
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPLIED DYNAMICAL SYSTEMS c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 85--123

Barriers to the Transport of Diffusive Scalars in Compressible Flows\ast 
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Abstract. Our recent work identifies material surfaces in incompressible flows that extremize the transport of an
arbitrary, weakly diffusive scalar field relative to neighboring surfaces. Such barriers and enhancers
of transport can be located directly from the deterministic component of the velocity field without
diffusive or stochastic simulations. Here we extend these results to compressible flows and to diffusive
concentration fields affected by sources or sinks, as well as by spontaneous decay. We construct
diffusive transport extremizers with and without constraining them on a specific initial concentration
distribution. For two-dimensional flows, we obtain explicit differential equations and a diagnostic
scalar field that identify the most observable extremizers with pointwise uniform transport density.
We illustrate our results by uncovering diffusion barriers and enhancers in analytic, numerical, and
observational velocity fields.
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1. Introduction. Transport barriers can informally be defined as observed inhibitors of
the spread of substances in a flow. They are well documented in geophysics [36], classical
fluid dynamics [26], plasma fusion [8], reactive flows [30], and molecular dynamics [35], yet no
general theory for them has been available until recently. In [15], we have put forward such
a theory for incompressible flows and weakly diffusing substances by defining and solving an
extremum problem for material surfaces that block the diffusive transport of passive scalars
more than neighboring surfaces do.

The a priori restriction of this optimization problem to material surfaces (codimension-
one invariant manifolds of the flow in the extended phase space of positions and time) is
justified by the complete lack of advective transport across such invariant surfaces. Indeed, for
small enough diffusivities, pointwise, finite-time, advective transport through any nonmaterial
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86 G. HALLER, D. KARRASCH, AND F. KOGELBAUER

(i.e., noninvariant) surface is always larger than diffusive transport. As a consequence, in the
range of small diffusivities, one should seek transport barriers among material surfaces.

Such barriers turn out to be computable and depend on the structure of the diffusion tensor
but not on the actual value of the diffusivities [15]. Thus, diffusion barriers remain well defined
in the limit of nondiffusive, purely advective transport. In that limit, they form surfaces that
will prevail as transport inhibitors or enhancers under the presence of the slightest diffusion
or uncertainty modeled by Brownian motion. This gives a transport-barrier definition in the
advective limit, independent of any preferred coherence principle and based solely on the
physically well-defined and quantitative notion of diffusive transport through a surface. This
limiting property of diffusion barriers eliminates the current ambiguity in locating coherent
structures in finite-time, advective transport where different coherence principles give different
results on the same flow [11]. Unlike set-based approaches to coherent advective transport,
the approach in [15] does not require diffusion barriers to be closed and hence also finds open
bottlenecks to transport such as fronts and jets. This feature of the method is also important
for closed diffusion barriers to remain detectable even if they do not lie entirely in the domain
where velocity data is available.

While valid in arbitrary dimension, the results in [15] rely explicitly on the assumption
that the flow carrying the concentration field of interest is incompressible. Liquid flows aris-
ing in applications are indeed practically incompressible, but air flows are relatively easy to
compress. This precludes the application of [15] to atmospheric transport problems, such as
the identification of temperature barriers surrounding the polar vortices (cf. [4, 6, 20, 32]).
Notable compressibility also arises in two-dimensional velocity fields representing horizontal
slices of planetary atmospheres, obtained from observations [12] or from numerical models [2].
The dramatic accumulation of oil and flotsam on the ocean surface [7], as well as the charac-
teristically nonconservative surface patterns formed by algae [37], also necessitate the use of
two-dimensional numerical models with significantly compressible, two-dimensional velocity
fields.

These examples of compressible velocity fields nevertheless invariably conserve mass. For
instance, oil remains buoyant and hence confined to the ocean surface, thus there is no sig-
nificant loss in the total oil mass in the absence of other processes eroding it. Accordingly,
a velocity field model for surface oil transport should be mass conserving. Inspired by such
examples, we consider here diffusive transport in the presence of a carrier flow that may
be compressible but conserves mass. At the same time, we also allow for variations of the
transported concentration field due to effects beyond diffusion. These effects include contri-
bution from distributed sources and sinks, as well as spontaneous concentration decay in time
governed by a potentially time-dependent decay rate.

A number of prior approaches to weakly diffusive transport exist (see, e.g., [36] for a
survey), but only a handful of these target structures in the compressible advection-diffusion
equation. Among these, [33, 34] recast the advection-diffusion equation in Lagrangian co-
ordinates and suggest a quasi-reduction to a one-dimensional diffusion PDE along the most
contracting direction. While this approach yields formal asymptotic scaling laws for stretch-
ing and folding statistics along chaotic trajectories, such trajectories become undefined for
finite-time data sets that we seek to analyze here. The residual velocity field of [27] offers

D
ow

nl
oa

de
d 

01
/1

7/
20

 to
 1

29
.1

32
.1

70
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRANSPORT BARRIERS IN COMPRESSIBLE FLOWS 87

an attractive visualization tool for regions of enhanced or suppressed transport but requires
already performed diffusive simulations as input, rather than providing predictions for them
from velocity data (see also [1]). The popular effective diffusivity approach of [25] is based
on the assumption of incompressibility (conservation of area) and hence becomes inapplicable
to compressible flows. We finally mention recent work in [17] which provides an advection--
diffusion interpretation for the compressible dynamic isoperimetry methodology developed in
[10]. This latter, set-based approach targets metastable or almost-invariant sets in a purely
advective transport context.

Our analysis here considers a mass-based (rather than volume-based) concentration field
c(x, t). In the absence of diffusion, spontaneous concentration decay, and concentration
sources, the transport of c(x, t) in and out of an evolving material volume V (t) would be
pointwise zero due to the conservation of the mass of V (t) by the flow. Source terms and spon-
taneous concentration decay add a deterministic evolution to the concentration along particle
trajectories, and hence the initial concentration remains deterministically reproducible, i.e., a
conserved quantity along all particle motions in the absence of diffusion.

The presence of diffusion, however, erodes this conservation law, as if trajectories were
stochastic and hence the value of the initial concentration along them could not be immediately
reproduced just from the knowledge of the present concentration, the initial time, and the
initial location along a fluid particle trajectory. Here, we will seek transport barriers as
material surfaces across which this diffusive erosion of initial concentrations is stationary
when compared to nearby material surfaces. For incompressible flows, this barrier concept
will turn out to simplify exactly to the concept of most impermeable material barriers to
diffusion, as developed in [15]. In the present work, we will collectively refer to stationary
surfaces (minimizers, maximizers, and saddle-type surfaces) of diffusive transport as transport
barriers without performing a second-order calculation to identify their types. As its prior
incompressible version in [15], our present approach to transport barriers does not require
them to be closed and hence applies to open barriers (such as fronts and jet cores) as well.

Beyond adding the effects of compressibility, sources, sinks, and spontaneous decay, our
present analysis performs the transport extremization both with and without conditioning it
on a known initial concentration field. In this context, unconstrained barriers are material
surfaces that prevail as stationary surfaces of transport even under concentration gradients
initially normal to them. Constrained barriers, in contrast, are stationary surfaces of transport
under a fixed initial diffusion-gradient configuration. We derive mathematical criteria for both
types of barriers and illustrate these criteria first on explicitly known Navier--Stokes flows, then
on observational and numerical ocean data.

Our analysis and examples show that several well-documented features in a diffusing scalar
field, such as jets and fronts, are technically not minimizers of diffusive transport when con-
strained on a given initial scalar field. This is at odds with the usual terminology by which
surfaces of large concentration gradients are generally referred to as transport barriers, even
though the actual transport through them appears large precisely because of those large gra-
dients. This paradox has already been pointed out in the Eulerian frame but has remained
unresolved [25]. Here we recover the same effect in rigorous terms in the Lagrangian frame
and find that barriers are transport maximizers with respect to all localized perturbations.
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88 G. HALLER, D. KARRASCH, AND F. KOGELBAUER

2. Set-up. We consider the compressible advection-diffusion equation for a mass-unit-
based concentration field c(x, t) in the general form

\partial t (\rho c) +\bfnabla \cdot (\rho cv) = \nu \bfnabla \cdot (\rho D\bfnabla c) - k(t)\rho c+ f(x, t)\rho ,(2.1)

c(x, t0) = c0(x), \rho (x, t0) = \rho 0(x).

Here \bfnabla denotes the gradient operation with respect to the spatial variable x \in U \subset \BbbR n on
a compact domain U with n \geq 1; v(x, t) is an n-dimensional, spatially at least C2-smooth
(and hence shock-free), mass-conserving velocity field generating the advective transport of
c(x, t) whose initial distribution is c0(x); D(x, t) = DT (x, t) \in \BbbR n\times n is a dimensionless,
positive definite diffusion structure tensor describing possible inhomogeneity, anisotropy, and
temporal variation in the diffusive transport of c; \rho (x, t) > 0 is the mass-density of the carrier
medium; \nu \geq 0 is a small diffusivity parameter rendering the full diffusion tensor \nu D small in
norm; k(x, t) is a space- and time-dependent coefficient governing spontaneous concentration
decay in the absence of diffusion; and f(x, t) describes the spatiotemporal sink and source
distribution for the concentration. We assume that the initial concentration c(x, t0) = c0(x)
is of class C2, and D(x, t), k(t), and f(x, t) are at least H\"older-continuous, which certainly
holds if they are continuously differentiable. We will therefore assume the latter for simplicity.

Without the spontaneous decay and source terms, (2.1) was apparently first obtained by
Landau and Lifschitz [19] as a compressible, non-Fickian advection-diffusion equation for \rho c
(see also Thiffeault [34]). We note, however, that with the modified velocity field

(2.2) w = v +
\nu 

\rho 
D\bfnabla \rho ,

(2.1) can also be recast as

(2.3) \partial t (\rho c) +\bfnabla \cdot (\rho cw) = \nu \bfnabla \cdot (D\bfnabla (\rho c)) - k(t)\rho c+ f(x, t)\rho ,

an advection-diffusion equation with classic Fickian diffusion for the scalar field \rho c under the
modified velocity field w.

Given a carrier velocity field v(x, t) of general divergence \nabla \cdot v(x, t), the density \rho featured
in (2.1)--(2.3) must satisfy the equation of continuity

(2.4) \partial t\rho +\bfnabla \cdot (\rho v) = 0.

Combining the continuity equation (2.4) with (2.1) gives an alternative form of the com-
pressible advection-diffusion equation as

(2.5)
Dc

Dt
=

1

\rho 
\nu \bfnabla \cdot (\rho D\bfnabla c) - kc+ f.

The flow map induced by the velocity field v is Ft
t0 : x0 \mapsto \rightarrow x(t; t0,x0), mapping initial

positions x0 \in U to their later positions at time t. We assume that all trajectories stay in the
domain U of known velocities, i.e., Ft

t0(U) \subset U holds for all times t of interest.1 We will be

1This assumption still allows for the detection of subsets of a diffusion barrier that is not fully contained in
U , as long as such subsets are formed by trajectories staying in U over the time interval [t0, t1].
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TRANSPORT BARRIERS IN COMPRESSIBLE FLOWS 89

studying diffusive transport through material surfaces which are time-dependent families of
codimension-one differentiable manifolds satisfying

\scrM (t) = Ft
t0 (\scrM 0) \subset U,

with \scrM (t0) = \scrM 0 denoting the initial position of the material surface. Note that (\scrM (t), t)
is an n-dimensional invariant manifold in the extended, n+ 1-dimensional phase space of the
nonautonomous ODE \.x = v(x, t).

We denote by \bfnabla 0F
t
t0 the gradient of Ft

t0 with respect to initial positions x0, satisfying

(2.6) det\bfnabla 0F
t
t0(x0) = exp

\int t

t0

\bfnabla \cdot v
\bigl( 
Fs
t0(x0), s

\bigr) 
ds.

The equation of continuity (2.4) together with (2.6) then yields the relation

\rho 
\bigl( 
Ft
t0(x0), t

\bigr) 
= \rho 0(x0) exp

\biggl[ 
 - 
\int t

t0

\bfnabla \cdot v
\bigl( 
Fs
t0(x0), s

\bigr) 
ds

\biggr] 
=

\rho 0(x0)

det\bfnabla 0Ft
t0
(x0)

.

The smallness of the diffusivity parameter \nu is not just a convenient mathematical assump-
tion: most diffusive processes in nature have very small \nu values (i.e., large P\'eclet numbers)
associated with them (see, e.g., Weiss and Provenzale [36]). The smallness of \nu , however,
does not automatically allow for simple perturbation approaches, because (2.1) is a singularly
perturbed PDE for such \nu values.

3. The compressible diffusion barrier problem. To formulate the compressible diffusion
barrier problem outlined in the introduction in precise terms, we first observe that for \nu = 0,
(2.5) is solved by

c(x, t) = e
 - 

\int t
t0

k(s)ds
c0(F

t0
t (x)) +

\int t

t0

e - 
\int t
s k(\sigma )d\sigma f(Fs

t (x), s) ds.

Therefore, the function

(3.1) \mu (x, t) := e
\int t
t0

k(s)ds
c(x, t) - 

\int t

t0

e
\int s
t0

k(\sigma )d\sigma 
f(Fs

t (x), s) ds,

returning the initial concentration at time t0 along characteristics of (2.5), is conserved along
trajectories (i.e., D

Dt\mu (x(t), t)) \equiv 0), given that \mu (x(t), t) = c0(F
t0
t (x)) \equiv c0(x0).

For nonzero \nu values, \mu is no longer conserved along trajectories of v(x, t). In that
case, D

Dt\mu (x(t), t) measures the irreversibility in the evolution of c(x, t) along trajectories.
Specifically, we have

D

Dt
\mu (x, t) =

D

Dt

\biggl[ 
e
\int t
t0

k(s)ds
c(Ft

t0(x0), t) - 
\int t

t0

e
\int s
t0

k(\sigma )d\sigma 
f(Fs

t0(x0), s) ds

\biggr] 
= k(t)e

\int t
t0

k(s)ds
c
\bigl( 
Ft
t0(x0), t

\bigr) 
+ e

\int t
t0

k(s)ds D

Dt
c
\bigl( 
Ft
t0(x0), t

\bigr) 
 - e

\int t
t0

k(s)ds
f
\bigl( 
Ft
t0(x0), t

\bigr) 
= \nu 

1

\rho (x, t)
\bfnabla \cdot 

\biggl( 
\rho (x, t)D(x, t)\bfnabla 

\biggl[ 
\mu (x, t) +

\int t

t0

e
\int s
t0

k(\sigma )d\sigma 
f(Fs

t (x), s) ds

\biggr] \biggr) 
.(3.2)
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This latter PDE for the evolution of \mu (x, t) can also be rewritten in Lagrangian coordi-
nates applying the formulas of Tang and Boozer [33] and Thiffeault [34] that transform the
classic advection-diffusion equation to Lagrangian coordinates. When applied to \^\mu (x0, t) :=
\mu (Ft

t0(x0), t), those formulas directly give

\partial t\^\mu (x0, t) = \nu 
1

\rho 0(x0)
\bfnabla 0 \cdot 

\bigl( 
Tt

t0(x0)\bfnabla 0 [\^\mu (x0, t) + b(x0, t)]
\bigr) 
,(3.3)

where \bfnabla 0 denotes the spatial gradient with respect to the initial condition x0, and Tt
t0 and

b(x0, t) are defined as

Tt
t0(x0) := \rho 0(x0)

\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - 1
D(Ft

t0(x0), t)
\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - T
,(3.4)

b(x0, t) :=

\int t

t0

e
\int s
t0

k(\sigma )d\sigma 
f(Fs

t0(x0), s) ds.

The definition of the transport tensor Tt
t0(x0) in (3.4) is similar to that in [15] but the present

definition also contains the initial density \rho 0(x0) as a factor and no longer assumes the flow
map to be volume-preserving.

Remark 1. It will be crucial in our present derivation that no spatially dependent terms
beyond the initial density remain in front of the divergence operation in (3.2). That is the
case only if the flow map of the characteristics of (2.1) is linear in x0 for \nu = 0. This, in
turn, holds only if the right-hand side of (2.1) is a linear function of c(x, t) with a spatially
independent function k(t), as we have assumed. Consequently, (2.1) is the broadest class of
PDEs to which our present approach is applicable.

The following result is critical to our analysis, establishing a leading-order formula for the
total transport

\Sigma t1
t0
(\scrM 0) = \nu 

\int t1

t0

\int 
\scrM (t)

\rho (x, t)

\biggl\langle 
D(x, t)\bfnabla 

\biggl[ 
\mu (x, t) +

\int t

t0

e
\int s
t0

k(\sigma )d\sigma 
f(Fs

t (x), s) ds

\biggr] 
,n

\biggr\rangle 
dAdt

of the scalar field \mu (x, t) field through an evolving material surface \scrM (t), where we have
deduced the expression of the pertinent flux vector for \Sigma t1

t0
(\scrM 0) from (3.2).

Theorem 1. The total transport \Sigma t1
t0
(\scrM 0) of \mu through an arbitrary, evolving material sur-

face \scrM (t) = Ft
t0 (\scrM 0) over the time interval [t0, t1] is given by

\Sigma t1
t0
(\scrM 0) = \nu 

\int t1

t0

\int 
\scrM 0

\bigl\langle 
Tt

t0 (\bfnabla 0c0(x0) +\bfnabla 0b(x0, )) ,n0

\bigr\rangle 
dA0dt+ o(\nu )(3.5)

with \langle \cdot , \cdot \rangle denoting the Euclidean inner product, dA0 denoting the surface element along the
initial material surface \scrM 0, and o(\nu ) denoting a quantity that, for \nu \rightarrow 0, tends to 0 even
after division by \nu .

Proof. See Appendix A.

Next, we will seek diffusion barriers as codimension-one stationary surfaces of the leading-
order term in the expression of \Sigma t1

t0
(\scrM 0) in two different settings. First, we consider the
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initial tracer concentration unknown or uncertain, and assume the most diffusion-prone initial
concentration distribution for c along each material surface. Next, we consider an arbitrary but
fixed initial concentration and seek material surfaces that render diffusive transport stationary
under this initial concentration.

4. Unconstrained diffusion barriers. To compare the intrinsic ability of different material
surfaces to withstand diffusion, we now subject each material surface to the same, locally
customized initial concentration gradient setting that makes the surface a priori maximally
conducive to diffusive transport. Specifically, we fix two constants, K0 > 0 and \alpha \in (0, 1),
and initialize the initial concentration along the initial position \scrM 0 of any material surface in
such a way that

(4.1) \bfnabla 0c0(x0) =
K0

\nu \alpha 
n0(x0), \nu > 0, x0 \in \scrM 0.

In other words, we prescribe uniformly high concentration gradients along \scrM 0 that are per-
fectly aligned with the normals of \scrM 0 and grow as \nu  - \alpha as \nu \rightarrow 0. We will refer to (4.1) as
the uniformity assumption. This assumption focuses our analysis on the intrinsic ability of a
material surface to block diffusion, rather than on its position relative to features present in
a specific initial concentration field.

Remark 2. The uniformity assumption in [15] is a specific case of (4.1) with \alpha = 0. If
sinks and sources are absent (f(x, t) \equiv 0), as is the case in [15], we can also select \alpha = 0 in
(4.1) and still obtain the upcoming results of this section.

By the compactness of U and the time interval [t0, t1], we can also select a constant bound
M0 > 0 so that

(t1  - t0)

\bigm| \bigm| \bigm| \bigm| \int t1

t0

\bfnabla 0

\biggl[ 
1

\rho 0(x0)
\bfnabla 0 \cdot 

\bigl( 
Ts

t0(x0)\bfnabla 0b(x0, s)
\bigr) \biggr] 

ds

\bigm| \bigm| \bigm| \bigm| \leq M0

for all x0 \in U , given that Ts
t0(x0)\bfnabla 0b(x0, s) is assumed C1 for all s values. We can then

rewrite \Sigma t1
t0
(\scrM 0) in (3.5) as

\Sigma t1
t0
(\scrM 0) = \nu (t1  - t0)K0

\int 
\scrM 0

\bigl\langle 
\=Tt1
t0
n0,n0

\bigr\rangle 
dA0 + o(\nu ) +\scrO 

\biggl( 
\nu 
M0\rho 0\nu 

\alpha 

K0

\biggr) 
.

This leads to the normalized total transport of \mu (x, t) in the form

(4.2) \widetilde \Sigma t1
t0
(\scrM 0) :=

\Sigma t1
t0
(\scrM 0)

\nu K0 (t1  - t0)A0(\scrM 0)
= \scrT t1

t0
(\scrM 0) + o(\nu \alpha ), \alpha \in (0, 1],

where the transport functional,

(4.3) \scrT t1
t0
(\scrM 0) :=

\int 
\scrM 0

\bigl\langle 
n0, \=T

t1
t0
n0

\bigr\rangle 
dA0\int 

\scrM 0
dA0

,

measures the leading-order diffusive transport of c(x, t) through the material surface \scrM (t)
over the period [t0, t1]. This functional formally coincides with the transport functional ob-
tained in [15] for incompressible flows with k(t) \equiv f(x, t) \equiv 0 in the PDE (2.1). The only,
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minor, difference here is in the definition (3.4) of \=Tt1
t0
, which now features the initial density

field \rho 0(x0). Importantly, the present theory returns the results of the incompressible theory
when applied to incompressible flows with uniform density. We stress that \scrT t1

t0
(\scrM 0) can be

computed for any initial surface \scrM 0 directly from the trajectories of v without solving the
PDE (2.1).

We propose that what makes a barrier most observable is a near-uniform concentration
jump along it. By continuity with respect to all quantities involved over finite time intervals,
however, surfaces delineating near-uniform concentration jumps form continuous families and
hence cannot be uniquely identified. The theoretical centerpiece of such a family is still well
defined by uniform barriers which are characterized by constant pointwise transport density
at leading order. By formula (4.3), these surfaces satisfy

(4.4)
\bigl\langle 
n0, \=T

t1
t0
n0

\bigr\rangle 
= \scrT 0 = const.,

where the constant \scrT 0 > 0 is the constant diffusive transport density across each point of a
uniform transport barrier \scrM 0.

Because of the formal coincidence between the transport functional \scrT t1
t0
(\scrM 0) defined in

(4.3) and that arising in the incompressible case, the general necessary criterion of [15] for
uniform barriers remains valid here and can be stated with the help of the tensor family

(4.5) E\scrT 0(x0) := \=Tt1
t0
 - \scrT 0I

as follows.

Theorem 2. Under assumption (4.1), a uniform minimizer \scrM 0 of the transport functional
\scrT t1

t0
, with pointwise transport density \scrT 0 > 0, is necessarily a nonnegatively traced null-surface

of the tensor field E\scrT 0, i.e.,

(4.6) \langle n0(x0),E\scrT 0(x0)n0(x0)\rangle = 0, traceE\scrT 0(x0) \geq 0,

holds at every point x0 \in \scrM 0 with unit normal n0(x0) to \scrM 0. Similarly, a uniform maximizer
\scrM 0 of \scrT t1

t0
is necessarily a nonpositively traced null-surface of the tensor field E\scrT 0, i.e.,

(4.7) \langle n0(x0),E\scrT 0(x0)n0(x0)\rangle = 0, traceE\scrT 0(x0) \leq 0,

holds at every point x0 \in \scrM 0.

Finally, by direct analogy with the incompressible case treated in [15], a diagnostic field
measuring the strength of unconstrained diffusion barriers is given by the diffusion barriers
strength (DBS) field, defined as

(4.8) DBSt1
t0
(x0) = trace \=Tt1

t0
(x0).

This follows because, as shown in [15], the leading-order change in the nondimensionalized
transport functional \scrT t1

t0
under a small, surface-area-preserving perturbation localized in an

\scrO (\epsilon ) neighborhood of a point x0 \in \scrM 0 is given by \epsilon DBSt1
t0
(x0). Of all uniform extremizers,

therefore, those along the ridges of
\bigm| \bigm| DBSt1

t0
(x0)

\bigm| \bigm| will prevail as the strongest inhibitors or
enhancers of diffusive transport.
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4.1. Relationship between diffusion barriers and classic invariant manifolds. In steady,
temporally periodic or quasiperiodic flows known for infinite times, one expects classical in-
variant manifolds known as advective transport barriers to play a role in shaping the evolution
of diffusive tracers as well. Here we examine what types of invariant manifolds become uniform
diffusion barriers asymptotically in time.

Assume that the diffusion structure tensor is D \equiv I (homogeneous and isotropic diffusion),
\rho 0(x0) = \rho 0 = const. (homogeneous initial density), and the conservation law (4.4) holds for
t1 \in (t0,\infty ) over the material surface evolving from \scrM 0 under the flow map. This implies\biggl\langle 

n0,

\biggl( 
1

t1  - t0

\int t1

t0

\rho 0
\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - 1 \bigl[ \bfnabla 0F
t
t0(x0)

\bigr]  - T
dt

\biggr) 
n0

\biggr\rangle 
= \scrT 0,

or, equivalently,

1

t1  - t0

\int t1

t0

\bigm| \bigm| \bigm| \bigl[ \bfnabla 0F
t
t0(x0)

\bigr]  - T
n0(x0)

\bigm| \bigm| \bigm| 2 dt = \scrT 0
\rho 0

= const., t1 \in (t0,\infty ).

At the same time, the normal component of an initially normal unit perturbation to
\scrM 0, represented by n0(x0), is given by the orthogonal projection of the advected normal
\bfnabla 0F

t
t0(x0)n0(x0) onto the unit normal

n
\bigl( 
Ft
t0(x0)

\bigr) 
=

\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - T
n0(x0)\bigm| \bigm| \bigm| \bigl[ \bfnabla 0Ft

t0
(x0)

\bigr]  - T
n0(x0)

\bigm| \bigm| \bigm| ,
i.e., by the the normal repulsion rate \sigma t

t0(x0), computed as

\sigma t
t0(x0) =

\Biggl\langle 
\bfnabla 0F

t
t0(x0)n0(x0),

\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - T
n0(x0)\bigm| \bigm| \bigm| \bigl[ \bfnabla 0Ft

t0
(x0)

\bigr]  - T
n0(x0)

\bigm| \bigm| \bigm| 
\Biggr\rangle 

=
1\bigm| \bigm| \bigm| \bigl[ \bfnabla 0Ft

t0
(x0)

\bigr]  - T
n0(x0)

\bigm| \bigm| \bigm| .
Therefore, we have

1

t1  - t0

\int t1

t0

1\bigl[ 
\sigma t
t0
(x0)

\bigr] 2dt = \scrT 0
\rho 0

= const.,

or, equivalently, \bigm\| \bigm\| \sigma t
t0(x0)

 - 1
\bigm\| \bigm\| 
L2(t0,t1)

=
\scrT 0
\rho 0

= const.

This shows that the temporally L2-normed reciprocal of the normal stretching rate along
the manifold \scrM 0 should be spatially constant along diffusion barriers. This is certainly
satisfied for t1 \rightarrow \infty along stable manifolds of fixed points and periodic orbits, as well as
along quasiperiodic invariant tori.
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4.2. Unconstrained diffusion barriers in two-dimensional flows. In arbitrary dimensions,
the first equation defining null-surfaces in (4.6) and (4.7) are PDEs with a priori unknown
solvability properties. For two-dimensional flows, however, the null-surfaces become curves
satisfying ODEs that turn out to be explicitly solvable (cf. [15]). These differential equations
can be expressed in terms of the invariants of the time-averaged, diffusion-structure-weighted
Cauchy--Green strain tensor

\=C\bfD (x0) :=
1

t1  - t0

\int t1

t0

det
\bigl[ 
D

\bigl( 
Ft
t0(x0), t

\bigr) \bigr] \bigl[ 
Tt

t0(x0)
\bigr]  - 1

dt

as follows.

Theorem 3. For two-dimensional flows (n = 2), let \bfitxi i(x0) \in \BbbR 2 denote the unit eigen-
vectors corresponding to the eigenvalues 0 < \lambda 1(x0) \leq \lambda 2(x0) of the positive definite tensor
\=C\bfD (x0). A uniform extremizer \scrM 0 of the transport functional \scrT t1

t0
, with pointwise transport

density \scrT 0 > 0, is then necessarily a trajectory of the direction field family

(4.9) x\prime 
0 = \bfiteta \pm 

\scrT 0(x0) :=

\sqrt{} 
\lambda 2(x0) - \scrT 0

\lambda 2(x0) - \lambda 1(x0)
\bfitxi 1(x0)\pm 

\sqrt{} 
\scrT 0  - \lambda 1(x0)

\lambda 2(x0) - \lambda 1(x0)
\bfitxi 2(x0), x0 \in U\scrT 0 ,

defined on the spatial domain U\scrT 0 = \{ x0 \in U : \lambda 1(x0) \leq \scrT 0 \leq \lambda (x0), \lambda 2(x0) \not = \lambda 1(x0)\} .

The domain of definition U\scrT 0 \subset U of the direction field family \bfiteta \pm 
\scrT 0(x0) is precisely the

spatial domain where the tensor field E\scrT 0 defined in (4.5) is indefinite (Lorentzian) and hence
indeed has well-defined null-surfaces. The set U\scrT 0 will depend on the value of the parameter
\scrT 0 and will be a nonempty subset of U for any \scrT 0 \in 

\bigl[ 
inf\bfx 0\in U \lambda 1(x0), sup\bfx 0\in U \lambda 2(x0)

\bigr] 
. For

\scrT 0 values outside this interval, U\scrT 0 will be an empty set, which means that there will be no
barriers with such transport density \scrT 0 in the domain U . Formula (4.9) enables a detailed
computation of diffusion barriers in two dimensions based on a numerical approximation of
the flow map Ft

t0(x0) obtained on a grid of initial conditions (see [15] for details).
The direction field \bfiteta \pm 

\scrT 0(x0) is as smooth as the eigenvalues \lambda i (x0), given that no repeated
eigenvalues can arise within U\scrT 0 by its definition. The eigenvalues \lambda i (x0) are, in turn, as
smooth as the transport tensor Tt

t0(x0), which is one degree less smooth than the class C2

vector field v(x, t) by the smooth dependence of the flow map Ft
t0 on x0, and by the assumed

smooth dependence of the diffusivity structure tensor D on x0. Therefore, \bfiteta \pm 
\scrT 0(x0) is a class

C1 direction field and hence can always be locally oriented to become a class C1 vector
field. Consequently, \bfiteta \pm 

\scrT 0(x0) will always have locally well-defined trajectories starting from
any initial condition in U\scrT 0 . All these trajectories are uniform transport barriers of the same
pointwise transport density \scrT 0 by construction. Not all these trajectories are, however, equally
observable barriers. Some stand out because of their topology (e.g., they are closed), others
because of their strength due to high DBS values along them.

As shown in [15] for two-dimensional flows, we have \=Tt1
t0

= det
\bigl( 
\=C\bfD 

\bigr) 
\=C - 1
\bfD . This implies

that the DBS field defined in (4.8) in the present, two-dimensional case can be evaluated as

(4.10) DBSt1
t0
(x0) = trace \=Tt1

t0
(x0) = det \=C\bfD (x0)trace \=C

 - 1
\bfD (x0) = trace \=C\bfD (x0).
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The results in Theorems 1 and 2 are directly applicable to incompressible flows as well,
in which case they agree with the results in [15]. The derivation in [15], however, does not
apply to the present, compressible case, while our argument leading to the normalized total
transport \widetilde \Sigma t1

t0
(\scrM 0) in (4.2) is general enough to cover the incompressible case as well.

5. Constrained diffusion extremizers. The above formulation is independent of the initial
concentration c0(x) and assumes large enough initial gradients along the initial surface \scrM 0

that continue to dominate contributions from concentration decay and source terms (cf. the
uniformity assumption (4.1)). If, however, we wish to extremize diffusive transport with
respect to a specific initial concentration field c0(x0), as opposed to unspecified or uncertain
initial concentrations, then we can no longer prescribe (4.1) along an arbitrary material surface
\scrM 0. Indeed, some material surfaces will experience \bfnabla 0c0 vectors favorable to cross-surface
diffusion while others will not.

Considering \bfnabla 0c0 as a given quantity and using formula (3.5), we rewrite the normed,
total transport of \mu (x, t) as

\widetilde \Sigma t1
t0
(\scrM 0) :=

1\int 
\scrM 0

dA0

\int t1

t0

\int 
\partial V (t0)

\bigl\langle 
Ts

t0 (\bfnabla 0c(x0) +\bfnabla 0b(x0, s)) ,n0

\bigr\rangle 
dA0ds+ o(\nu \alpha )

=

\int 
\scrM 0

\bigl\langle 
\=qt1
t0
,n0

\bigr\rangle 
dA0\int 

\scrM 0
dA0

+ o(\nu \alpha )(5.1)

with the help of the transport vector field

(5.2) \=qt1
t0
(x0) :=

\int t1

t0

\bigl[ 
Tt

t0(x0) (\bfnabla 0c0(x0) +\bfnabla 0b(x0, t))
\bigr] 
dt.

The sign of the net total transport \widetilde \Sigma t1
t0
(\scrM 0) through \scrM 0 is now not necessarily positive,

which necessitates extremizing the normed transport (the time-integral of the geometric flux
in the terminology of MacKay [23]). To this end, we seek to extremize the area-normalized,
leading-order, normed diffusive transport

\widetilde \scrE (\scrM 0) :=

\int 
\scrM 0

\bigm| \bigm| \bigl\langle \=qs
t0 ,n0

\bigr\rangle \bigm| \bigm| dA0\int 
\scrM 0

dA0

with respect to the initial surface \scrM 0, for which a necessary condition is the vanishing first
variation,

(5.3) \delta \widetilde \scrE (\scrM 0) = 0,

with the derivative of \widetilde \scrE taken at \scrM 0 with respect to a smooth, one-parameter family of
material surfaces containing \scrM 0. For such stationary surfaces of \widetilde \scrE , we have the following
result.

Theorem 4. Along any solution \scrM 0 of the variational problem (5.3), there exists a constant
C \in \BbbR such that\bigl[ \bigm| \bigm| \bigl\langle \=qt1

t0
(x0) ,n0 (\partial \bfs x0)

\bigr\rangle \bigm| \bigm|  - \scrT 0
\bigr] \sqrt{} 

detG (\partial \bfs x0) = C, x0 \in \scrM 0,

with \scrT 0 := \widetilde \scrE (\scrM 0) denoting the value of the normed transport functional on \scrM 0.
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Proof. See Appendix B.

As argued in [15], the most observable stationary surfaces of diffusive transport are those
with nearly uniformly high gradients along them, associated with a nearly uniform pointwise
transport density. The theoretical centerpieces of such regions are provided by surfaces with
perfectly uniform transport density, which, by the statement of Theorem 4 with C = 0, satisfy
the implicit equation

(5.4)
\bigm| \bigm| \bigl\langle \=qt1

t0
(x0(s)),n0(\partial \bfs x0(s))

\bigr\rangle \bigm| \bigm| = \scrT 0

for any selected pointwise transport density \scrT 0 \geq 0.

Remark 3. By analogy with the DBS field defined in (4.8), a direct measure of the local
strength of a uniform constrained barrier is

(5.5) DBSt1
t0
(x0) =

\bigm| \bigm| \=qt1
t0
(x0)

\bigm| \bigm| ,
a predictive diagnostic field applicable in any dimension. This diagnostic emerges as the
normed, leading-order change in the functional \scrE (\scrM 0) under small, localized perturbations
to a stationary surface \scrM 0. Ridges of DBSt1

t0
(x0) are expected to highlight the strongest

diffusive transport barriers over the time interval [t0, t1].

Remark 4. When k(t) \equiv 0 and f(x, t) \equiv 0 holds (no sources or sinks), then we have
\^\mu (x0, t) \equiv c(Ft

t0(x0), t) and \widetilde \Sigma t1
t0
(\scrM 0) in (5.1) can exactly---i.e., without the o(\nu ) error---be

represented as

(5.6) \widetilde \Sigma t1
t0
(\scrM 0) = \nu 

1\int 
\scrM 0

dA0

\int t1

t0

\int 
\scrM 0

\bigl\langle 
Tt

t0(x0)\bfnabla 0c(F
t
t0(x0), t),n0(x0)

\bigr\rangle 
dA0 dt,

as ones verifies from (A.4) in Appendix A. Furthermore, noting that in this case \^\mu (x0, t) \equiv 
c(Ft

t0(x0), t), we obtain from the chain rule that

Tt
t0(x0)\bfnabla 0c(F

t
t0(x0), t) = \rho 0(x0)

\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - 1
D(Ft

t0(x0), t)
\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - T \bfnabla 0c(F
t
t0(x0), t)

= \rho 0(x0)
\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - 1
D(Ft

t0(x0), t)\bfnabla c(Ft
t0(x0), t).(5.7)

Therefore, formulas (5.6)--(5.7) give an exact expression for \widetilde \Sigma t1
t0
(\scrM 0) with a redefined form of

\=qt1
t0

as

\widetilde \Sigma t1
t0
(\scrM 0) :=

\int 
\scrM 0

\bigl\langle 
\=qt1
t0
,n0

\bigr\rangle 
dA0\int 

\scrM 0
dA0

,

\=qt1
t0
(x0) :=

\int t1

t0

\rho 0(x0)
\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - 1
D(Ft

t0(x0), t)\bfnabla c(Ft
t0(x0), t) dt.(5.8)

Using the form (5.8) of \=qt1
t0
(x0) in all our results below increases the accuracy of transport ex-

tremizer detection. At the same time, formula (5.8) requires explicit knowledge of the current
concentration c(x, t), which generally necessitates the numerical solution of the advection-
diffusion equation (2.1). A notable case in which (5.8) is useful is when c(x, t) = \omega (x, t)
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is the scalar vorticity associated with a two-dimensional velocity field v(x, t). In that case,
once v(x, t) is known, \omega (x, t) is readily obtained as the plane-normal component of \nabla \omega (x, t)
without the need to solve the vorticity-transport equation. In this latter case, no assumption
is needed on the smallness of the viscosity \nu .

5.1. Perfect constrained barriers and enhancers to diffusion. In any dimension, a dis-
tinguished subset of uniform constrained barriers, the perfect barriers, inhibit transport com-
pletely pointwise at leading order, i.e., are characterized by \scrT 0 = 0. By (5.4), the time-t0
positions of perfect constrained barriers satisfy

(5.9)
\bigl\langle 
\=qt1
t0
,n0

\bigr\rangle 
= 0.

Therefore, the vector \=qt1
t0
(x0) is necessarily tangent to a perfect barrier at every point x0.

In other words, time-t0 positions of material surfaces acting as perfect constrained mate-
rial barriers to diffusive transport are necessarily codimension-one invariant manifolds of the
autonomous dynamical system

(5.10) x\prime 
0 = \=qt1

t0
(x0) = \=Tt1

t0
(x0)\bfnabla 0c0 (x0) + \=Bt1

t0
(x0) , x0 \in U \subset \BbbR n,

with

\=Bt1
t0
(x0) :=

\int t1

t0

Tt
t0\bfnabla 0b(x0, t) dt.

In the absence of sources and sinks (b(x0, t) \equiv 0), (5.10) simplifies to

(5.11) x\prime 
0 = \=Tt1

t0
(x0)\bfnabla 0c0 (x0) ,

which leads to the following result.

Proposition 1. Consider the time t0 position of a perfect constrained diffusion barrier along
which \bfnabla 0c0 is not identically zero. Then the barrier can contain no homoclinic, periodic,
quasiperiodic, or almost periodic orbit.

Proof. We use the function V (x0) = c0(x0) to note that

d

ds
V (x0(s)) = \bfnabla 0c0 \cdot x\prime 

0 =
\bigl\langle 
\bfnabla 0c0, \=T

t1
t0
\bfnabla 0c0

\bigr\rangle 
along trajectories of (5.11). Since \=Tt1

t0
is positive definite, V (x0(s)) strictly increases at points

where\bfnabla 0c0 does not vanish. This excludes the existence of any recurrent motion that contains
at least one point where \bfnabla 0c0 does not vanish.

A consequence of Proposition 1 in two dimensions is that no closed perfect constrained
barriers can exist apart from closed ridges and trenches of the initial concentration field. In
three dimensions, Proposition 1 implies that no two-dimensional, quasiperiodic invariant tori
can arise as perfect constrained diffusion barriers, apart from toroidal ridges or trenches of
the initial concentration field. Finally, for perfect constrained barriers, the DBS field defined
in (5.5) simplifies to

(5.12) DBSt0
t1
(x0) =

\bigm| \bigm| \=Tt1
t0
(x0)\bfnabla 0c0 (x0)

\bigm| \bigm| .
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In contrast to perfect barriers to diffusion, perfect enhancers to diffusive transport can be
defined as material surfaces that pointwise maximize diffusive transport. By (5.4), the time-t0
positions of such perfect constrained enhancers must have unit normals n0 satisfying

(5.13)
\bigm| \bigm| \bigl\langle \=qt1

t0
(x0) ,n0 (x0)

\bigr\rangle \bigm| \bigm| = \bigm| \bigm| \=qt1
t0
(x0)

\bigm| \bigm| .
Note that the norm of \=qt1

t0
is not necessarily constant along such surfaces, and hence perfect

transport enhancers are generally not solutions of the constrained variational problem (5.3).
Instead, perfect enhancers to transport are simply surfaces that are pointwise normal to \=qt1

t0
,

thus experiencing the locally strongest transport possible at each of their points.
In two dimensions, perfect transport enhancers are curves satisfying the ODE

(5.14) x\prime 
0 = \Omega \=qt1

t0
(x0) = \Omega 

\bigl[ 
\=Tt1
t0
(x0)\bfnabla 0c0 (x0) + \=Bt1

t0
(x0)

\bigr] 
,

along which \=qt1
t0

has constant norm. Here we have used the notation

(5.15) \Omega :=

\biggl( 
0 1

 - 1 0

\biggr) 
for planar 90-degree rotations. In the absence of sources and sinks (b(x0, t) \equiv 0), (5.14)
simplifies to

x\prime 
0 = \Omega \=Tt1

t0
(x0)\bfnabla 0c0 (x0) ,(5.16)

which leads to the following result.

Proposition 2. In a two-dimensional flow, consider the time t0 position of a closed, perfect
constrained diffusion enhancer along which \bfnabla 0c0 is not identically zero. Then this closed
enhancer cannot be fully contained in a domain where the symmetric tensor \Omega \=Tt1

t0
(x0)  - 

\=Tt1
t0
(x0)\Omega is definite.

Proof. As in Proposition 1, we use the function V (x0) = c0(x0) to obtain

d

ds
V (x0(s)) = \bfnabla 0c0 \cdot x\prime 

0 =
\bigl\langle 
\bfnabla 0c0,\Omega \=Tt1

t0
\bfnabla 0c0

\bigr\rangle 
=

\bigl\langle 
\bfnabla 0c0,

\bigl[ 
\Omega \=Tt1

t0
 - \=Tt1

t0
\Omega 
\bigr] 
\bfnabla 0c0

\bigr\rangle 
along trajectories of (5.16). Under the assumptions of the proposition, V (x0(s)) strictly
increases or decreases on domains where \Omega \=Tt1

t0
(x0)  - \=Tt1

t0
(x0)\Omega is definite, which excludes

the existence of any closed trajectory for (5.16).

5.2. Constrained diffusion barriers in two-dimensional flows. The expression (5.4) is a
PDE in three and more dimensions. In two dimensions, however, it is equivalent to two ODEs,
as we spell out in the following result.

Theorem 5. In two-dimensional flows, time-t0 positions of constrained material diffusion
barriers with uniform, pointwise transport density \scrT 0 satisfy the following necessary conditions:

D
ow

nl
oa

de
d 

01
/1

7/
20

 to
 1

29
.1

32
.1

70
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRANSPORT BARRIERS IN COMPRESSIBLE FLOWS 99

(i) Constrained uniform transport maximizers \scrM 0 are necessarily solutions of the differ-
ential equation family

(5.17) x\prime 
0 =

\sqrt{} \bigm| \bigm| \=qt1
t0
(x0)

\bigm| \bigm| 2  - \scrT 2
0\bigm| \bigm| \=qt1

t0
(x0)

\bigm| \bigm| 2 \=qt1
t0
(x0)\pm 

\scrT 0\bigm| \bigm| \=qt1
t0
(x0)

\bigm| \bigm| 2\Omega \=qt1
t0
(x0) , \scrT 0 > 0.

(ii) If such a uniform transport maximizer \scrM 0 is a closed orbit of (5.17) or a homoclinic
or heteroclinic orbit connecting a zero of the \=qt1

t0
(x0) vector field to itself, then the symmetric

matrix

(5.18) L =

\int 
\scrM 0

sign
\bigl\langle 
\=qt1
t0
(x0(s)) ,\Omega x\prime 

0(s)
\bigr\rangle 
\partial 2
\bfx 0\bfx 0

\bigl\langle 
\=qt1
t0
(x0(s)) ,\Omega x\prime 

0(s)
\bigr\rangle 
ds

must be negative semidefinite.
(iii) If a uniform transport maximizer \scrM 0 satisfies\bigm| \bigm| \=qt1

t0
(x0(si))

\bigm| \bigm| = \scrT 0, i = 1, 2, \=qt1
t0
(x0(s1)) \| \=qt1

t0
(x0(s2)) ,\bigm| \bigm| \=qt1

t0
(x0(si))

\bigm| \bigm| = \scrT 0 at its endpoints, \scrM 0

\=qt1
t0
(x0(si)) \| x\prime 

0(si) \| x\prime 
0(sj), i, j = 1, 2, i \not = j,

then

(5.19)
\bigl\langle 
L\Omega x\prime 

0,\Omega x\prime 
0

\bigr\rangle 
\leq 0

must hold along \scrM 0.
(iv) Constrained uniform transport minimizers must necessarily be perfect barriers, i.e.,

satisfy the differential equation
x\prime 
0 = \=qt1

t0
(x0) .

Proof. See Appendix C.

Remark 5. The argument in the proof of (i) of Theorem 5 is not applicable to perfect
diffusion barriers, as for such material lines, the leading-order term in the second variation of
\scrE (\scrM \epsilon ) vanishes.

In the absence of sources or sinks (i.e., for b (x0, t) \equiv 0 in (5.2)), (5.17) simplifies to

(5.20) x\prime 
0 =

1\bigm| \bigm| \=Tt1
t0
\bfnabla 0c0

\bigm| \bigm| 2A\pm (x0; \scrT 0)\bfnabla 0c0 (x0) ,

with the tensor A\pm \in \BbbR 2 defined as

(5.21) A\pm (x0; \scrT 0) =
\biggl( 
\scrT 0\Omega \pm 

\sqrt{} \bigm| \bigm| \=Tt1
t0
\bfnabla 0c0

\bigm| \bigm| 2  - \scrT 2
0 I

\biggr) 
\=Tt1
t0
.

In this case, the following result is helpful in the numerical identification of closed diffusion
barriers as limit cycles of (5.20).
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Proposition 3. Equation (5.20) will have no closed (periodic or homoclinic) orbits contained
entirely in spatial domains where the symmetric part of the matrix A\pm \in \BbbR 2 is definite and
\bfnabla 0c0 is not identically zero.

Proof. For the Lyapunov function

V (x0) = c0(x0),

we obtain that

d

ds
V (x0(s)) = \bfnabla 0c0 \cdot x\prime 

0

=
1\bigm| \bigm| \=Tt1

t0
\bfnabla 0c0

\bigm| \bigm| 2 \bigl\langle \bfnabla 0c0,A
\pm \bfnabla 0c0

\bigr\rangle 
.

Therefore, V (x0(s)) is strictly monotonically increasing or decreasing at least at one point of
any orbit of (5.20) that lies entirely in a domain in which A\pm (x0; \scrT 0) is definite and \bfnabla 0c0 is
not identically vanishing. This implies the statement of the proposition.

Note that At1
t0

is certainly definite for \scrT 0 = 0 at any point where \bfnabla 0c0 is nonzero, and
hence (5.20) has no closed orbits for \scrT 0 = 0, except possibly for ones along which the initial
concentration gradient vanishes (curves of critical points, which is nongeneric, yet abundant
in areas of constant initial concentration). This statement remains valid for small enough \scrT 0
on compact domains by the continuous dependence of the eigenvalues of A\pm (x0; \scrT 0) on the
parameter \scrT 0.

6. Particle transport barriers in stochastic velocity fields. We showed in [15] how our
results on barriers to diffusive scalar transport carry over to probabilistic transport barriers to
fluid particle motion with uncertainties, modeled by diffusive It\^o processes. Our derivation,
however, specifically exploited the incompressibility of the deterministic part of the velocity
field. Here we show how similar results continue to hold for compressible It\^o processes of the
form

(6.1) dx(t) = v0(x(t), t)dt+
\surd 
\nu B(x(t), t)dW(t).

Here x(t) \in \BbbR n is the random position vector of a particle at time t; v0(x, t) denotes the
deterministic, generally compressible drift component in the velocity of the particle motion
and W(t) in an m-dimensional Wiener process with diffusion matrix

\surd 
\nu B(x, t) \in \BbbR n\times m. Here

the dimensionless, nonsingular diffusion structure matrix B is \scrO (1) with respect to the small
parameter \nu > 0.

We let p(x, t;x0, t0) denote the probability density function (PDF) for the current particle
position x(t) with initial condition x0(t0) = x0. This PDF satisfies the classic Fokker--Planck
equation (see, e.g., Risken [29])

(6.2) pt +\bfnabla \cdot (pv0) = \nu 1
2\bfnabla \cdot 

\Bigl[ 
\bfnabla \cdot 

\Bigl( 
BB\top p

\Bigr) \Bigr] 
,

or, alternatively,

(6.3) pt +\bfnabla \cdot (p\~v0) = \nu \bfnabla \cdot 
\Bigl( 
1
2BB\top \bfnabla p

\Bigr) 
, \~v0 = v0  - \nu 

2\bfnabla \cdot 
\Bigl( 
BB\top 

\Bigr) 
.
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This latter equation is of the advection-diffusion form (2.3) if we select

(6.4) c :=
p

\rho 
, D := 1

2BB\top , w := \~v0 = v0  - \nu \bfnabla \cdot D, k(t) = f(x, t) \equiv 0.

Consequently, the Fokker--Planck equation (6.3) is equivalent to the advection-diffusion equa-
tion (2.1) with the velocity field

(6.5) v := w  - \nu 

\rho 
D\bfnabla \rho = v0  - \nu \bfnabla \cdot D - \nu 

\rho 
D\bfnabla \rho .

Since the equation of continuity,

(6.6) \partial t\rho +\bfnabla \cdot (\rho v) = 0,

must hold for the velocity field v for our formulation to apply, substitution of the definition
of v from (6.5) into (6.6) gives

\partial t\rho +\bfnabla \cdot 
\biggl[ 
\rho 

\biggl( 
v0  - 

\nu 

\rho 
D\bfnabla \rho  - \nu \bfnabla \cdot D

\biggr) \biggr] 
= 0

or, equivalently,

(6.7) \partial t\rho +\bfnabla \cdot (\rho v0) = \nu \bfnabla \cdot (\bfnabla \cdot (D\rho )) ,

which is the same PDE (6.3) that the probability density p satisfies.
With the above choice of v and \rho in (6.5) and (6.7), all results in the earlier sections on

material diffusion extremizers in compressible flows carry over to material diffusion barriers
of the density-weighted PDF c = p/\rho with respect to the velocity field v in (6.5) if we redefine
the transport tensor Tt

t0(x0) as

Tt
t0(x0) :=

1
2\rho 0(x0)

\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - 1
B(Ft

t0(x0), t)B
\top (Ft

t0(x0), t)
\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - T
.(6.8)

Furthermore, let us denote the initial PDF by p0(x) := p(x, t0;x0, t0) and assume the initial
carrier fluid density \rho 0(x) as given. Then, with the help of the vector field (cf. (5.2))

(6.9) \=qt1
t0
(x0) =

\int t1

t0

\biggl[ 
Tt

t0(x0)\bfnabla 0
p0(x0)

\rho 0(x0)

\biggr] 
dt,

we collect the related results in the following theorem.

Theorem 6. (i) Unconstrained, uniform barriers of transport for the mass-based PDF, p/\rho ,
of particle positions satisfy Theorems 2--5 with the transport tensor field Tt

t0(x0) defined as in
(6.8).

(ii) Constrained, uniform barriers of transport for the mass-based PDF, p/\rho , satisfy
Theorems 4--3 with the transport vector field \=qt1

t0
(x0) defined as in (6.9).
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Proof. Indeed, for the case of an unspecified initial density c0(x), we obtain the normalized
total transport of \mu (x, t) in the form (cf. (4.2))

\widetilde \Sigma t1
t0
(\scrM 0) =

\Sigma t1
t0
(\scrM 0)

\nu K (t1  - t0)A0(\scrM 0)
=

\int 
\scrM 0

\bigl\langle 
n0, \=T

t1
t0
n0

\bigr\rangle 
dA0\int 

\scrM 0
dA0

+ o(\nu \alpha ), \nu \in (0, 1],(6.10)

with the transport tensor (6.8), where Ft
t0(x0) is the flow map associated with the velocity field

v0(x, t) and \rho 0(x0) is the initial density field of the carrier fluid, serving as initial condition for
the density evolution equation (6.7). The formulas (6.8)--(6.10) follow because the flow map
of the full velocity field v defined in (6.5) is at least \scrO (\nu ) C0-close to the flow map Ft

t0(x0)
of v0(x, t) over the finite time interval [t0, t1]. As a consequence, only the leading-order term,
Ft
t0(x0), of the flow map generated by (6.5) appears in the transport tensor (6.8). Higher-

order corrections to the full flow map can be subsumed into the o(\nu \alpha ) term in (6.10). With
this observation, statements (i) and (ii) can be deduced in the same fashion as Theorems 2--3
and Theorems 4--5.

Based on Theorem 6, the arguments leading to the diffusion barrier strength indicator in
(4.8)--(5.5) continue to apply, with the DBS field simplified to

DBSt1
t0
(x0) =

\bigm| \bigm| \bigm| \bigm| \=Tt1
t0
(x0)\bfnabla 0

p0(x)

\rho 0(x)

\bigm| \bigm| \bigm| \bigm| .
7. Examples. In this section, we illustrate our results on advection-diffusion problems

with explicitly known solutions. These problems are defined by simple velocity fields, which
in turn generate simple diffusion barrier and enhancer geometries. This simplicity enables a
detailed quantitative validation of our theory.

We consider solutions of the planar vorticity-transport equation

(7.1) \partial t\omega +\bfnabla \omega \cdot v = \nu \Delta \omega 

with kinematic viscosity \nu for a two-dimensional, incompressible velocity field v(x, t) defined
over x = (x, y) \in U = \BbbR 2. In this two-dimensional setting, the only nonzero component of
the curl of v is normal to the plane and is given by the scalar vorticity

(7.2) \omega (x, t) = [\bfnabla \times v(x, t)]z = \partial xv2(x, y, t) - \partial yv1(x, y, t).

Formula (7.2) shows that (7.1) is a nonlinear PDE for an unknown velocity field v. At the
same time, once the velocity field v is known, (7.1) becomes a linear advection-diffusion
equation of the form (2.1) for the scalar vorticity field \omega (x, t) with \rho (x, t) \equiv 1, D(x, t) \equiv I,
and k(t) = f(x, t) \equiv 0. Importantly, however, the only admissible initial condition for the
advection-diffusion formulation of (7.1) at a time t = t0 is the one consistent with the initial
velocity field:

(7.3) \omega 0(x) = [\bfnabla \times v0(x)]z .

Under this initial condition, the solution of the advection-diffusion equation (7.1) will coincide
with [\bfnabla \times v(x, t)]z for all times. Due to the inevitable constraint (7.3), our theory of con-
strained diffusion barriers for two-dimensional flows (cf. section 5.2) will be applicable here to
explore diffusive transport in (7.1).
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TRANSPORT BARRIERS IN COMPRESSIBLE FLOWS 103

Figure 7.1. Unsteady, horizontal jet with a jet core at y = 0.

7.1. Two-dimensional channel flow. An unsteady solution of the two-dimensional, un-
forced Navier--Stokes equations is given by the decaying channel flow

(7.4) v(x, t) = e - \nu t

\biggl( 
a cos y

0

\biggr) 
,

whose vorticity field is

\omega (x, t) = ae - \nu t sin y.

The simplest member of a more general Navier--Stokes solution family (see, e.g., Majda and
Bertozzi [24]), the velocity field (7.4) describes a decaying horizontal shear-jet between two
no-slip boundaries at y = \pm \pi 

2 (see Figure 7.1).
The jet core is given by the horizontal line y = 0. The constant a \in \BbbR + governs the

strength of shear within the jet. If we define the variable x to be spatially periodic, the flow
becomes a model of a perfectly circular vortical flow in an annulus with no-slip walls.

All horizontal lines are invariant material lines in (7.4). Of these invariant lines, the jet
core at y = 0 is the most often noted barrier to the diffusion of vorticity, keeping positive and
negative vorticity values apart for all times. Indeed, for large values of a, the norm of the
vorticity gradient

\nabla \omega (x, t) = e - \nu t

\biggl( 
0

a cos y

\biggr) 
maintains its global maximum along the jet core for all times. The upper and lower channel
boundaries at y = \pm \pi /2 technically also block the diffusion of vorticity into the wall, but
vorticity tapers off to zero anyway as one approaches these boundaries in the vertical direction.

As the initial distribution of \omega (x, t) is constrained by the velocity field, our theory of
constrained diffusion barriers is applicable to barriers to the transport of vorticity. To see the
predictions of this theory, we first note that the flow map Ft

t0 (x0) in this example is

Ft
t0 (x0) =

\left(  x0  - 
a

\nu 

\bigl( 
e - \nu t  - e - \nu t0

\bigr) 
cos y0

y0

\right)  ,
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which gives

\bfnabla 0

\bigl[ 
\omega 
\bigl( 
Ft
t0 (x0) , t

\bigr) \bigr] 
= ae - \nu t

\biggl( 
0

cos y0

\biggr) 
,

Tt
t0(x0) =

\left(    1 +
a2

\nu 2
\bigl( 
e - \nu t  - e - \nu t0

\bigr) 2
sin2 y0  - a

\nu 

\bigl( 
e - \nu t  - e - \nu t0

\bigr) 
sin y0

 - a

\nu 

\bigl( 
e - \nu t  - e - \nu t0

\bigr) 
sin y0 1

\right)    .

Therefore,

\=qt1
t0
(x0) =

1

t1  - t0

\int t1

t0

Tt
t0(x0)\bfnabla 0

\bigl[ 
\omega 
\bigl( 
Ft
t0 (x0) , t

\bigr) \bigr] 
dt

=
1

2\nu (t1  - t0)

\biggl( 
A sin 2y0
B cos y0

\biggr) 
,

where

A =
a2

\nu 
sin 2y0

\biggl[ 
1

2
e - 2\nu t1 +

1

2
e - 2\nu t0  - e - \nu (t1+t0)

\biggr] 
, B = a

\bigl( 
e - \nu t0  - e - \nu t1

\bigr) 
.

Consequently, the ODE family describing the time t0 position of uniform constrained barriers
is given by

(7.5) x\prime 
0 =

1

2\nu (t1  - t0)

\left\{   
\sqrt{} \bigm| \bigm| \=qt1

t0
(x0)

\bigm| \bigm| 2  - \scrT 2
0\bigm| \bigm| \=qt1

t0
(x0)

\bigm| \bigm| 2
\biggl( 

A sin 2y0
B cos y0

\biggr) 
+

\scrT 0\bigm| \bigm| \=qt1
t0
(x0)

\bigm| \bigm| 2
\biggl( 

B cos y0
 - A sin 2y0

\biggr) \right\}   
for some value of the transport density \scrT 0 \in \BbbR . For the choice

(7.6) \scrT 0 =
\bigm| \bigm| \=qt1

t0
(x0)

\bigm| \bigm| 
y0=0

=
B

2\nu (t1  - t0)
,

the ODE (7.5) becomes

x\prime 
0

\bigm| \bigm| 
y0=0

=
B

2\nu (t1  - t0)

\biggl( 
B
0

\biggr) 
\| \Omega \=qt1

t0
(x0)

\bigm| \bigm| 
y0=0

.(7.7)

Therefore, y0 = 0 is an invariant line for (7.5) for the parameter value \scrT 0 selected as in (7.6).
Consequently, the jet core at y0 = 0 is a uniform, constrained barrier to vorticity diffusion
along which the pointwise diffusive transport of vorticity is equal to (7.5). As noted earlier,
a barrier (as a stationary surface of the transport functional) is not necessarily a minimizer
of transport. Indeed, any other horizontal material curve admits a strictly lower transport
density than the jet core.

In contrast, choosing the constant

\scrT 0 = 0
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in (7.5) gives the ODE

x\prime 
0 =

1

2\nu a (t1  - t0)
\bigm| \bigm| \=qt1

t0
(x0)

\bigm| \bigm| 
\biggl( 

A sin 2y0
B cos y0

\biggr) 
,

for which y0 = \pm \pi /2 are invariant lines. Along those invariant lines, we have

x\prime 
0

\bigm| \bigm| 
y0=\pm \pi /2

\| \=qt1
t0
(x0)

\bigm| \bigm| 
y0=\pm \pi /2

.

Therefore, the channel walls at y0 = \pm \pi /2 are uniform, constrained minimizers to vortic-
ity diffusion along which the pointwise diffusive transport of vorticity is equal to zero. In
particular, the channel walls are perfect constrained barriers to diffusive transport.

To evaluate the second necessary condition we need to check the definiteness of the matrix

L =

\int 
\scrM 0

sign
\bigl\langle 
\=qt1
t0
(x0(s)) ,\Omega x\prime 

0(s)
\bigr\rangle 
\partial 2
\bfx 0\bfx 0

\bigl\langle 
\=qt1
t0
(x0(s)) ,\Omega x\prime 

0(s)
\bigr\rangle 
ds.

Note that

\partial 2
\bfx 0\bfx 0

\bigl\langle 
\=qt1
t0
(x0(s)) ,\Omega x\prime 

0(s)
\bigr\rangle 
| y0=0 = \partial 2

\bfx 0\bfx 0

\biggl[ 
1

2\nu (t1  - t0)

\biggl( 
A sin 2y0
B cos y0

\biggr) \biggr] 
| y0=0 \cdot \Omega x\prime 

0(s)| y0=0

= \partial 2
\bfx 0\bfx 0

\biggl[ 
1

2\nu (t1  - t0)

\biggl( 
A sin 2y0
B cos y0

\biggr) 
\cdot B

2\nu (t1  - t0)

\biggl( 
0

 - B

\biggr) \biggr] 
| y0=0

=
B2

4\nu 2 (t1  - t0)
2\partial 

2
\bfx 0\bfx 0

\biggl[ \biggl( 
A sin 2y0
B cos y0

\biggr) 
\cdot 
\biggl( 

0
 - 1

\biggr) \biggr] 
| y0=0

=
 - B3

4\nu 2 (t1  - t0)
2\partial 

2
\bfx 0\bfx 0

[cos y0] | y0=0

=
 - B3

4\nu 2 (t1  - t0)
2

\biggl( 
0 0
0  - cos y0

\biggr) 
| y0=0

=
B3

4\nu 2 (t1  - t0)
2

\biggl( 
0 0
0 1

\biggr) 
,

and

sign
\bigl\langle 
\=qt1
t0
(x0(s)) ,\Omega x\prime 

0(s)
\bigr\rangle 
| y0=0 =

 - B3

4\nu 2 (t1  - t0)
2 [cos y0]

\bigm| \bigm| 
y0=0

=  - 1.

As a consequence, we have

L =

\int 
\scrM 0

sign
\bigl\langle 
\=qt1
t0
(x0(s)) ,\Omega x\prime 

0(s)
\bigr\rangle 
\partial 2
\bfx 0\bfx 0

\bigl\langle 
\=qt1
t0
(x0(s)) ,\Omega x\prime 

0(s)
\bigr\rangle 
ds

=  - B6length (\scrM 0)

16\nu 4 (t1  - t0)
4

\biggl( 
0 0
0 1

\biggr) 
,

implying \bigl\langle 
L\Omega x\prime 

0,\Omega x\prime 
0

\bigr\rangle 
\leq 0

satisfying the necessary condition (5.19) for a maximizer.
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In summary, our theory correctly identifies the walls and the jet core as noteworthy features
of this channel flow. While these features are all considered as inhibitors of transport in
informal descriptions of jet-type flows, our approach reveals that in strict mathematical terms,
only the walls act as diffusion minimizers. The jet core, in contrast, is a diffusion maximizer
with respect to any localized perturbation and with respect to parallel translations.

7.2. Spatially periodic recirculation cells. A spatially periodic, unsteady solution of the
two-dimensional Navier--Stokes equations is given by (cf. Majda and Bertozzi [24])

(7.8) v(x, t) = ae - 4\pi 2\nu t

\biggl( 
sin(2\pi x) sin(2\pi y)
cos(2\pi x) cos(2\pi y)

\biggr) 
,

whose vorticity field and Jacobian are given by

\omega (x, t) =  - 4a\pi e - 4\pi 2\nu t sin(2\pi x) cos(2\pi y),

\bfnabla v(x, t) = 2\pi ae - 4\pi 2\nu t

\biggl( 
cos(2\pi x) sin(2\pi y) sin(2\pi x) cos(2\pi y)
 - sin(2\pi x) cos(2\pi y)  - cos(2\pi x) sin(2\pi y)

\biggr) 
.(7.9)

The vorticity field \omega satisfies the advection-diffusion equation (7.1) with viscosity \nu and a real
parameter a that controls its overall strength.

The vorticity gradient is

\bfnabla \omega (x, t) =  - 8a\pi 2e - 4\pi 2\nu t

\biggl( 
cos(2\pi x) cos(2\pi y)
 - sin(2\pi x) sin(2\pi y)

\biggr) 
=  - 8a\pi 2\Omega v(x, t),

whose squared norm satisfies

| \bfnabla \omega (x, t)| 2\bigl( 
8\pi 2e - 4\pi 2\nu t

\bigr) 2 = a2
\bigl[ 
cos2(2\pi x) cos2(2\pi y) + sin2(2\pi x) sin2(2\pi y)

\bigr] 
\leq a2.

The flow has horizontal and vertical heteroclinic orbits connecting the array of saddle-type
fixed points at (x, y) = ( j4 ,

k
4 ) for arbitrary integers j and k. This heteroclinic network

surrounds an array of vortical recirculation regions. Even though the velocity field is unsteady,
its streamline geometry consists of steady material lines (cf. Figure 7.2). Only the value of the
vorticity changes in time by the same factor along these material lines, just as in our previous
example.

The main observed features in the diffusive transport of vorticity in this flow are the cell
boundaries formed by the heteroclinic orbits. Along these orbits, | \bfnabla \omega (x, t)| 2 admits maximum
ridges that decay slowly in time by a uniform factor. The ridges contain global minima with
| \bfnabla \omega | 2 = 0 at the hyperbolic equilibria and global maxima with | \bfnabla \omega | 2 = a2(8\pi 2e - 4\pi 2\nu t)2

halfway between them. Inside the cells, | \bfnabla \omega | 2 decays away from the ridge boundaries and
reaches the global minimum | \bfnabla \omega | 2 = 0 again at the elliptic equilibria. All closed, periodic
streamlines in the vortical region are also perceived as features hindering the spread of high
vorticity from the centers of the vortical regions.

D
ow

nl
oa

de
d 

01
/1

7/
20

 to
 1

29
.1

32
.1

70
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRANSPORT BARRIERS IN COMPRESSIBLE FLOWS 107

0.0 0.2 0.4 0.6 0.8 1.0
x

-0.25

0.00

0.25

0.50

0.75

y

10.4

7.8

5.2

2.6

0.0

2.6

5.2

7.8

10.4

0

Figure 7.2. Unsteady vortex array with a = 1 at time t = 0.

We now examine how our theory of constrained diffusion extremizers bears on the vor-
ticity field features identified above from observations. Along, say, the y = 0.25 horizontal
heteroclinic streamline, the velocity Jacobian (7.9) becomes

\bfnabla v((x, 0.25) , t) = 2\pi a cos(2\pi x)e - 4\pi 2\nu t

\biggl( 
1 0
0  - 1

\biggr) 
,

implying\bigl[ 
\bfnabla 0F

t
t0((x0, 0.25))

\bigr]  - 1
=\left(    exp

\biggl( 
 - 
\int t

t0

2\pi a cos(2\pi x(s))e - 4\pi 2\nu sds

\biggr) 
0

0 exp

\biggl( \int t

t0

2\pi a cos(2\pi x(s))e - 4\pi 2\nu sds

\biggr) 
\right)    ,

\bfnabla \omega 
\bigl( 
Ft
t0 ((x0, 0.25)) , t

\bigr) 
= 8a\pi 2 sin(2\pi x(t))e - 4\pi 2\nu t

\biggl( 
0
1

\biggr) 
.

This gives \bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - 1\bfnabla \omega 
\bigl( 
Ft
t0 (x0) , t

\bigr) 
\| 
\biggl( 
0
1

\biggr) 
,

and hence, for any t1 > t0 and for any initial point x0 = (x0, 0.25), we have (cf. Remark 4)

\=qt1
t0
(x0) =

1

t1  - t0

\int t1

t0

\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - 1\bfnabla \omega 
\bigl( 
Ft
t0 (x0) , t

\bigr) 
dt \| 

\biggl( 
0
1

\biggr) 
.

We conclude that y = 0.25 horizontal heteroclinic streamline with unit normal n0(x0) = (0, 1)
is a perfect transport enhancer in the sense of formula (5.13). An identical conclusion holds
for all other heteroclinic connections.

In contrast, along closed, vortical streamlines, we find the integrand of \=qt1
t0
(x0) to align

with these streamlines due to the shearing effect of the inverse flow map
\bigl[ 
\bfnabla 0F

t
t0(x0)

\bigr]  - 1
on

D
ow

nl
oa

de
d 

01
/1

7/
20

 to
 1

29
.1

32
.1

70
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

108 G. HALLER, D. KARRASCH, AND F. KOGELBAUER

Figure 7.3. Closed material vorticity transport barriers (in light red) in the lower-left recirculation cell of
Figure 7.2 for integration times T = 3, T = 13, and T = 23 (from left to right), on top of vorticity level sets
(yellow-green-blue).

the streamline-normal vorticity gradient \bfnabla \omega 
\bigl( 
Ft
t0 (x0) , t

\bigr) 
. This implies that in the t1 \rightarrow \infty 

limit, all closed streamlines become asymptotically perfect transport barriers, with their nor-
mals asymptotically aligning with \=qt1

t0
(x0) at the same rate at all of their points.

For finite times, the exact closed transport barriers in this flow can be identified numer-
ically by computing the ODEs appearing in Theorem 5 for the velocity field (5). For this
computation, we set a = 1 and \nu = 0.001. The results in Figure 7.3 show a close match
between an increasing number of detected barriers and vorticity level sets as the integration
time is extended from T = 3 (left) via T = 13 (middle) up to T = 23 (right).

8. Application to transport-barrier detection in ocean-surface dynamics. We now illus-
trate our results on two different ocean surface velocity data sets. The first one is HYCOM,
a data-assimilating hybrid ocean model, whose ocean-surface velocity output is generally not
divergence-free and hence represents a compressible two-dimensional flow. The second data
set is a two-dimensional unsteady velocity field obtained from AVISO satellite altimetry mea-
surements under the geostrophic approximation. This data set is currently distributed by the
Copernicus Marine and Environment Monitoring Service. Due to the geostrophic approxima-
tion, this velocity field is constructed as divergence-free.

To apply the two-dimensional unconstrained diffusion barrier results of section 4.2 to the
HYCOM data set, we use the coherent-structure and diffusion-barrier computation package
CoherentStructures.jl written in Julia [3]. This package computes trajectories of the direction
field (4.9), as described in [18]. To apply the two-dimensional constrained diffusion barriers re-
sults of section 5.2, we use the ODE integration codes provided by the DifferentialEquations.jl
package of [28].

An alternative implementation of our constrained and unconstrained diffusion barrier re-
sults for two-dimensional data sets is available in the open source MATLAB GUI BarrierTool,
which utilizes the results of [31] to compute diffusion barriers as null-geodesics of appropriate
tensor fields.
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Figure 8.1. Open transport barriers in the HYCOM ocean surface data set. Shown in the background is
the DBS field (with tails cut for visualization purposes). Overlaid are short integral curve segments of the \bfiteta +

\scrT 0

field (equation (4.9)) for \scrT 0 = 1. Other values of \scrT 0 produce similar results.

8.1. Unconstrained transport barriers in the compressible HYCOM velocity data set.
We use ocean surface velocity data from December 15, 2013, to January 14, 2014, i.e., 30
days, taken from the Agulhas leakage area at the southern tip of Africa. The choice of the
[t0, t1] time interval is for illustration; different choices of the time interval yield different
results. This is because, unlike the simple velocity fields treated in the examples of section 7,
the HYCOM velocity field defines a general, finite-time nonautonomous dynamical system for
the fluid motion, with no recurrent time-dependence. The time interval [t0, t1] is part of the
definition of this dynamical system. Changing this interval changes the dynamical system and
generally results in different transport barriers and enhancers.

In Figure 8.1, we show the diagnostic DBS field (4.8), whose features align, as expected,
remarkably close with the unconstrained, uniform transport barriers extracted as trajectories
of the \bfiteta +

\scrT 0 field (4.9) for \scrT 0 = 1.
As a second step, we now verify if these material curves (obtained from purely advective

calculations) indeed act as observed transport barriers for a diffusive scalar field. To this
end, we solve the advection-diffusion equation (2.1), with k(t) = f(x, t) \equiv 0 and D(x, t) \equiv I,
in Lagrangian coordinates for the initial concentration shown in Figure 8.2 (left). The final
density obtained from this computation is then shown in Figure 8.2 (right), with the same
uniform transport barriers overlaid as in Figure 8.1. Note how the predicted barriers indeed
capture detailed features in the evolving concentration field.

8.2. Constrained diffusion barriers in the AVISO velocity data. We now illustrate our
results on two-dimensional unsteady velocity data obtained from AVISO satellite altimetry

D
ow

nl
oa

de
d 

01
/1

7/
20

 to
 1

29
.1

32
.1

70
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

110 G. HALLER, D. KARRASCH, AND F. KOGELBAUER

-4 -2 0 2 4 6
-34

-33

-32

-31

-30

-29

-28

Initial scalar concentration

lon

la
t

0.25

0.50

0.75

1.00

-4 -2 0 2 4 6
-34

-33

-32

-31

-30

-29

-28

Final scalar concentration

lon

la
t

0.25

0.50

0.75

1.00

Figure 8.2. Transport barriers in the HYCOM ocean surface data set. The scalar field corresponds to the
initial (left) and final (right) scalar density, evolved under the advection-diffusion equation (2.1) in Lagrangian
coordinates. The final scalar concentration field is shown with short integral curve segments of the \bfiteta +

\scrT 0
field

(equation (4.9)) overlaid for a small value \scrT 0 = 1 of the nondimensionalized, uniform transport density.

measurements. The domain of the dataset is the Agulhas leakage in the Southern Ocean.
Under the assumption of a geostrophic flow, the sea surface height h serves as a streamfunction
for the surface velocity field. In longitude-latitude coordinates (\varphi , \theta ), particle trajectories are
then solutions of the system

\.\varphi =  - g

R2f(\theta ) cos \theta 
\partial \theta h(\varphi , \theta , t), \.\theta =

g

R2f(\theta ) cos \theta 
\partial \varphi h(\varphi , \theta , t),(8.1)

where g is the constant of gravity, R is the mean radius of the Earth, and f(\theta ) := 2\Omega sin \theta 
is the Coriolis parameter with \Omega denoting the mean angular velocity of the Earth. The
computational domain is chosen as in several other previous studies (see, e.g., [14, 16, 15]),
with integration time T equal to 90 days.

In this two-dimensional flow, we wish to determine material transport barriers for the
vorticity \omega (x, t), i.e., the single nonzero component of \nabla \times v normal to the plane of the flow
(equation (8.1)). Following Remark 4, we use the exact transport vector field \=qt1

t0
, (5.8). For

closed-orbit detection, we employ a numerical scheme described in [18], which builds on [16],
with

1. an index-theory-based preselection of elliptic-type subdomains;
2. placement of Poincar\'e sections in regions with an appropriate index;
3. launch of integral curves from seed points, solving for the transport parameter which

yields a closed orbit at the respective seed point.
The closed material vorticity transport barriers obtained from this procedure are shown

in Figure 8.3, on top of the initial (left) and final (right) vorticity fields in Lagrangian coor-
dinates. We note that closed diffusion barriers arise around all four vortical regions identified
by previous studies (see, e.g., [14, 16, 13, 31, 15]) as materially coherent. The closed region
boundaries here are optimized to be extremizers of the vorticity transport, as opposed to
outermost coherent material curves.
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Figure 8.3. Closed, constrained vorticity transport barriers in the AVISO ocean surface data set. The
scalar field corresponds to vorticity (truncated at \pm 1 for visualization purposes) at the initial (left) and the final
(right) time instances in Lagrangian coordinates.

9. Conclusions. We have shown how recent results on barriers to diffusive transport ex-
tend from the incompressible case treated in [15] to compressible flows. In our present set-
ting, we have also allowed for the presence of sources and sinks in the concentration field.
In addition, we have distinguished between the case of an unknown initial concentration
(unconstrained extremizers) and the case of a specifically known initial concentration field
(constrained extremizers) with respect to which diffusive transport is to be extremized over
material surfaces.

For unconstrained barriers, we have obtained results that formally coincide with those
in [15], except that the flow map here is compressible and the initial density of the fluid
appears in the transport tensor. Despite the similarity with the results in [15], the present
results have required a different derivation and additional assumptions on the selection of the
most diffusion-prone initial concentration field near each material surface in the flow. In this
formulation, concentration sinks and sources turn out to play no explicit role in the leading-
order transport extremization problem. As in the incompressible case, we have obtained
explicit direction fields defining the barriers for two-dimensional flows. For higher-dimensional
flows, the barriers continue to be null-surfaces of a tensor field but satisfy PDEs. In any
dimension, however, the DBS field can directly be computed from the velocity field and serves
as a diagnostic to map out the global barrier distribution.

For constrained barriers, we have sought material surfaces that block transport more than
their neighbors do under a specific initial concentration field. In this case, the equations
defining the diffusion extremizers depend explicitly on the sink or source distribution for the
concentration, as well as on the (possibly time-dependent) spontaneous concentration decay
rate. Constrained barrier surfaces also satisfy explicit differential equations in two dimensions
and PDEs in higher dimensions. A DBS scalar field is again available in any dimensions for
diagnostic purposes. We have found in canonical examples that some classically documented
transport barriers (such as jet cores and unstable manifolds) are, in fact, perfect enhancers of
diffusive transport. Barriers that are strict local minimizers of diffusive transport, by contrast,
are rare and must completely block transport at leading order, such as the walls of a channel
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flow. In two dimensions, with the exception of perfect barriers, constrained uniform barriers
are local maximizers of diffusive transport with respect to all localized perturbations.

Finally, we have shown how the above results extend to barriers to the transport of prob-
ability densities for particle motion in compressible, stochastic velocity fields modeled by It\^o
processes. This extension enables one to locate barriers to stochastic transport from purely
deterministic calculations, as long as the diffusivities involved are small, which is generally
the case for geophysical flows.

As we illustrated on two explicitly known Navier--Stokes flows, the present results on con-
strained barriers enable the detection of barriers to the diffusion of vorticity in two-dimensional
flows. This follows because planar vorticity transport is governed by an (incompressible)
advection-diffusion equation whose initial condition (the initial vorticity) cannot be consid-
ered unknown or uncertain once the velocity field is known. Barriers to vorticity diffusion in
three dimensions, however, cannot be treated by the present results, given that vorticity is
an active vector field, rather than a passively diffusing scalar field, in three-dimensional flows.
More generally, the construction of barriers to the transport of active scalar and vector fields
requires new ideas relative to those in the present work.

Appendix A. Proof of Theorem 1. We start by establishing an expression for the in-
stantaneous flux vector associated with the transport of \mu through a material surface. We
consider first the transport of \mu out of an arbitrary, closed material volume V (t) to obtain an
expression for the flux of \mu through \partial V (t) via the divergence theorem. The rate of change
in the mass-based concentration of \mu in a closed material volume V (t) = Ft

t0 (V (t)) is, by
definition,

d

dt

\int 
V (t)

\mu (x, t)\rho (x, t)dV =
d

dt

\int 
V (t0)

\mu (Ft
t0(x0), t)\rho 0(x0) dV0 =

\int 
V (t0)

\partial t\^\mu (x0, t)\rho 0(x0) dV0

= \nu 

\int 
V (t0)

\bfnabla 0 \cdot 
\bigl[ 
Tt

t0(x0)\bfnabla 0 (\^\mu (x0, t) + b(x0, t))
\bigr] 
dV0

= \nu 

\int 
\partial V (t0)

\bigl\langle 
Tt

t0\bfnabla 0 (\^\mu (x0, t) + b(x0, t)) ,n0

\bigr\rangle 
dA0,(A.1)

with the last integral denoting the surface integral over the (n - 1)-dimensional boundary
\partial V (t0) of the n-dimensional volume V (t0).

The flux formula (A.1) establishes that for an arbitrary volume V (t0), the flux vector of
\mu along the closed material surface \partial V (t0) is T

t
t0\bfnabla 0 (\^\mu (x0, t) + b(x0, t)). For any open initial

material surface \scrM (t0), we can select another open material surface \scrN 0 such that the closure
of \scrM (t0) \cup \scrN 0 is a closed material surface, i.e., \partial V (t0) = \scrM (t0) \cup \scrN 0 is the boundary of
a volume V (t0). Given that the flux of \mu through \partial V (t0) is given by the final integral in
(A.1) and hence is additive over subsets of \partial V (t0), the contribution of \scrM (t0) to the total flux
through \partial V (t0) is equal to

(A.2) \Sigma t1
t0
(\scrM 0) = \nu 

\int t1

t0

\int 
\scrM (t0)

\bigl\langle 
Tt

t0\bfnabla 0 (\^\mu (x0, t) + b(x0, t)) ,n0

\bigr\rangle 
dA0dt,

with n0 (x0) denoting an oriented unit normal field to \scrM (t0).
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To obtain more insight into \Sigma t1
t0
(\scrM 0), we first take the \bfnabla 0-gradient of both sides of (3.3)

and integrate in time to obtain

(A.3) \bfnabla 0\^\mu (x0, t) = \bfnabla 0c0(x0) + \nu 

\int t

t0

\bfnabla 0

\biggl[ 
1

\rho 0(x0)
\bfnabla 0 \cdot 

\bigl( 
Ts

t0(x0)\bfnabla 0 [\^\mu (x0, s) + b(x0, s)]
\bigr) \biggr] 

ds,

where we have used the relation \bfnabla 0\^\mu (x0, t0) = \bfnabla 0c(x0), which follows from (3.1). Then with
the flux vector obtained in (A.2) and with the expression (A.3) for \bfnabla 0\^\mu (x0, t) at hand, the
total transport of \mu through \scrM (t) can be written as

\Sigma t1
t0
(\scrM 0) = \nu 

\int t1

t0

\int 
\scrM 0

\bigl\langle 
Tt

t0(x0)\bfnabla 0 (\^\mu (x0, t) + b(x0, t)) ,n0(x0)
\bigr\rangle 
dA0 dt

(A.4)

= \nu 

\int t1

t0

\int 
\scrM 0

\bigl\langle 
Tt

t0 (\bfnabla 0c0(x0) +\bfnabla 0b(x0, t)) ,n0

\bigr\rangle 
dA0 dt

+ \nu 2
\int t1

t0

\int 
\scrM 0

\int t

t0

\bfnabla 0

\biggl[ 
1

\rho 0(x0)
\bfnabla 0 \cdot 

\bigl( 
Ts

t0(x0)\bfnabla 0 [\^\mu (x0, s) + b(x0, s)]
\bigr) \biggr] T

Ts
t0n0ds dA0 dt.

The statement of the theorem, therefore, follows if the last term in (A.4) is of order o(\nu ),
i.e., if

lim
\nu \rightarrow 0

\nu 

\int t1

t0

\int 
\scrM 0

\int t

t0

\bfnabla 0

\biggl[ 
1

\rho 0(x0)
\bfnabla 0 \cdot 

\bigl( 
Ts

t0(x0)\bfnabla 0 [\^\mu (x0, s) + b(x0, s)]
\bigr) \biggr] T

Ts
t0n0ds dA0 dt = 0.

(A.5)

To prove (A.5), we need estimates on the solution of the initial value problem

\partial t\^\mu (x0, t) = \nu 
1

\rho 0(x0)
\bfnabla 0 \cdot 

\bigl( 
Tt

t0(x0)\bfnabla 0 [\^\mu (x0, t) + b(x0, t)]
\bigr) 
,(A.6)

\^\mu (x0, t0) = c0(x0).

Based on our initial assumptions, we have the following bounds on the entries Tij(x0, t) :=\bigl[ 
Tt

t0(x0)
\bigr] 
ij
of the matrix representation of Tt

t0 :\bigm| \bigm| \rho 0(x0)
 - 1Tij(x0, t) - \rho 0(y0)

 - 1Tij(y0, s)
\bigm| \bigm| \leq (C1 | x0  - y0| \alpha + C2 | t - s| 

\alpha 
2 ),\bigm| \bigm| \rho 0(x0)

 - 1\bfnabla 0Tij(x0, t) - \rho 0(y0)
 - 1\bfnabla 0Tij(y0, t)

\bigm| \bigm| \leq C3| x0  - y0| \alpha ,
(A.7)

for some constant 0 < \alpha \leq 1 and for all x0,y0 \in U and t, s \in [t0, t1]. By the positive
definiteness of Tt

t0(x0) and the positivity of \rho 0, we also have

(A.8) \lambda | u| 2 \leq 
\biggl\langle 
u,

1

\rho 0(x0)
Tt

t0(x0)u

\biggr\rangle 
\leq \Lambda | u| 2, u \in \BbbR n, x0 \in U, t \in [t1, t2],

which implies the bounds

(A.9)
| u| 2

\Lambda 
\leq 

\Bigl\langle 
u, \rho 0(x0)

\bigl[ 
Tt

t0(x0)
\bigr]  - 1

u
\Bigr\rangle 
\leq | u| 2

\lambda 
, \lambda n \leq \rho 0(x0)

 - n detTt
t0(x0) \leq \Lambda n,

for all u \in \BbbR n, x0 \in U , and t \in [t1, t2].
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Next, we observe that (A.5) is satisfied when

(A.10) sup
\bfx 0\in U,t\in [t0,t1]

| \bfnabla 0\^\mu (x0, t) - \bfnabla 0c0(x0)| = \scrO (\nu q)

holds for some q > 0, as one obtains using (A.3) and estimating the supremum norm in x0 and
t using (A.7). Using the assumption that c0 \in C2(U), we will now show that (A.10) holds,
and hence (A.5) is indeed satisfied. In our presentation, we will utilize a scaling approach
described by Friedman [9].

Introducing the rescaled time variable \tau := \nu (t  - t0) as well as the shifted and rescaled

concentration w(x0, \tau ) := \^\mu (x0, t0 +
\tau 
\nu ) - c0(x0), then setting T\nu (x0, \tau ) := T

t0+
\tau 
\nu 

t0
(x0), we can

rewrite (A.6) as

(A.11)

\Biggl\{ 
w\tau = 1

\rho 0
\bfnabla 0 \cdot (T\nu \bfnabla 0w) +

1
\rho 0
\bfnabla 0 \cdot (T\nu \bfnabla 0(c0 + b)) ,

w(x0, 0) = 0, (x0, \tau ) \in U \times [0, \nu (t1  - t0)].

Condition (A.10) is then equivalent to

(A.12) sup
\bfx 0\in \Omega ,t\in [0,\tau 1]

| \bfnabla 0w(x0, \tau )| = \scrO (\nu q), \tau 1 := \nu (t1  - t0),

for some q > 0. In nondivergence form, (A.11) takes the form

(A.13) w\tau =
n\sum 

i,j=1

T ij
\nu 

\rho 0

\partial 2w

\partial xi0\partial x
j
0

+
n\sum 

i=1

1

\rho 0

\left(  n\sum 
j=1

\partial T ij
\nu 

\partial xj0

\right)  \partial w

\partial xi0
+ f\nu ,

where we have defined

(A.14) f\nu (x0, \tau ) :=
1

\rho 0(x0)
\bfnabla 0 \cdot (T\nu (x0, \tau )\bfnabla 0(c0(x0) + b(x0, \tau )) .

Let

Z(x0, \tau ; \bfitxi , s) :=

exp

\biggl[ 
 - \langle \bfx 0 - \bfitxi ,\rho 0\bfT 

 - 1
\nu (\bfitxi ,s)(\bfx 0 - \bfitxi )\rangle 

4(\tau  - s)

\biggr] 
(2
\surd 
\pi )n

\bigl[ 
\rho  - n
0 detT\nu (\bfitxi , s)

\bigr] 1
2 (\tau  - s)

n
2

,(A.15)

Z\tau = \rho  - 1
0 T\nu \bfnabla 2

0Z,

for x0, \bfitxi \in \Omega and \tau , s \in [0, \tau 1], denote the fundamental solution of the homogeneous, second-
order part of (A.11). For later computations, we note that with the n-dimensional volume
element d\bfitxi = d\xi 1 . . . d\xi n, we have the estimate\int 

\Omega 
Z(x0, \tau ; \bfitxi , s) d\bfitxi =

\int 
\Omega 
(2
\surd 
\pi ) - n

\bigl[ 
\rho n0 detT

 - 1
\nu 

\bigr]  - 1
2 (\tau  - s) - 

n
2 e

 - \langle \bfx 0 - \bfitxi ,\rho 0\bfT 
 - 1
\nu (\bfx 0 - \bfitxi )\rangle 

4(\tau  - s) d\bfitxi 

\leq 
\int 
\Omega 
(2
\surd 
\pi ) - n\lambda  - n

2 (\tau  - s) - 
n
2 e

 - | \bfx 0 - \bfitxi | 2
4\Lambda (\tau  - s) d\bfitxi ,(A.16)
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where we have used the inequalities in (A.9). With the rescaled spatial variable y and the
rescaled volume form dy defined as

y = (2\Lambda ) - 
1
2 (\tau  - s) - 1/2(x - \bfitxi ), dy = (2\Lambda ) - 

n
2 (\tau  - s) - 

n
2 d\bfitxi ,(A.17)

we define the set \Omega \bfx 0,\tau ,s := (2\Lambda ) - 
1
2 (\tau  - s) - 1/2(x0  - \Omega ) to obtain from (A.16) the estimate\int 

\Omega 
Z(x0, \tau ; \bfitxi , s) d\bfitxi \leq \pi  - n

2

\biggl( 
\Lambda 

\lambda 

\biggr) n
2
\int 
\Omega \bfx ,\tau ,s

e - | \bfy | 2dy

\leq \pi  - n
2

\biggl( 
\Lambda 

\lambda 

\biggr) n
2
\int 
\BbbR n

e - | \bfy | 2dy =

\biggl( 
\Lambda 

\lambda 

\biggr) n
2

,

(A.18)

where we have used that
\int \infty 
 - \infty e - r2 dr =

\surd 
\pi . We also recall from [9, Thm. 3, p. 8], that for

any continuous function f : \Omega \times [0, \tau 1] \rightarrow \BbbR , the integral

(A.19) V (x0, \tau ) :=

\int \tau 

0

\int 
\Omega 
Z(x0, \tau ; \bfitxi , s)f(\bfitxi , s) d\bfitxi ds

is continuously differentiable with respect to x0 and satisfies

(A.20) \bfnabla 0V (x0, \tau ) =

\int \tau 

0

\int 
\Omega 
\bfnabla 0Z(x0, \tau ; \bfitxi , s)f(x0, s) d\bfitxi ds.

As shown in [9, Thm. 9, p. 21], the variation of constants formula applied to (A.11) gives
its solution in the form

w(x0, \tau ) =

\int \tau 

0

\int 
\Omega 
Z\bfnabla 0 \cdot 

\bigl( 
\rho  - 1
0 T\nu \bfnabla 0c0

\bigr) 
d\bfitxi ds

+

\int \tau 

0

\int 
\Omega 
Z(x0, \tau ; \bfitxi , s)

\times 
\biggl( \int s

0

\int 
\Omega 
\Phi (\bfitxi , s;\bfiteta , \sigma )

\bigl( 
\rho  - 1
0 T\nu (\bfiteta , \sigma )\bfnabla 0(c0(\bfiteta ) + b)

\bigr) 
d\bfiteta d\sigma 

\biggr) 
d\bfitxi ds

=: W1(x0, \tau ) +W2(x0, \tau ),

(A.21)

for some (not explicitly known) function \Phi that satisfies the estimate

(A.22) | \Phi (\bfitxi , s;\bfiteta , \sigma )| \leq C4
1

| s - \sigma | h0

1

| \xi  - \eta | n+2 - 2h0 - \alpha 
,

for any constant h0 \in 
\bigl( 
1 - \alpha 

2 , 1
\bigr) 
, where \alpha is the H\"older exponent in (A.7).

To estimate the spatial gradient of W1, we use the formula for the x0-derivative of (A.21)
in (A.20) to obtain

| \bfnabla 0W1| =
\bigm| \bigm| \bigm| \bigm| \bfnabla 0

\int \tau 

0

\int 
\Omega 
Z\bfnabla 0 \cdot 

\bigl( 
\rho  - 1
0 T\nu \bfnabla 0(c0 + b)

\bigr) 
d\bfitxi ds

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \int \tau 

0

\int 
\Omega 
(\bfnabla 0Z)\bfnabla 0 \cdot 

\bigl( 
\rho  - 1
0 T\nu \bfnabla 0(c0 + b)

\bigr) 
d\bfitxi ds

\bigm| \bigm| \bigm| \bigm| 
\leq 

\int \tau 

0

\int 
\Omega 

1

2| \tau  - s| 
\bigm| \bigm| \rho 0T - 1

\nu (\bfitxi , s)(x0  - \bfitxi )
\bigm| \bigm| | Z| 

\bigm| \bigm| \bfnabla 0 \cdot 
\bigl( 
\rho  - 1
0 T\nu \bfnabla 0(c0 + b)

\bigr) \bigm| \bigm| d\bfitxi ds,
(A.23)

D
ow

nl
oa

de
d 

01
/1

7/
20

 to
 1

29
.1

32
.1

70
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

116 G. HALLER, D. KARRASCH, AND F. KOGELBAUER

where we also used the definition (A.15) in evaluating\bfnabla 0Z. From (A.9), we obtain \| \rho 0T - 1
\nu \| =

\lambda  - 1, and hence we can further write (A.23) as

| \bfnabla 0W1| \leq 
1

\lambda 

\int \tau 

0

\int 
\Omega 

| Z| 
2 | \tau  - s| 

\bigm| \bigm| \bfnabla 0 \cdot 
\bigl( 
\rho  - 1
0 T\nu \bfnabla 0(c0 + b)

\bigr) \bigm| \bigm| d\bfitxi ds
\leq 

\| \bfnabla 0 \cdot 
\bigl( 
\rho  - 1
0 T\nu \bfnabla 0(c0 + b)

\bigr) 
\| C0(\Omega )

\lambda 

\int \tau 

0

\int 
\Omega 

1

2| \tau  - s| 
| x0  - \bfitxi | | Z| d\bfitxi ds

\leq C5

\| u0\| C2(\Omega )

\lambda 

\int \tau 

0

\int 
\Omega 

1

2| \tau  - s| 
| x0  - \bfitxi | | Z| d\bfitxi ds.

(A.24)

Next, as in the calculation of the integral in (A.16), we use the scaling (A.17) in (A.24) to
obtain

| \bfnabla 0W1| \leq C5

\Lambda \| u0\| C2(\Omega )

\lambda 

\int \tau 

0

1\surd 
\tau  - s

\biggl( \int 
\BbbR n

| \bfity | e - | \bfity | 2 d\bfity 

\biggr) 
ds

\leq C6

\Lambda \| u0\| C2(\Omega )

\lambda 

\int \tau 

0

1\surd 
\tau  - s

ds

\leq C7

\surd 
\tau = \scrO 

\Bigl( 
\nu 

1
2

\Bigr) 
.

(A.25)

To estimate the spatial gradient of W2 in (A.21), we proceed similarly by using the growth
condition (A.22) to obtain

| \bfnabla 0W2| \leq 
\int \tau 

0

\int 
\Omega 

1

2 | \tau  - s| 
\bigm| \bigm| \rho 0T - 1

\nu (x0  - \bfitxi )
\bigm| \bigm| | Z| 

\times 
\biggl( \int s

0

\int 
\Omega 
| \Phi | 

\bigm| \bigm| \bfnabla 0 \cdot 
\bigl( 
\rho  - 1
0 T\nu \bfnabla 0(c0 + b)

\bigr) \bigm| \bigm| d\bfiteta d\sigma 

\biggr) 
d\bfitxi ds

\leq C8

\| \bfnabla 0 \cdot 
\bigl( 
\rho  - 1
0 T\nu \bfnabla 0(c0 + b)

\bigr) 
\| C0(\Omega )

\lambda 

\times 
\int \tau 

0

\int 
\Omega 

1

2| \tau  - s| 
| x0  - \bfitxi | | Z| 

\times 
\biggl( \int s

0

d\sigma 

| s - \sigma | h0

\int 
\Omega 

d\bfiteta 

| \bfitxi  - \bfiteta | n+2 - 2h0 - \alpha 

\biggr) 
d\bfitxi ds.

(A.26)

Since \Omega is bounded, there exists a ball of radius R such that \Omega + \Omega \subset BR and therefore,
noticing that 2 - 2h0  - \alpha > 0 by 1 - \alpha 

2 < h0 < 1, we find that

(A.27)

\int 
\Omega 

d\bfiteta 

| \bfitxi  - \bfiteta | n+2 - 2h0 - \alpha 
\leq C9 r

2 - 2h0 - \alpha 
\bigm| \bigm| \bigm| r=R

r=0
= C9R

2 - 2h0 - \alpha .
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As in (A.23), we can estimate the integral of | x0  - \bfitxi | | Z| to obtain

| \bfnabla 0W2| \leq C9

R2 - 2h0 - \alpha \| u0\| C2(\Omega )

\lambda 

\times 
\int \tau 

0

\int 
\Omega 

1

2| \tau  - s| 
| x0  - \bfitxi | | Z| 

\biggl( \int s

0

d\sigma 

| s - \sigma | h0

\biggr) 
d\bfitxi ds

\leq C10

R2 - 2h0 - \alpha \| u0\| C2(\Omega )

\lambda 

\int \tau 

0

1\surd 
\tau  - s

\biggl( \int s

0

1

| s - \sigma | h0
d\sigma 

\biggr) 
ds

\leq C11

\int \tau 

0

| \tau  - s| 1 - h0

\surd 
\tau  - s

ds

\leq C12| \tau | 
3
2
 - h0 = \scrO 

\Bigl( 
\nu 

\alpha +1
2

\Bigr) 
.

(A.28)

The estimates (A.25)--(A.28) together prove (A.12), which then implies (A.10), which in turn
implies (A.5), as claimed.

Appendix B. Proof of Theorem 4. Applying the classic result on the variational derivative
of quotient functional (see, e.g., [5]), we obtain that (5.3) is equivalent to

(B.1)

\delta \~\scrE (\scrM 0) =
1\int 

\scrM 0
dA0

\delta 

\int 
\scrM 0

\bigl[ \bigm| \bigm| \bigl\langle \=qt1
t0
,n0

\bigr\rangle \bigm| \bigm|  - \scrT 0
\bigr] 
dA0 = 0, \scrT 0 :=

\int 
\scrM 0

\bigm| \bigm| \bigl\langle \=qt1
t0
,n0

\bigr\rangle \bigm| \bigm| dA0\int 
\scrM 0

dA0
= const

Therefore, extrema of the functional

(B.2) \scrE (\scrM 0) :=

\int 
\scrM 0

\bigl[ \bigm| \bigm| \bigl\langle \=qt1
t0
,n0

\bigr\rangle \bigm| \bigm|  - \scrT 0
\bigr] 
dA0

coincide with those of \~\scrE .
We proceed by introducing a parametrization x0(s) := x0(s1, . . . sn - 1) of \scrM 0 under which

\scrE (\scrM 0) becomes

(B.3) \scrE (\scrM 0) =

\int 
\scrM 0

L (x0(s), \partial \bfs x0(s)) ds1 . . . dsn - 1,

with the Lagrangian

(B.4) L (x0, \partial \bfs x0) :=
\bigl[ \bigm| \bigm| \bigl\langle \=qt1

t0
(x0) ,n0 (\partial \bfs x0)

\bigr\rangle \bigm| \bigm|  - \scrT 0
\bigr] \sqrt{} 

detG (\partial \bfs x0).

Here Gij = \langle \partial \bfx 0
\partial si

, \partial \bfx 0
\partial sj

\rangle denotes the (i, j) entry of the Gramian matrixG of the parametrization,

which therefore satisfies, for any real number c > 0, the identity\sqrt{} 
detG

\bigl( 
\partial s1x0, . . . , c\partial six0, . . . , \partial sn - 1x0

\bigr) 
= c

\sqrt{} 
detG (\partial \bfs x0).

Thus, by definition,
\surd 
detG is a positively homogeneous function of \partial six0 with order 1 and

hence, by Euler's theorem [21], satisfies

\partial six0(s) \cdot 
\partial 
\surd 
detG

\partial (\partial six0(s))
= 1 \cdot 

\surd 
detG =

\surd 
detG.(B.5)
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Furthermore, once an orientation is fixed, the unit normal n0 is a unique smooth function
of the n - 1 tangent vectors \partial six0, even though the lengths of these vectors are arbitrary and
depend on the parametrization. Consequently, for any real number c > 0, we have

n0

\bigl( 
\partial s1x0, . . . , c\partial six0, . . . , \partial sn - 1x0

\bigr) 
= n0 (\partial \bfs x0) = ck \cdot n0 (\partial \bfs x0(s)) , k = 0,

which, by definition, implies that n0 (\partial \bfs x0(s)) is a positively homogeneous function of order
zero. Then, again by Euler's theorem, we conclude that

(B.6) \partial six0(s) \cdot 
\partial n0 (\partial \bfs x0(s))

\partial (\partial six0(s))
= 0.

As the Lagrangian L (x0, \partial \bfs x0) has no explicit dependence on s, Noether's theorem provides
partial conservation laws (cf. Logan [22, Chap. 4, Ex. 4.2] for the associated Euler--Lagrange
equation in the form

(B.7)
\partial H i

j

\partial sk
= 0, H i

j := \partial sjx0 \cdot 
\partial L

\partial (\partial six0)
 - \delta ijL, i, j, k = 1, . . . , n - 1,

with \delta ij referring to the Kronecker delta. A direct calculation using (B.5)--(B.6), however,
gives

H i
i = \partial six0(s) \cdot 

\partial L

\partial (\partial six0(s))
 - L

=
\bigl[ \bigm| \bigm| \bigl\langle \=qt1

t0
,n0

\bigr\rangle \bigm| \bigm|  - \scrT 0
\bigr] 
\partial six0(s) \cdot 

\partial 
\surd 
detG

\partial (\partial six0(s))
 - L

=
\bigl[ \bigm| \bigm| \bigl\langle \=qt1

t0
(x0) ,n0 (\partial \bfs x0)

\bigr\rangle \bigm| \bigm|  - \scrT 0
\bigr] \sqrt{} 

detG (\partial \bfs x0)

= 0,

and hence no nontrivial first integral arises from the relations (B.7).
Nevertheless, for the modified variational problem

(B.8) \^\scrE (\scrM 0) =

\int 
\scrM 0

L2 (x0(s), \partial \bfs x0(s)) ds1 . . . dsn - 1,

Noether's theorem gives

(B.9) H i
i := \partial six0 \cdot 

\partial L2

\partial (\partial six0)
 - L2 = 2L2  - L2 = L2, i = 1, . . . , n - 1,

by Euler's theorem, given that L2 is a positively homogeneous function of order 2 in the
variables \partial six0. By the definition of H i

i in (B.7), (B.9) implies that L is a first integral
for solutions of the variational problem (B.8). Then, by a generalization of the Maupertuis
principle for PDEs (see [15, App. S4]), L is also a first integral for the Euler--Lagrange
equation of the original variational problem on all nonzero level sets of L. This in turn implies
the invariance of the \{ L = 0\} level set as well. We conclude that barrier surfaces must satisfy\bigl[ \bigm| \bigm| \bigl\langle \=qt1

t0
(x0) ,n0 (\partial \bfs x0)

\bigr\rangle \bigm| \bigm|  - \scrT 0
\bigr] \sqrt{} 

detG (\partial \bfs x0) = C in any dimension.
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Appendix C. Proof of Theorem 5. For n = 2, a diffusion extremizer surface \scrM 0 is a
one-dimensional curve parametrized by the single variable s. The unit normal to this curve at
a point x0 \in \scrM 0 can be written as

n0(x0) = \Omega 
x\prime 
0

| x\prime 
0| 
,

with the rotation matrix \Omega defined as in (5.15). The Lagrangian L defined in (B.4) then takes
the specific form

L
\bigl( 
x0,x

\prime 
0

\bigr) 
=

\left(  \sqrt{} \biggl\langle 
\=qt1
t0
(x0) ,\Omega 

x\prime 
0

| x\prime 
0| 

\biggr\rangle 2

 - \scrT 0

\right)  \sqrt{} 
\langle x\prime 

0,x
\prime 
0\rangle 

=

\sqrt{} \bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle 2  - \scrT 0
\bigm| \bigm| x\prime 

0

\bigm| \bigm| .(C.1)

The general equation (5.4), therefore, simplifies in two dimensions to the implicit ODE

(C.2)

\bigm| \bigm| \bigm| \bigm| \biggl\langle \Omega \=qt1
t0
(x0) ,

x\prime 
0

| x\prime 
0| 

\biggr\rangle \bigm| \bigm| \bigm| \bigm| = \scrT 0.

Note from (C.2) that within the \{ L = 0\} level set, arbitrary reparametrizations of the solutions
(which are also solutions, by the rescaling invariance of the variational principle) also happen
to preserve the value of the first integral L. We are, therefore, free to select the arc-length
parametrization for diffusion barriers by letting x\prime 

0 = \alpha \=qt1
t0
(x0)+\beta \Omega \=qt1

t0
(x0) with

\bigl( 
\alpha 2 + \beta 2

\bigr) 
=

1/
\bigm| \bigm| \=qt1

t0
(x0)

\bigm| \bigm| 2 . Substituting this form of x\prime 
0 into (C.2) gives the vector field family

(C.3) x\prime 
0 =

\sqrt{} \bigm| \bigm| \=qt1
t0
(x0)

\bigm| \bigm| 2  - \scrT 2
0\bigm| \bigm| \=qt1

t0
(x0)

\bigm| \bigm| 2 \=qt1
t0
(x0)\pm 

\scrT 0\bigm| \bigm| \=qt1
t0
(x0)

\bigm| \bigm| 2\Omega \=qt1
t0
(x0) ,

as stated in (5.17), where we have used the equality
\bigm| \bigm| \Omega \=qt1

t0

\bigm| \bigm| = \bigm| \bigm| \=qt1
t0

\bigm| \bigm| . Trajectories of (5.17) are,
therefore, stationary curves of \scrE .

It is yet unclear, however, whether trajectories of (5.17) are minimizers or maximizers of
the functional \~\scrE . As we have seen, stationary curves of \~\scrE coincide with those of

\scrE (\scrM 0) =

\int 
\scrM 0

L
\bigl( 
x0(s),x

\prime 
0(s)

\bigr) 
ds,

with L defined in (C.1). As in any classic calculus of variations problem, the admissible
variations h(s) of a \scrM 0 are those that make the boundary term arising in the integration by
parts vanish, i.e.,

(C.4)
\Bigl[ 
\partial \bfx \prime 

0
L
\bigl( 
x0(s),x

\prime 
0(s)

\bigr) 
\cdot h(s)

\Bigr] s2
s1

= 0.

Noting that
(C.5)

\partial \bfx \prime 
0
L
\bigl( 
x0,x

\prime 
0

\bigr) 
= sign

\bigl\langle \bigl\langle 
\=q\mathrm{t}1
\mathrm{t}0
(x0) ,\Omega x\prime 

0

\bigr\rangle \bigr\rangle 
\Omega T\=qt1

t0
(x0) - \scrT 0

x\prime 
0\sqrt{} 

\langle x\prime 
0,x

\prime 
0\rangle 
,

\bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle 
\not = 0,

we can distinguish the following types of variations based on (C.4):
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B1. Vanishing endpoint variations: h(s1) = h(s2) = 0.
B2. Orthogonal endpoint variations: The variation h(s) is nonzero but orthogonal to

\partial \bfx \prime 
0
L (x0(s),x

\prime 
0(s)) at the endpoints, i.e.,

(C.6) \partial \bfx \prime 
0
L
\bigl( 
x0(si),x

\prime 
0(si)

\bigr) 
\bot h(si), i = 1, 2.

Restricting to normal variations (h(s) \bot x\prime 
0(s)) and using (C.5), we find that (C.6) is

equivalent to

\Omega \=qt1
t0
(x0(si)) \cdot h(si) = 0, i = 1, 2,

as long as
\bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle 
\not = 0, i.e., as long as L is differentiable. We conclude

that arbitrary normal variations are admissible to the endpoints of \scrM 0 whenever
\=qt1
t0
(x0(si)) \| x\prime 

0(si), i = 1, 2, holds at those endpoints.
B3. Free endpoint variations: The factor \partial \bfx \prime 

0
L (x0,x

\prime 
0) vanishes at the endpoints, i.e.,

(C.7) \partial \bfx \prime 
0
L
\bigl( 
x0(si),x

\prime 
0(si)

\bigr) 
= 0, i = 1, 2.

Using (C.5) and the expression (C.3) for x\prime 
0 along \scrM 0, we find that condition (C.7) is

satisfied whenever

\partial \bfx \prime 
0
L| \scrM 0 =  - 

\bigl[ 
sign

\bigl\langle \bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle \bigr\rangle 
\pm \scrT 0

\bigr] 
\Omega \=qt1

t0
(x0) - \scrT 0

\sqrt{} \bigm| \bigm| \=qt1
t0
(x0)

\bigm| \bigm| 2  - \scrT 2
0\bigm| \bigm| \=qt1

t0
(x0)

\bigm| \bigm| 2 \=qt1
t0
(x0) .

Therefore, condition (C.7) is satisfied if either

\=qt1
t0
(x0(si)) = 0, i = 1, 2,

or

\scrT 0 =
\bigm| \bigm| \=qt1

t0
(x0(si))

\bigm| \bigm| = 1, i = 1, 2.

B4. Periodic variations: \scrM 0 is a closed curve and the variation h(s) is periodic with the
same period in s, i.e.,

\partial \bfx \prime 
0
L
\bigl( 
x0(s1),x

\prime 
0(s1)

\bigr) 
\cdot h(s1) = \partial \bfx \prime 

0
L
\bigl( 
x0(s2),x

\prime 
0(s2)

\bigr) 
\cdot h(s2)).

A simple calculation gives, furthermore, that the second variation of \~\scrE along any of its
stationary curves, \scrM 0, satisfies

\delta 2 \~\scrE (\scrM 0) =
\delta 2\scrE (\scrM 0)\int 

\scrM 0

\sqrt{} 
\langle x\prime 

0(s),x
\prime 
0(s)\rangle ds

.

Therefore, \~\scrE and \scrE also share the type of their stationary curves (minimizers, maximizers, or
saddle-type stationary curves). To obtain a necessary condition for a stationary curve of \~\scrE to
be an extremizer, we can therefore apply the classic Legendre condition to the functional \scrE ,
which is based on the definiteness of the Hessian \partial 2

\bfx \prime 
0\bfx 

\prime 
0
L (x0,x

\prime 
0) .
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Note that whenever \partial \bfx \prime 
0
L (x0,x

\prime 
0) is well-defined in (C.5), i.e.,

\bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle 
\not = 0 holds,

the function sign
\bigl\langle \bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle \bigr\rangle 
is locally constant in x\prime 

0. Therefore, whenever \partial \bfx \prime 
0
L (x0,x

\prime 
0)

is differentiable, its Jacobian equals

\partial 2
\bfx \prime 
0\bfx 

\prime 
0
L
\bigl( 
x0,x

\prime 
0

\bigr) 
=  - \scrT 0\partial \bfx \prime 

0

x\prime 
0\sqrt{} 

\langle x\prime 
0,x

\prime 
0\rangle 

(C.8)

=  - \scrT 0\sqrt{} 
\langle x\prime 

0,x
\prime 
0\rangle 

\biggl[ 
I - 1

\langle x\prime 
0,x

\prime 
0\rangle 
x\prime 
0

\bigl( 
x\prime 
0

\bigr) T\biggr] 
,

\bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle 
\not = 0.

Recall that any two-dimensional dyadic product matrix x\prime 
0 (x

\prime 
0)

T has an eigenvalue equal to
\langle x\prime 

0,x
\prime 
0\rangle (corresponding to the eigenvector x\prime 

0) and another eigenvalue equal to zero (corre-
sponding to \Omega x\prime 

0). As a consequence, the eigenvalues of \partial 2
\bfx \prime 
0\bfx 

\prime 
0
L (x0,x

\prime 
0) are

\rho 1 = 0, \rho 2 =  - \scrT 0\sqrt{} 
\langle x\prime 

0,x
\prime 
0\rangle 

< 0,

which implies that the Hessian \partial 2
\bfx \prime 
0\bfx 

\prime 
0
L (x0,x

\prime 
0) is negative semidefinite on any stationary curve

of \~\scrE satisfying
\bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle 
\not = 0. (The kernel of \partial 2

\bfx \prime 
0\bfx 

\prime 
0
L (x0,x

\prime 
0) is spanned by x\prime 

0, confirming

that tangential perturbations to the stationary curve at its endpoints result in no second-
order change in the transport functional due to our length-normalized definition of transport.)
Consequently, each stationary curve of \~\scrE satisfies the Legendre necessary condition for a strict
maximum.

For stationary curves \scrM 0 that either are closed or connect zeros of the \=qt1
t0
(x0) vector

field (cf. the boundary condition types B3 and B4 above), we now derive another necessary
condition under which a closed stationary curve \scrM 0 is a local maximum of \scrE . We consider
parallel translations of \scrM 0 described by a constant vector field h(s) \equiv h0. Since we have
h\prime (s) \equiv 0 along such perturbations, we obtain

\delta 2\scrE [h0] =
1

2

\int 
\scrM 0

\bigl\langle 
h0, \partial 

2
\bfx 0\bfx 0

L(x0,x
\prime 
0)h0

\bigr\rangle 
ds =

1

2
\langle h0,Lh\bfzero \rangle , L :=

\int 
\scrM 0

\partial 2
\bfx 0\bfx 0

L
\bigl( 
x0(s),x

\prime 
0(s)

\bigr) 
ds.

Therefore, \delta 2\scrE [h0] \leq 0 holds for arbitrary h0 if L is negative semidefinite. Note that wherever
L is differentiable, its Hessian with respect to x0 satisfies

\partial 2
\bfx 0\bfx 0

L
\bigl( 
x0,x

\prime 
0

\bigr) 
= sign

\bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle 
\partial 2
\bfx 0\bfx 0

\bigl\langle 
\=qt1
t0
(x0) ,\Omega x\prime 

0

\bigr\rangle 
,

which then implies formula (5.18) of the theorem. The same argument is also valid for barriers
with endpoints satisfying

\=qt1
t0
(x0(si)) \| x\prime 

0(si) \| x\prime 
0(sj), i, j = 1, 2, i \not = j

(cf. the boundary conditions B2), except that in that case\bigl\langle 
L\Omega x\prime 

0,\Omega x\prime 
0

\bigr\rangle 
\leq 0

must hold for the stationary curve to be a minimizer, given that the admissible parallel
translations are restricted to those normal translations satisfying h(s) \equiv h0 \bot x\prime 

0(si), i = 1, 2.
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In summary, no trajectory of (5.17) can be a minimizer of the constrained transport
functional \scrE for \scrT 0. For \scrT 0 = 0, however, one recovers the case of perfect barriers that
are clearly global minimizers of \scrE . Thus, only perfect barriers can be transport-minimizing
material surfaces, as stated in Theorem 5.
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