenvectors. The control
segments are evolved under the flow of the system backward and forward in time from the
lunar-proximal control point and triply-periodic control point, respectively. For comparison
with the previous investigations of this specific example, segments along only ẋ as well as
a segment defined as a circle about the control point near the Moon are also integrated. The
images of each of these curve evolutions corresponding to iterations of the map also appear
in Fig. 5b. The curves are colored based on their initial nature: green curves result from
advection of purely ẋ segments, red and blue curves from the ξ2-aligned FCS and, in the
case of the circular target region, black points mark the associated curves. Observation of
the initial backward iterations of the circular target region reveals that it quickly deforms
to align with the flow control segment, a fact that is exploited to verify the CG integration
time in this case—if the circular region deforms to conform with images of ξ2, the time
scale is appropriate. Later iterations in both time directions reflect longer curves associated
with the flow-aligned control segments; the green points resulting from the initial ẋ segments
require additional iterations before an intersection is observed. Also marked on Fig. 5b are
the map crossings associated with trajectory arcs that intersect after 14 forward iterations
from a perturbation off the triply-periodic orbit and 8 backward iterations from the lunar
orbit step-off.

The trajectory arcs necessarily include discontinuities at the departure and arrival points.
Since perturbations are introduced along the eigendirection, these discontinuities are in posi-
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Fig. 6 Connected forward and
backward segments. a Backward
trajectory arc. b Corrected CRP
solution
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Fig. 7 Corrected ephemeris
solution. a Rotating view.
b Inertial view
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tion as well as velocity. Moreover, rather than employ an iterative scheme such as bisection
to refine the intersection between the forward and backward arcs, a slight discontinuity is
allowed at this point as well. These discontinuities are resolved by implementing a parallel
shooting differential corrections scheme as described by Pavlak (2013). Upon convergence of
the corrections process, the only remaining discontinuities are the requisite velocity changes
to render the transfer. Figure 6 includes views of the backward arc and the differentially
corrected CRP solution. The connection point is visible where the backward propagation
meets the x axis (x ≈100,000km). The trajectory evolution in time is reflected in color by
a gradual transition from green to red. The maneuver requirement at departure is 1.99 m

s ,
while the Δv upon arrival is 1.04 m

s (total: 3.03 m
s ). These maneuver costs compare with

one of the examples from Schroer and Ott at 0.62 m
s and 2.61 m

s , respectively, for a total of
3.23 m

s . They likewise compare with figures reported by Grebow for a somewhat qualita-
tively different solution—0.39 m

s and 1.46 m
s (total: 1.85 m

s ). A significant difference, and
potential advantage of the FCS approach, is a shorter time-of-flight. Each example reported
in previous references requires more than 290days; the sample transfer here is completed
in 265days. This shorter duration is a direct consequence of the FCS strategy with a path
that reaches an intersection in fewer iterations given maximal stretching from ξ2-aligned
FCS.

The given solution can be validated in amore complete model. For a carefully selected ini-
tial epoch, the CRP solution is transitioned into the higher-fidelity ephemeris n-body model.
In this case, only the ephemerides of the Earth and Moon are included. Views of the transi-
tioned solution appear in Fig. 7; the states are numerically corrected for velocity and position
continuity to within 3×10−6 m

s and 0.8m, respectively. The ephemeris solution necessarily
experiences fully three-dimensional motion with maximum out-of-plane excursions greater
than 2000km. The convergence of the solution in the higher-fidelity model lends support to
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Fig. 8 Generic control points
and advected curves
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the process of seeking solutions by perturbing in position space as well as velocity space.
Not only can the relatively complex solution be corrected in the simplified three-body model,
but it can also be replicated in a system that mimics the actual three-dimensional behavior
of the primary bodies.

5.1.2 A more general case

Before leaving the three-body problem as the primary model for analysis, another example
serves to further reinforce the extensibility andflexibility of theflowcontrol segment approach
for identifying transfer trajectories. In this case, still in the Earth–Moon CRP, the system
energy level is increased as reflected by a smaller Jacobi constant value of C = 3.05. Given
this energy value, both the gateway allowing passage into the lunar region as well as the
gateway offering exit from the system are open. That is, trajectories can transit through
both the L1 and L2 regions. Consequently, the chaoticity of the resulting map space is
increased.

To illustrate the continued applicability of the control segment approach, two map points
are selected arbitrarily as control points for this example. These points are marked as “0”
in Fig. 8. In this case, there are no initial or terminal orbits, but rather the situation reflects
the general notion of a spacecraft currently at some arbitrary state while it is desirable for
it to be elsewhere in the state space. Subsequent iterations from the initial states of the
associated ξ2 (1 × 10−4) segments are also numbered in Fig. 8. After 10 forward iterations
(blue) and 7 backward iterations (red) a near intersection is observed. The discontinuity at
the intersection point is significant, however, the end-to-end trajectory is otherwise well-
behaved and the differential corrections process converges upon a solution quickly. As seen
previously, this trajectory is transitioned to the higher-fidelity model. In this example, since
there are no revolutions about the Moon, the ephemeris solution more closely resembles
the CRP solution. The corrected CRP and ephemeris trajectories appear (both in the rotating
frame) in Fig. 9. In the solution computed in the restricted problem, a maneuver of magnitude
0.70 m

s is required at the departure point, while a 0.76 m
s maneuver is required upon arrival at

the final state (total: 1.46 m
s with a time-of-flight just under 372days). This example further

establishes the stretchline/FCS targeting approach and demonstrates its application in more
generic situations.
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Fig. 9 Connection of arbitrarily
selected map points. a Corrected
CRP solution. b Corrected
ephemeris solution
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5.2 System-to-system FCS example

The major focus in this investigation is illustrated by an example involving the flow control
segment approach for targeting trajectories in the bicircular four-body problem. The motivat-
ing purpose behind this sample application is the possibility afforded of identifying solutions
directly in a complex, nonautonomous model, a model that is not necessarily amenable to
analysis methods that apply in simpler problems. The solutions that are constructed with this
flow-based methodology represent trajectories that, inherently and simultaneously, accom-
modate, and thereby exploit, all gravitational forces available in the system. Leveraging all
available natural forces frequently leads to various fuel-efficient solutions, but may result in
longer times of flight. However, without flow-based tools, other, less-direct strategies must be
utilized to determine solutions, and the associated solution space is generally more restricted
and potentially less transparent.

The bicircular four-bodymodel is selected to provide a convenient context for a system-to-
system transfer and to explore its increased complexity as a nonautonomous system. While
the selected model is time-periodic and could be made autonomous with a stroboscopic map-
ping, the goal is to highlight the applicability of the present methodology to nonautonomous
systems. The Uranus–Titania–Oberon system is selected for its mass and distance charac-
teristics. Titania and Oberon are the same order of magnitude in mass, possessing two-body

gravitational parameters of Gm = 228.2 km3

s2
and Gm = 192.4 km3

s2
, respectively, while

the mass parameter of Uranus is equal to 5,793,939 km3

s2
(Jacobson 2007). Moreover, the

moons’ orbits are relatively close to Uranus as well as each other with semimajor axes of
∼4.36×105 and ∼5.83×105 km with respect to Uranus. Finally, the orbits of both Titania
and Oberon about Uranus are relatively circular (eccentricities: 0.0011 and 0.0014, respec-
tively) and have low inclinations with respect to the Uranian equator (0.079◦ and 0.068◦,
respectively; Laskar and Jacobson 1987). Together, these considerations supply significant
perturbing influences from the third primary, i.e., Oberon, to the behavior from the perspec-
tive of the Uranus–Titania (UT) system [as well as significant perturbations from Titania on
motion as observed in the Uranus–Oberon (UO) system]. Koon et al. (2002) introduces a
similar system-to-system analysis usingmanifolds in the patched circular restricted problems
involving Jupiter–Europa and Jupiter–Ganymede. Kakoi et al. (2014) also invokes similar
methodology in mixed three-body systems to achieve transfers between orbits in various
systems.

For an illustration of the present concept, both Uranian satellites are depicted in Fig. 10
in the Uranus–Titania rotating frame, along with artificial (in this model and frame) zero-
velocity curves for energy levels that supply the necessary gateway dynamics in the CRP.
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Fig. 10 System-to-system
transfer illustration in
Uranus–Titania (UT) rotating
frame; inspired by figure 1.1 of
Koon et al. (2002)

Oberon’s circular orbital path also appears in gold. The objective in the example is a trajec-
tory that experiences a revolution about Oberon and then departs toward Titania, ultimately
concluding with a revolution of Titania after following a transfer similar to the blue “path”
sketched in Fig. 10. Despite the inclusion of three-body zero-velocity curves for illustration
in Fig. 10, there are no convenient bounds on energy like those available in the restricted prob-
lem. Taken in turn, both Titania and Oberon are incorporated as the “additional” body, thus,
the third massive primary may circumscribe (or be circumscribed by) the second. In Fig. 10,
Oberon is placed at an initial angle of π

4 radians with respect to x axis in the rotating Uranus–
Titania frame (or, viewed alternately, Titania is depicted at−π

4 radians in the Uranus–Oberon
rotating frame). For consistency, trajectory segments departing the Oberon region and mov-
ing inward toward Titania and Uranus are phased such that Oberon initiates in the geometry
depicted in Fig. 10. Trajectories that depart the Titania region outward toward Oberon (i.e.,
in reverse time) reflect the effects of Oberon originating elsewhere than at π

4 radians, barring
coincidence.

The process blends together each of the flow-based concepts previously detailed to iden-
tify transfer solutions. Maps of FTLE values enhanced with reduced strainlines aid in the
selection of candidate initial states while 4D stretchlines are employed as flow control seg-
ments to identify intersecting trajectories. The general transfer mechanism is described as
follows:

1. Choose two-dimensional sections �1 and �2 near Oberon and Titania, and compute the
respective backward and forward FTLE maps and strainlines.

2. Use the previous result to determine two orbits, one going toward Titania in forward time
and the other directed to Oberon in backward time.

3. From the initial conditions in the previous step, compute the ξ4 vectors for forward and
backward integration times and iterate the ξ4 stretchlines (FCS) from positions consistent
with their respective sections (�1 and �2) to an intermediate section �3. In this step,
the integration time for evaluating the Cauchy–Green tensor and obtaining ξ4 is selected
consistent with the time required for the initial conditions to evolve to the intermediate
section in the respective time directions.
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Fig. 11 Surfaces of section for
FTLE grids. a �2: x = 1.03 nd;
UT Rot. Frame. b �1: x = 0.97
nd; UO Rot. Frame

(a) (b)

A detailed description of the implementation of the above steps to obtain a transfer from
Oberon toTitania follows. To isolate the desired behavior nearOberon andTitania, surfaces of
section (generically,�) are constructed in the y–ẏ phase space just beyond the gateways near
L1 and L2, as illustrated in Fig. 11. The sections are defined consistent with −0.035 ≤ y ≤
0.035nondimensional units (nd) and−0.03 ≤ ẏ ≤ 0.03nd.These ranges translate to−1.55×
104 � y � 1.55 × 104 km and −0.1094 � ẏ � 0.1094 km

s with �2 : x ≈ 4.49 × 105 km
(1.03 nd) in the Uranus–Titania system. In the Uranus–Oberon system, the section definition
dimensionalizes to −2.05×104 � y � 2.05×104 km and −0.0945 � ẏ � 0.0945 km

s with
�1 : x ≈ 5.66×105 km (0.97 nd). In both cases, ẋ is recovered from the CRP Jacobi constant
value consistent with the ZVC depicted in Figs. 10 and 11 (in fact, each value of C equals
3.004316 in its respective system). Specifically, the negative root is selected in the evaluation
of ẋ for both maps. Consequently, ẋ is directed (for forward time evolution) “inward” toward
Uranus as indicated by arrows in Fig. 11. As demonstrated by Short and Howell (2014), the
associated initial conditions (IC) can be transitioned and evolved in another model—in this
case, the IC are advected in the four-body model. Values of FTLE, resulting from forward
integration for 10 nondimensional time steps (∼13.8days) into the Titania region as well
as backward evolution toward Oberon (10 nd; ∼21.4days), appear colored consistent with
the color scales in Fig. 12a, b. The two states investigated in this example are marked with
black dots in Fig. 12a–d. When these states are evolved away from their respective sections
in the opposite time direction, they are integrated for longer time durations, namely, the time
required to cross the intermediate hyperplane. An area of particular numerical sensitivity is
apparent in Fig. 12a, c as a solid white curve of FTLE values interior to the main lobe. This
white region, as well as the areas beyond the larger gray shape on both maps, reflect FTLE
values set to zero based on integration issues or exclusion by the CRP zero-velocity bounds.

Reduced strainlines are projected onto the FTLEmaps in Fig. 12c, d. These strainlines help
to characterize the flow originating from initial conditions and highlight various regions in the
map. In fact, the reduced strainlines are cross sections of the strongest repelling hypersurfaces
in the flow, and, as such, they are expected to separate regions of different behavior. The calcu-
lation of reduced strainlines results in 4D parameterizations of Lagrangian coherent structure
cross sections. Not only do the strainlines offer an immediate visual indication of different
flow regions, useful in searching for potential trajectory options, but they can also be directly
harnessed in algorithms with precise calculated states. Given the sensitive, chaotic nature of
models for simulating astrodynamical systems, very small inaccuracies (even on the order of
double precision numerical truncation errors) can be significant. Extracting an accurate solu-
tion for LCS states through reduced strainlines enables additional numerical analysis within
a region. The process for producing the reduced strainlines is enumerated and elaborated:
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Fig. 12 Maps of FTLE values
near Titania and Oberon and
reduced strainlines. a Titania L2
FTLE gateway map. b Oberon
L1 FTLE gateway map. c Zoom
of (a) with strainlines. d Zoom of
(b) with strainlines
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1. Identify LCS candidate points based on high FTLE values, and refine these points by
seeking nearby maxima.

2. Calculate the Cauchy–Green tensor associated with the refined points and extract the CG
eigenvectors.

3. Using the eigenvector directions and two normals n1 and n2 to the state space, calculate
the unique direction orthogonal to n1, n2 and ξ4, which is the tangent direction for
reduced strainlines.

In general, if the state space is defined by scalar functions Fi = ci , then ∇Fi are vectors
orthogonal to the state space. In the following calculations, the state space is defined by
fixing an initial Jacobi constant value, C(x, y, ẋ, ẏ) = Co, and x = xo and the vectors
n1 = ∇C and n2 = (1, 0, 0, 0) are used as the normals to the state space necessary to
compute the reduced strainlines. The strainlines, then, follow the resulting vectors under
numerical propagation and outline distinct regions characteristic of specific flow behavior.
The parameterized strainlines can be exploited to evolve the associated LCS, which supplies
flow pathways through the system. The curves also allow for a precise definition of region
boundaries making it possible to perform additional analysis within a region. The process
for constructing these strainlines is elaborated.

Identify and refine points The initial effort of seeding points for strainlines requires some care.
Manually placing initial points for strainlines guided by the features in an FTLEmap may be
a useful strategy. However, amore automated possibility is available. Beginwith a simple line
search across the FTLE field identifying all local maxima along this line. In fact, the process
for identifying the initial points for the strainlines in Fig. 12c, d is initiated from four such
line searches: a horizontal line centered vertically and running across the field, a vertical line
centered horizontally and running from the top to the bottom of the field, and two diagonal
lines joining opposing corners. This search strategy is depicted in Fig. 13a where darker
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(a) (b)

Fig. 13 Identifying and refining LCS candidate points from local FTLE maxima. a Search strategy for high
FTLE points: white markers represent local maxima from line searches (indicated by black“spokes”). b Local
maxima refinement: central point (white) from (a) on ∼ 300× smaller spokes, overall maximum in black

colors represent higher FTLE values—black lines represent the search space and white dots
illustrate potential maxima of the underlying FTLE field. The FTLE profile along a particular
line is noisy in some regions leading to multiple local maxima in a small neighborhood and
may benefit from subsampling or culling. It is desirable to identify local FTLEmaxima along
a line to sufficient numerical precision that the resulting CG eigenvectors are consistent and
usable. Given the several maximal points identified along a field-wide line, a refinement to
isolate a constrained maximum in their local neighborhoods is performed. This refinement is
illustrated in Fig. 13b centered on a single white point from one of the initial lines. Additional
searches along much smaller lines (in this case ∼ 2 × 10−4 nd, or about 300× smaller than
the larger lines) in the local neighborhood supply the maximum line-wise FTLE values (gray
points in the figure), from amongwhich the overallmaximum is selected (blackmarker) as the
refinedpoint for further analysis. To accomplish arbitrary resolution (andovercome truncation
errors from finite-differencing) along any of the line searches, complex-step differentiation as
described by Squire and Trapp (1998) is invoked to evaluate the CGST. None of the line-wise
refined points is necessarily the global maximum in the neighborhood, but they are assumed
to be crossings of a curve of interest (also depicted in Fig. 13b).

Calculate Cauchy–Green eigenvectors The Cauchy–Green tensor is evaluated for the points
identified in the preceding step. The flow parameters are consistent with the parameters
defining the FTLE maps. Hence, the integration time associated with the map is employed to
calculate the CGST at each step. The CG eigenvectors from the associated points are retained
for the subsequent step.

Identify vectors and calculate strainlines The FTLE maps in Fig. 12 involve guiding con-
siderations. Namely, insight from the three-body Jacobi constant and the related motion
boundaries are employed to fully determine the map initial conditions and selection of
forward-time velocity directions consistent with Fig. 11 are both invoked to produce the
maps. These considerations translate to constraints that prove useful for deriving vectors to
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Fig. 14 Selected trajectories (10
nd) from a strainline enhanced
FTLE map

construct strainlines. Beginning with a seed point identified through refinement, a vector is
calculated that is simultaneously orthogonal to the CG eigenvector ξ4, the hyperplane and the
variation of Jacobi constant (i.e., the gradient of the Jacobi constant expression), as described
previously. This reduced vector is tangent to the desired strainline and a single numerical
integration step along the four-dimensional vector evolves the strainline forward to a new
point. The calculation of a new reduced vector is accomplished by evaluating the CGST at the
new point and again completing the requisite vector operations. This process continues for
each integration step until some prescribed final integration time (i.e., a 4D arc length) is met.

The reduced repelling strainlines on the y–ẏ FTLE maps are computed. In general, the
reduced strainlines represent potential structures that can signify a qualitative change in
trajectory behavior. Particular regions are revealedwhere trajectories enter the nearbyUranian
moon’s neighborhood, and do not subsequently exit (for the duration of the simulation). These
ideas are illustrated in Fig. 14. The three-body ZVC (dark gray) are included in Fig. 14 for
context and the appropriate surface of section from Figs. 10 and 11 is consistent with the
green line. The outermost strainline in the central pane represents a flow boundary; states
exterior to this boundary will not evolve into the Oberon region while states inside the
contour will evolve toward Oberon. This outermost strainline is analogous to the boundaries
reflected by the Jacobi limiting curves from the autonomous CRP where, in that case, the
curve would correspond to the map image of a four-dimensional invariant manifold. In
the nonautonomous four-body case the structures emerge solely as a reflection of the flow
behavior. While trajectory behavior is generally consistent with the Jacobi limiting curves
of the CRP, it does not, in fact, strictly conform to the underlying energy preservation of the
restricted three-body problem (and the associated motion boundaries). In the left- and right-
most panes of Fig. 14, the evolution of two states, one exterior (pane b.1) and one interior
(pane b.2) to the outermost reduced strainline, is depicted. This illustrates the notion of the
observed flow separation associated with this particular reduced strainline. Also depicted
are two sets (panes a.1–3, and c.1–3) of three trajectories each taken from two distinct

123



232 C. R. Short et al.

Fig. 15 Transfer “Bookends”:
originating near Oberon,
terminating near Titania. a
Terminal transfer segment viewed
in Uranus–Titania rotating frame.
b Initial transfer segment viewed
in Uranus–Oberon rotating frame

(a) (b)

regions. Both sets display qualitatively similar behavior between their members and serve
to illustrate the concept that states within specific regions, identifiable by the underlying
FTLE features and the associated strainlines, display consistent characteristics while those
belonging to other regions differ. Not all of the displayed reduced strainlines correspond to
a drastic flow distinguishing feature like that associated with the outermost curve, however,
they do represent more subtle changes in the state space. A particular strainline may signify
a change in sign in a particular final state or a reversal in the evolution of trajectory behavior.
For example, observing states on the map as they approach and cross strainlines may result
in trajectories that display growth in terms of the final value of an orbital element, reach a
stationary point, and then begin to reverse the previous growth. In general, the curves augment
and enhance the map and supply a parameterized set of points to aid in additional analysis.

Given the guiding tools available from the maps, end-segment trajectory arcs can be iden-
tified. To help illustrate the FCS concept, segments are selected somewhat arbitrarily. That
is, segments that evolve from the map and complete a few revolutions about the associated
primary without impacting are desirable, but for the purposes of the ensuing example any,
not necessarily the best, such arcs will suffice. Many possible choices are available and, from
among these, the arcs consistent with the large black dots on the maps in Fig. 12 are selected.
In the case of the associated Oberon segment, the selection is consistent with the first ∼1.5
revolutions of the trajectory depicted in pane a.1 of Fig. 14. Both end-segment trajectories
appear inFig. 15 colored fromgreen to redwith increasing time.These initial segments and the
corresponding FTLEmaps are each calculated with the associated primary acting as P2 in the
four-body system. For example, the Oberon segment and map are calculated in the Uranus–
Oberon rotating frame with Titania orbiting counter-clockwise “interior” to Oberon. In this
case, Titania’s motion initiates at an angle of −π

4 radians with respect to the Uranus–Oberon
rotating x axis. Similarly, for the Titania segment, Oberon orbits the system “exterior” to Tita-
nia. However, Oberon orbits in a clockwise direction given a slower angular rate than Titania.

To simplify the analysis, the initial Oberon map state is transformed into the Uranus–
Titania rotating frame using transformation matrices similar to those in Anderson (2005)
and, subsequently, evolved backward in time to verify its consistency under the alternate
system. All additional analysis occurs in the Uranus–Titania rotating frame. Next, the states
from the two map points are evolved, forward in time from the vicinity of Oberon and back-
ward in time from the vicinity of Titania. These propagations are terminated after successive
intersections with the negative x-axis segment colored magenta in Fig. 16. This selection
of the intersection region is inspired by Koon et al. (2002). The forward propagation from
the vicinity of Oberon always originates with Oberon at π

4 rad in the Uranus–Titania rotat-
ing frame. The first crossings of the forward and backward propagations are displayed in
Fig. 16a, and subsequent crossings in both forward and backward time are displayed, for
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Fig. 16 Negative x-axis
trajectory crossings. a First
crossings. b Subsequent crossings

Fig. 17 Initial FCS images on
�3 hyperplane (on the negative
x axis)
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illustration, in Fig. 16b. The backward propagation of the Oberon trajectory (from Fig. 15b)
in theUranus–Titania–Oberon four-body systemappears at the top in both Fig. 16a, b, initially
colored black and evolving toward Oberon. Oberon’s circular path is represented in gold,
while the spacecraft trajectory segments are colored using a discrete, rotating color scheme
that increments with each full nondimensional time unit (∼1.38days) as a means to aid in
the time correlation. Forward and backward segments colored differently upon intersection
immediately reveal a timing mismatch.

For the backward propagation from Titania to be valid, the initial angular position of
Oberon must be adjusted. This adjustment is accomplished by summing the time required
for the forward propagation from Oberon to the nth crossing with the length of time required
for the backward propagations to meet the x axis after m crossings. Given the total “inner”
time duration (the forward time from the Oberon section plus the backward time from the
Titania section), the angular position of Oberon is adjusted using its constant angular rate.
However, the adjusted initial position impacts the time for the backward propagations to
reach the x axis, so this adjustment procedure must be iterated until the timing and the
initial Oberon position agree. In some cases, close primary passages cause this iterative
process to diverge. Consequently, some combinations of forward and backward crossings
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Fig. 18 Crossing combinations:
the 1st–3rd forward crossings of
the ξ4-velocity aligned segments
from the Oberon region are
marked in red from left to right.
Representative 1st–3rd backward
crossings are marked with blue,
green and black points from top
to bottom. The grid lines in each
panel are consistent with the axis
ticks in Fig. 17. a Forward
crossings: 1 backward (t–b): 1, 2,
3. b Forward crossings: 2
backward (t–b): 1, 2, 3. c
Forward crossings: 3 backward
(t–b): 1, 2, 3

(a) (b) (c)

are not attainable. Finally, it must be verified that the Titania end-segment (and, indirectly,
the associated FTLE map) remains valid for the adjusted Oberon positions. The proximity
to Titania generally overwhelms the perturbation from Oberon—its effects are still visible
but, for each of the sampled cases, the selected trajectory near Titania remains qualitatively
consistent. Given corrected timing and angular positions for Oberon, the Cauchy–Green
tensor and its eigenvalue/eigenvector sets can be computed.

The present analysis is restricted to perturbations in velocity space along the associated
eigenvector components and ultimately reveals solutions continuous in position that require
three distinct velocity-changing maneuvers. The maximum perturbation associated with the
segments is 1 × 10−2 or about 36 m

s to induce sufficient stretching, i.e., the end points of
the segments represent a 36 m

s change in velocity. In Fig. 17, the first forward crossing
of the segment is depicted in red, while the first backward crossing is colored blue. The
images of the “central” trajectories about which the FCS are taken are also depicted as black
dots in Fig. 17. No intersections exist between the 36 m

s forward and backward FCS as
is apparent in the figure. Additional revolutions are observed to supply multiple potential
connections, however. A sampling of representative FCS images on the hyperplane appears
as Fig. 18. While the forward images will remain the same given their consistent initiating
system geometry, the images of the backward FCS will vary significantly depending on the
particular intersecting states and the associated time of flight to reach the intersection. In
Fig. 18, the 1st–3rd forward crossings of the ξ4-velocity aligned segments from the Oberon
region are marked columnwise in red, respectively from left to right. At the same time, the
associated 1st–3rd backward crossings proceed by rows with the 1st crossings depicted by
blue points in the first row, the 2nd crossings represented with green points on the second row,
and the 3rd crossings marked by black dots in the final row. It is apparent that the resulting
backward FCS images are all different contingent upon the associated forward time of flight.

Inspection of the resulting intersections in Fig. 18 reveals multiple connections. However,
the new “time-to-crossing” associated with the perturbed states that should ultimately lead to
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Fig. 19 FCS identified
system-to-system transfer. a
Three forward crossings. b Three
backward crossings. c Complete
transfer trajectory

an intersection must be incorporated. To do so, a potential intersection is selected from map
images associated with the timing that is consistent with the “central” trajectories. Then, the
times of flight associated with these candidate arcs are employed to adjust the initial place-
ment of Oberon for the backward propagation from Titania (i.e., this state, in fact, represents
the final position of Oberon once the trajectory arrives in the Titania region after transferring
from Oberon in forward time). The candidate intersection now occurs elsewhere along the
FCS, and, in cases of intersections near the edges of the control segments or intermediate close
primary passages,may no longer exist. Frequently, the intersection is still apparent on themap
and the new intersecting states are subsequently employed to repeat the process, which con-
tinues iteratively until agreement in timing and system geometry occurs. One example of the
transfer initiating on the Oberon section and terminating at the Titania section is displayed in
Fig. 19. This particular case is selected for display simply to illustrate the result of the process.

Multiple solutions are tabulated in Table 1 where the total maneuver cost associated
with the Oberon section departure (i.e., the perturbation along the FCS), the adjustment in ẏ
required at the intermediate section, and the perturbation along the control segment at the Tita-
nia section is listed. The transfer timeof flight is also included.Of particular note is the shortest
time-duration transfer (81.56days) characteristic of two forward and one backward iterations
as well as the lowest (propellant) cost solution (123.43 m

s ) from three forward and one back-
ward crossings—these minimal cases belong to different solutions. While the main goal of
this analysis is to highlight the ability of identifying solutions directly in systems incorporat-
ing higher-fidelity gravity models, some comparison with times of flight and maneuver costs
associated with transfers in simpler models is useful. A Hohmann transfer between the two
sections depicted in Figs. 11 and 15, assuming the possibility of a 180o transfer angle, would
require 5.46dayswith amaneuver cost of 391.53 m

s . Theorbital anomalies ofOberon andTita-
nia at departure as well as that of Titania at arrival corresponding to the lowest propellant con-
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Table 1 Transfer data: maneuver costs and times of flight

BWD ↓ FWD → 1 (m/s), (days) 2 (m/s), (days) 3 (m/s), (days)

1 No intersections 182.97, 81.56 173.93, 116.41

179.46, 125.81

123.43, 119.31

163.93, 111.23

2 168.39, 91.23 142.71, 126.09 133.74, 160.73

219.77, 138.94 181.23, 186.53

167.90, 181.32

164.77, 180.81

195.42, 172.95

3 161.20, 134.90 126.82, 178.13 125.45, 204.55

153.86, 143.18 144.94, 177.99 170.13, 212.14

180.54, 142.90 206.28, 190.69 160.14, 247.18

209.84, 190.51 182.08, 241.87

208.14, 190.14 130.89, 232.53

179.08, 224.29

sumption listed in Table 1 reflects a transfer angle of 260.17o. The solution in the table attends
multiple revolutions of Titania and Oberon but the initial and final locations of the moons are
consistent with a direct transfer experiencing less than one inertial revolution consistent with
a 260.17o transfer angle. A Lambert-arc solution for the given geometry is accomplished in
6.29days and requires 458.56 m

s to match velocities at departure and arrival. Finally, compar-
isons of the Jacobi constant values at the two sections computed in a commonUranus–Titania
three-body system indicate a minimum CRP change in velocity of 150.99 m

s that is necessary
to supply the requisite energy change. While the solutions identified from the FCS analysis
involve significantly longer times of flight than simple comparisons from the two- and three-
bodymodels, they are obtaineddirectly in the higher-fidelitymodel incorporating the gravities
of all relevant bodies. As a consequence, they reflect lower costs as well as potential initial
guess solutions for differential correctionswhichmay further reduce propellant requirements.

6 Concluding remarks

The ability to identify flow regions that are generally advantageous to mission goals in
complex astrodynamical systems expedites the search for viable options in a wide range of
design scenarios. The principles of a flow-based methodology imply potential application
regardless of the complexity of the underlying system, and the four-body example, in its
nonautonomous form, reinforces this implication. The information supplied by the CGST
augments and generalizes well-known strategies that employ the state transition matrix for
trajectory design and analysis. In the case of maneuvers, knowledge of the flow behavior
offers the opportunity to save propellant and time when compared to solutions that do not
directly exploit the full four-body dynamics.

Since employing maneuvers in phase-space regions reflecting large stretching behavior
produces larger effects downstream for smaller expense, FTLE ridges and the associated
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structures identify advantageous choices for maneuver placement. Specifically, control seg-
ments informed by the systemflow supply excellent candidates for optimalmaneuver options.
Lagrangian coherent structures, their underlying theory, and the related mathematical tools
characterize the flow in a system and offer valuable context.
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