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Appendix A. Euler-Lagrange equations for the average strain Q

The Euler-Lagrange equations for stationary values for the averaged Lagrangian strain
Q are of the form

∂r

√
〈r′, Ctt0(r)r′〉
〈r′, r′〉 − d

ds
∂r′

√
〈r′, Ctt0(r)r′〉
〈r′, r′〉 = 0. (A 1)

We introduce the index notation Cij for the coordinate representation of the tensor Ctt0 ,
and rj for the components of the vector r. Then the equation can be written out in the
coordinate form
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= 0, (A 2)

using the summation convention over repeated indices. Carrying out the differentiation
d
ds in (A 2) leads to the final, lengthy form of the Euler–Lagrange equations, which will
be omitted here for brevity.

Appendix B. Stationary curves of the averaged strain are
Green–Lagrange null-geodesics

By classic results in the calculus of variations (Gelfand & Fomin 2000), stationary points
of the averaged strain functional Q are trajectories of (A 1). With the shorthand notation

A(r, r′) = 〈r′, Ctt0(r)r′〉, B(r′) = 〈r′, r′〉, (B 1)

Q can be rewritten as

Q(γ) =
1

σ

∫ σ

0

√
A(r, r′)

B(r′)
ds, (B 2)

while its Euler–Lagrange equations (A 1) as
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B
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∂r′
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B
= 0. (B 3)

Note that
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]
. (B 4)

Since the integrand of Q(γ) has no explicit dependence on the parameter s, Noether’s
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theorem (Gelfand & Fomin 2000) guarantees the existence of a first integral for (B 3).
This integral can be computed as

I =

√
A

B
−
〈
r′, ∂r′

√
A

B

〉
=

√
A

B
= I0 = const, (B 5)

where we have used the specific form of the functions A and B from (B 1), as well as the
second equation from (B 4).

With the notation λ = I0 > 0 , we therefore have the identity

A(r(s), r′(s)) ≡ λ2B (r′(s)) (B 6)

on any solution (B 3) for some appropriate value of the positive constant λ > 0 . There-
fore, all solutions of (B 3) are uniformly λ-stretching.

To obtain further insight into these solutions, we use the identity (B 6) to rewrite the
expressions (B 4) as

∂r

√
A

B
=

1

2λB
∂rA, ∂r′

√
A

B
=

1

2λB
∂r′
[
A− λ2B

]
. (B 7)

We also introduce a rescaling of the independent variable s in equation (B 3) via the
formula

dτ

ds
= B(r′(s)), (B 8)

which, by the chain rule, implies

B(r′(s)) =
1

B(ṙ(τ))
, (B 9)

with the dot referring to differentiation with respect to the new variable τ . Note that
B(r′(s)) is nonvanishing on smooth curves with well-defined tangent vectors, and hence
the change of variables (B 8) is well defined.

After the s 7→ τ rescaling and the application of (B 9), the expressions in (B 7) imply
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]
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d
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]
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where, in the first identity, we used the fact that ∂rB(ṙ) = 0. Based on these identities,
equation (B 3) can be rewritten as

1

2λB(ṙ)

{
∂r
[
A(r, ṙ)− λ2B(ṙ)

]
− d

dτ
∂ṙ
[
A(r, ṙ)− λ2B(ṙ)

]}
= 0. (B 12)

Since 1/2λB(ṙ) is nonvanishing we obtain from (B 12) that all solutions of (B 3) must
satisfy the Euler–Lagrange equation derived from the Lagrangian

Lλ(r, ṙ) =
1

2

[
A(r, ṙ)− λ2B(ṙ)

]
. (B 13)
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Therefore, all stationary functions of the functional Q are also stationary functions of
the strain energy functional Eλ defined in (2.5) for an appropriate value of λ. This value
of λ can be determined from the formula (B 6), which also shows that the corresponding
stationary functions of Eλ all satisfy

〈ṙ(τ), Ctt0(r(τ))ṙ(τ)〉 = λ2 〈ṙ(τ), ṙ(τ)〉 . (B 14)

Therefore, these extrema are null-geodesics of the Lorentzian metric gλ associated with
the generalized Green–Lagrange strain tensor Eλ, as defined in (2.6).

Conversely, assume that r(τ) is a null-geodesic of gλ, and hence satisfies both equa-
tion (B 12) and (B 14). Reversing the steps leading to (B 14), and employing the inverse
rescaling of the independent variable as,

ds

dτ
= B(ṙ(τ)), (B 15)

we obtain the rescaled null-geodesic r(s) is also a solution of the Euler–Lagrange equa-
tion (B 3). Therefore, each null-geodesic curve of gλ is also a stationary function of the
functional Q(γ), lying on the energy surface I(r, r′) = λ, and hence satisfying the identity
(B 6).

Appendix C. Formula for generalized Green–Lagrange null-geodesics

Null-geodesics of the metric gλ are contained in the zero level set of the first integral
Lλ. To find the vector field to which such geodesics are tangent, we have to solve the
equation

Lλ(r, r′) = 〈r′, Eλ(r)r′〉 = 0. (C 1)

We seek the solution of this equation as a unit vector, written as a linear combination of
the Cauchy–Green eigenvectors ξ1 and ξ2. For later use, we also fix the relative orientation
of the eigenvectors as

ξ2(x0) =

[
0 −1
1 0

]
ξ1(x0). (C 2)

Substituting r′ = αξ1 + βξ2 into (C 1) leads to the equivalent equation

〈αξ1 + βξ2), [Ctt0 − λ2I](αξ1 + βξ2)〉 = 0, (C 3)

subject to the normalization constraint α2 + β2 = 1.
The expression (C 3) in turn yields the equation

〈(αξ1 + βξ2), (α(λ1 − 1)ξ1 + β(λ2 − 1)ξ2)〉 = 0 (C 4)

or, equivalently,

α2(λ1 − λ2) + β2(λ2 − λ2) = 0, (C 5)

both subject to α2 + β2 = 1, whose solution is

α = ±
√
λ2 − λ2
λ2 − λ1

, β = ±
√
λ2 − λ1
λ2 − λ1

, (C 6)

whenever we have

λ1 < λ2 < λ2. (C 7)

Therefore, the two independent directions forming the light cone at a point x0 are just
η±λ (x0).
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We note that for λ = 1 and for incompressible flows (λ1 = 1/λ2) one obtains

α = ±
√

1/λ1 − 1

1/λ1 − λ1
= ±

√
1

1 + λ1
(C 8)

and

β = ±
√

1− 1/λ2
λ2 − 1/λ2

= ±
√

1

1 + λ2
, (C 9)

thus the vector field in (3.2) takes the specific form

η±1 (x0) =
1√

1 + λ1(x0)
ξ1(x0)± 1√

1 + λ2(x0)
ξ2(x0). (C 10)

Thus, in incompressible flows, the vector field for primary null-geodesics coincides with
the vector field generating lines of maximal Lagrangian shear, obtained in Haller &
Beron-Vera (2012) from different considerations.

Appendix D. Existence of Green–Lagrange metric singularities inside
coherent Lagrangian vortices

Assume the contrary, i.e., there is no singularity of the metric gλ inside a photon sphere γ.
Since there is no singularity on γ either (by definition), there exists an open neighborhood
of γ with no singular points. This in turn implies that there exists a simply connected
open set U0 ⊂ R2 that contains γ and its interior, but contains no singularities for
the metric gλ. In that case, (U0, gλ) is a simply connected two-dimensional spacetime,
homeomorphic to an open disk that contains a closed null-geodesic. But this contradicts a
fundamental result in Lorentzian geometry: two-dimensional spacetimes homeomorphic
to R2 (and hence to an open disk in R2) cannot have closed nonspacelike geodesics
(including null-geodesics) (Beem et al. 1996).

Appendix E. Finding photon spheres systematically

Assume that Rλ is a limit cycle of the vector field η±λ for some choice of the sign ±. By
the structural stability of limit cycles (Guckenheimer & Holmes 1986), Rλ will smoothly
persist under small variations in the parameter λ, giving rise locally to a one-parameter
family of limit cycles for the vector field family η±λ . In principle, these limit cycles may
deform in an arbitrary fashion, intersect each other, and hence do not necessarily form
an annular neighborhood.

Observe, however, that η±λ (x0) is a rotated vector field in the sense of Duff (1953),
which means that each each point x0, the vector η±λ (x0) rotates in the same direction
under a change in λ. This property can be verified by noting that the signed projection
of the derivative d

dλη
±
λ on the vector η±λ has constant sign over the whole domain Uλ.

Indeed, using (C 2), we find that this signed projection of the derivative can be com-
puted as

S±λ (x0) = det

[
η±λ (x0),

d

dλ
η±λ (x0)

]
=

±λ√
(λ2(x0)− λ2) (λ2 − λ1(x0))

, (E 1)

and therefore has the same constant sign ± for all x0 ∈ Uλ and for any λ > 0. Note that
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signS±λ (x0) signals the direction of rotation of η±λ (x0) for increasing λ relative to the
positive (counterclockwise) orientation of the {ξ1(x0), ξ2(x0)} basis defined in (C 2).

A remarkable property of limit cycles in rotated families of vector fields is that cycles
corresponding to different values of λ do not intersect each other. This statement assumes
that the vector field is locally smooth, at least near the limit cycle. In our setting, η±λ is
generally not smooth globally due to orientational discontinuities. However, η±λ can be
smoothly oriented in the vicinity of any of its limit cycles, which is enough for the results
in Duff (1953) to apply.

We conclude that the limit cycles in the family Rλ grow or shrink under variations of
λ, forming annular regions. These annuli of limit cycles may terminate by shrinking to
a singularity, shrinking onto a network of separatrices, growing out of the domain Uλ,
or by the collision and subsequent disappearance of two cycles through a saddle-node
bifurcation (Duff 1953; Perko 2001).

Using (E 1), we obtain

signS±λ (x0) = ± signλ. (E 2)

By the definition of S±λ (x0), the expression (E 2) determines the sense of rotation of
the vector η±λ (x0) at the point x0 under a small increase in λ. This sense of rotation is
measured relative to the positive (counter-clockwise) orientation defined for the Cauchy–
Green eigenbasis in (C 2). Specifically, signS±λ (x0) > 0 refers to counter-clockwise rota-
tion, and signS±λ (x0) < 0 refers to clockwise rotation.

Following these observations, we can determine the direction in which λ needs to be
changed from λ = 1 in our search for a maximal limit cycle in the vector field family
η±λ . Without loss of generality, we assume that in the eddy candidate region of interest,
the trajectories of η±λ have a clockwise orientation. If not, reverse their orientation by
reversing the directions of the eigenvectors ξi defining η±λ in (3.2).
Case I:A primary photon sphere exists:
(a) Assume that a clockwise oriented, maximal limit cycle R+

1 of the η+1 field is at-
tracting (repelling). Then further limit cycles of the η+λ vector field family can be found
outside R+

1 by increasing (decreasing) the parameter λ from λ = 1.
(b) Assume that a clockwise oriented, maximal limit cycle R−1 of the η−1 field is at-
tracting (repelling). Then further limit cycles of the η−λ vector field family can be found
outside R−1 by decreasing (increasing) the parameter λ from λ = 1.
Case II:No primary photon sphere exists:
(a) Assume that the clockwise oriented η+1 field has trajectories forming an inward
(outward) spiral. Then limit cycles of the η+λ vector field family may only be found by
increasing (decreasing) the parameter λ from λ = 1.
(b) Assume that the clockwise oriented η−1 field has trajectories forming an inward
(outward) spiral. Then limit cycles of the η−λ vector field family may only be found by
decreasing (increasing) the parameter λ from λ = 1.

Figure 1 explains the above conclusions for the vector field family η+1 . The figure shows
how changing λ in the appropriate direction results in a rotation of the η+λ vector field,
leading to a tighter spiral. This may ultimately lead to the creation of a limit cycle
(secondary photon sphere), which is to be tested numerically in each black-hole vortex
candidate region. Changing λ in the opposite direction loosens up the spiral and hence
cannot create limit cycles.

Theoretically, the maximal photon sphere in a coherent vortex region can be one of two
types (Perko 2001). First, it may be a limit cycle of the vector field η±λ , that reaches the
boundary of the domain of definition of η±λ for some λ. Alternatively, the maximal photon
sphere may actually be a homoclinic or heteroclinic loop of η±λ , connecting Cauchy-Green
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η+1 (x0)

η+λ>1(x0)

+

R+
1

x0

inward spiralling
primary null-geodesic

secondary null-geodesic
with λ > 1

Figure 1. Schematics of the search for a secondary photon sphere in a region of spiraling
primary null-geodesics. The specific geometry is relevant for the η+λ vector field in the presence

of a clockwise inward spiral [Cases I(a) and II(a)]. A primary photon sphere R+
1 may be present

(Case I, shown) or may not be present (Case II). Cases I(b) and II(b) are similar, with the
appropriate changes in orientation and in the magnitude of λ relative to one.

singularities to themselves or to each other. In practice, noise in the underlying velocity
data and numerical inaccuracies near metric singularities will prevent us from accurately
computing such homoclinic or heteroclinic orbits of η±λ . Instead, we obtain a largest
smooth limit cycle when scanning through different values of λ. For a small enough
stepsize in varying λ, this largest limit cycle will lie close to the theoretical homoclinic
or heteroclinic loop.

Appendix F. Computational steps in the detection of coherent
Lagrangian vortices

Our approach to coherent vortex detection can be numerically implemented in the fol-
lowing steps:

(a) Fix a grid G0 of initial positions and select a time scale T over which ocean rings
are to be identified. For each initial condition x0 ∈ G0, integrate the differential equation
(2.1) from an initial time t0 to time t = t0+T , thereby obtaining a discrete approximation
of the flow map F tt0 over the grid G0.

(b) Using smaller auxiliary grids around points in G0, compute the deformation gradi-
ent field ∇F tt0(x0), then the Cauchy–Green strain tensor field Ctt0(x0) and its eigenvalue
and eigenvector fields, λi(x0) and ξi(x0).

(c) Locate singularities of the metric g1. Such singular points are found where λ1(x0) =
λ2(x0) = 1. For an incompressible flow, metric singularities can be detected as intersec-
tions of the level curves [Ctt0(x0)]12 = 0 with the level curves [Ctt0(x0)]11−[Ctt0(x0)]22 = 0.
Here [Ctt0(x0)]ij refers to the (i, j) element of the Cauchy–Green strain tensor.

(d) Locate candidate regions for black-hole eddies whose size is in the range of interest.
Specifically, fix a length scale D0 for eddy diameters of interest, then isolate (clusters of)
metric singularities surrounded by singularity-free annular regions of radius larger than
D0.
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(e) In each black-hole candidate region, construct null geodesics of the Green–Lagrange
metric g1 by solving the differential equations

r′(s) = sign

〈
η±λ (r(s)),

dr(s−∆)

ds

〉
η±λ (r(s)) (F 1)

for λ = 1, with ∆ denoting the integration step in s. The factor multiplying η±λ (r(s)) in
(F 1) removes orientational discontinuities in η±λ (r(s)) arising from the lack of a global
orientation for ξi(x0); cf. related discussion in Haller & Beron-Vera (2012).

(f) In the phase portrait of (F 1) with λ = 1, use a Poincare section to seek limit cycles
of the vector fields η±1 (photon spheres of the metric g1). If such a limit cycle exists, a
primary black-hole eddy has been found. The bounding ring of this eddy is obtained by
varying λ as discussed in Case I above.

(g) If the vector fields η±1 admit no limit cycles in the eddy candidate region, then
search for the limit cycles of η±λ with λ 6= 1 (secondary photon spheres). This is done by
following the procedure described in Case II above. If a limit cycle is found, a secondary
black-hole eddy has been located. Then seek the largest possible limit cycles in the
candidate region as the ring bounding the eddy. The eddy is strengthening if its limit
cycles exist for λ < 1, and weakening, if the cycles exist for λ > 1. If no limit cycle is
found, the candidate region is not a black-hole eddy.

(h) To track the motion of black-hole eddies in time, find their time t positions by
applying the flow map F tt0 to their bounding rings identified at time t0.

Appendix G. Data set and numerical methods for the Agulhas
leakage

In locating black-hole eddies from observational ocean data, fluid particles are assumed
to obey a differential equation of the form (2.1) with the velocity field given by

v(x, t) =

(
− g

f(x2)

∂h(x, t)

∂x2
,

g

f(x2)

∂h(x, t)

∂x1

)
. (G 1)

Here x = (x1, x2) denotes a position on a β-plane with Cartesian zonal x1 and meridional
x2 coordinate; the function h(x, t) denotes the SSH field as a function of location and
time; f(x2) is the Coriolis parameter (twice the local vertical component of the Earth’s
angular velocity); and g denotes the constant of gravity.

The background component of the field h(x, t) is steady. It is obtained from a mean
dynamic topography constructed from altimetry data, in-situ measurements, and a geoid
model. The perturbation component of the h(x, t) field is transient, given by altimetric
SSH anomaly measurements provided weekly on a 0.25◦-resolution longitude–latitude
grid. The perturbation component is relative to a 7-year (1993–1999) mean, obtained
from the combined processing of a constellation of available altimeters. For more detail
on the data, we refer the reader to Beron-Vera et al. (2013).

We select a regular grid G0 of 10002 initial conditions, with the initial time chosen as
t0 = 24 November 2006, and with the final time chosen as t = t0 + 3 months. We employ
a smaller auxiliary grid around each point in G0 for the purposes of finite-differencing
the flow map F tt0 . Trajectory integration is performed by a variable stepsize fourth-order
Runge–Kutta method, with cubic interpolations of the altimetry velocity field between
grid points.

Admissible regions for black-hole eddies are located as described in steps (c)–(d) of
the relativistic eddy detection algorithm outlined above. We show the eight candidate
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Figure 2. Identification of a primary black-hole eddy in region 2 of Figure 3. (top panel) The
Poincare map for various values of the parameter λ, computed for the η+λ vector field family.
Note that λ = 1 already yields a fixed point for the map, and hence a primary black-hole eddy
exists. The parameter λ is then increased from λ = 1, following the procedure described in step
(f ) of the relativistic eddy detection algorithm. (bottom-left panel) Blow-up of the green region
of the upper panel, ranging from 80 to 92 km along the Poincare section. Red dashed line marks
the location of the maximal fixed point for λ = 1. Blue dashed line marks the maximal fixed
point of the whole map family, obtained for λ = 1.02. (Fixed points in the highest 5km range
are discounted because of their numerical sensitivity.) (bottom-right panel) the corresponding
primary photon sphere (red) and ring (blue).

regions obtained in this fashion for our data set in Figure 3. With the candidate regions
(a)–(h) located, we use a finer grid of initial conditions along a one-dimensional Poincare
section in each region to integrate trajectories of (F 1), and hence compute the first return
map (Poincare map) to the section. We tested several grid resolutions on the most noisy
candidate regions before fixing a resolution of 2500 grid points. At this resolution, the
Poincare maps showed overall convergence in all regions. In some cases, thin strips of
roughly 5 km near the exterior boundary of the domain of definition of the Poincare map
still showed a lack of convergence. These domains contain initial conditions passing very
close to metric singularities, which results in high numerical sensitivities in trajectory
integration. We have excluded these small domains from our computations, and selected
the maximal photon spheres outside them as eddy boundaries.

The process of identifying the ring boundary from the outermost fixed point of the
Poincare map in region 2 is shown in Figure 2. This black-hole eddy was obtained from
the analysis of the η+λ vector field. The η−λ vector field admits no limit cycles in region 2.



Appendices for “Coherent Lagrangian vortices: The black holes of turbulence” 9

The procedure summarized in Figure 3 for region 2 was carried out for all the eight
black-hole region candidates shown in the upper panel of Figure 3. The results of the
analysis are shown in the middle panel of the same figure.
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