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We use the method of averaging to improve recent separation criteria for two-dimensional unsteady
fluid flows with no-slip boundaries. Our results apply to general compressible flows that admit a
well-defined asymptotic average. Such flows include periodic and quasiperiodic flows, as well as
aperiodic flows with a mean component. As an example, we predict and verify the unsteady
separation location and angle in variants of an oscillating separation bubble model. ©2005
American Institute of Physics. fDOI: 10.1063/1.1924698g

I. INTRODUCTION

Fluid flow separation is generally regarded as the detach-
ment of fluid from a no-slip boundary. Expressed in terms of
energy principles, separation takes place when the kinetic
energy of the flow near the wall is depleted by the viscous
stresses within the boundary layer. These large energy losses
typically lead to a degradation in the operational perfor-
mance of engineering devices. For example, separation on a
bluff body, such as a circular cylinder, increases the pressure
drag dramatically, whereas in a diffuser, separation decreases
the pressure recovery.

A. Prior work on flow separation

In a classic paper, Prandtl1 derived a separation criterion
for two-dimensional steady incompressible velocity fields
vsxd=fusx,yd ,vsx,ydg that satisfy the no-slip boundary con-
dition usx,0d=vsx,0d=0 on they=0 boundary. Prandtl’s cri-
terion says that separation takes place at a boundary point
x0=sg ,0d whenever

uysg,0d = 0,

uxysg,0d , 0. s1d

In physical terms, Prandtl’s steady separation criterion
requires zero wall-shear and negative wall-shear gradient.
Under these conditions, the fluid breaks away from the
boundary along a streamline that emanates fromx0, the sepa-
ration point. In dynamical systems terms, the separating
streamline is the unstable manifold ofx0 in the particle-
motion equation ofẋ=vsxd. Due to the no-slip boundary
conditions, this unstable manifold is nonhyperbolic: the ve-
locity gradient=v admits a pair of zero eigenvalues atx0.

For time-dependent velocity fields of the form

vsx,td = fusx,y,td,vsx,y,tdg, s2d

with the no-slip boundary condition

usx,0,td = vsx,0,td = 0, s3d

the steady separation criterions1d fails, as was already noted
by Sears and Tellionis.2 Specifically, instantaneous zeros of
the wall shear do not coincide with the locations of fluid
breakaway. A number of authors, most notably Sears and
Tellionis2 and Van Dommelen and Shen,3 proposed exten-
sions of Prandtl’s criterion to unsteady flows, but a generally
applicable and rigorous criterion did not emergessee the
work by Haller4 for a surveyd.

Studying the time-periodic incompressible flows, Shar-
iff, Pulliam, and Ottino5 realized thatfixed separationsi.e.,
separation at a constant locationd in unsteady flows can still
be viewed as a material ejection from the boundary along a
time-dependent unstable manifold, i.e., a material line that
shrinks to the separation point in backward timessee Fig. 1d.
By contrast, moving separationsi.e., separation at time-
varying locationsd cannot be described by classical unstable
manifolds, because that would contradict the invariance of
those manifolds.

Shariff, Pulliam, and Ottino5 argued that a necessary
condition for fixed separation in two-dimensional time-
periodic incompressible flows is

E
0

T

uysg,0,tddt = 0, s4d

with T denoting the period. This zero mean-skin-friction
principle, however, was obtained from an unverified assump-
tion on the associated Poincaré map, as was pointed out by
Yuster and Hackborn.6

The latter authors rederiveds4d rigorously for small
time-periodic perturbations of steady incompressible flows.
For such flows, Yuster and Hackborn6 also found that condi-
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tion s4d, as well as the second condition ins1d applied to the
steady limit, give a sufficient separation criterion. Their ap-
proach, however, does not extend to aperiodic, compressible,
or far-from-steady flows.

Recently, Haller4 showed that in any two-dimensional
velocity field, fixed separation points satisfy

lim sup
t→−`

UE
t0

t

expFE
t0

t

vysg,0,sddsGuysg,0,tddtU , `,

s5d

where t0 is an arbitrary but fixed time. In mathematical
terms, s5d is a necessary condition for a boundary point
sg ,0d to admit a nonhyperbolic unstable manifold that re-
mains uniformly bounded away from they=0 boundary for
all times tø t0. For steady flows,s5d becomes identical to
Prandtl’s first separation condition ins1d.

For incompressible flows, Haller4 showed that a suffi-
cient condition for a fixed unsteady separation atsg ,0d is s5d
appended with

uxysg,0,td , − c0 , 0, t P R, s6d

wherec0.0 is a constant. Again, for steady flows,s6d sim-
plifies to Prandtl’s second condition ins1d. Haller4 also for-
mulated a theory of moving unsteady separation using the
concept offinite-time unstable manifolds.

B. Results

In this paper, we improve the sufficient separation crite-
ria s5d and s6d for two-dimensional unsteady velocity fields
that admit a finite asymptotic average in time. For such
flows, we show that a sufficient criterion for fixed unsteady
separation atsg ,0d is

lim
T→`

1

T
E

t0−T

t0

expFE
t0

t

vysg,0,sddsGuysg,0,tddt = 0,

lim
T→`

1

T
E

t0−T

t0

expFE
t0

t

vysg,0,sddsGFuxysg,0,td

+ uysg,0,tdE
t0

t

vxysg,0,sddsGdt , 0,

lim
T→`

1

T
E

t0−T

t0

expFE
t0

t

vysg,0,sddsGvyysg,0,tddt . 0, s7d

where t0 is arbitrary but fixed. The first of the above three
conditions is a necessary separation criterion that follows
directly from s5d. The separation criterions7d also applies to
moving and curved no-slip boundaries after a simple change
of coordinates, as explained by Haller.4

For velocity fields with a well-defined asymptotic mean,
the sufficient separation conditions7d improvess5d ands6d in
two ways. First,s7d covers general compressible flows, and
hence applies to real-life aerodynamic problems. Second,s7d
only requires the weighted average of the skin-friction gra-
dient to be negative, as opposed tos6d, which requires the
skin-friction gradient to be negative for all times.

For incompressible flows, we haveuxysg ,0d=−vyysg ,0d,
and the no-slip boundary condition impliesuxsx,0 ,td
=vysg ,0 ,td=0. Thus,s7d simplifies to

lim
T→`

1

T
E

t0−T

t0

uysg,0,tddt = 0,

lim
T→`

1

T
E

t0−T

t0

uxysg,0,tddt , 0. s8d

For steady incompressible flows,s8d further simplifies to the
Prandtl conditions1d.

We derives7d by transforming the general compressible
velocity field s2d to a normal form which is a small pertur-
bation of a steady incompressible flow in the vicinity of the
boundary. We then combine the method of aperiodic averag-
ing with a topological invariant manifold construction to
show the existence of a nonhyperbolic unstable manifold
emanating from the boundary pointsg ,0d whenever s7d
holds. Next, we derive the time-varying slope of this mani-
fold from second-order averaging. Finally, we illustrate our
results on periodic, quasiperiodic, and aperiodic versions of a
two-dimensional separation bubble flow originally derived
by Ghosh, Leonard, and Wiggins.7

II. NORMAL FORM NEAR A NO-SLIP WALL

A. Assumptions

We assume that the velocity fieldvsx ,td in s2d satisfies
the no-slip boundary conditions3d. We further assume that
the fluid conserves mass near the separation point, i.e., the
fluid density fieldrsx ,td locally satisfies the continuity equa-
tion

rt + = · srvd = 0. s9d

Because of the no-slip boundary conditionss3d, Eq. s9d
simplifies to

rtsx,0,td = rsx,0,tdvysx,0,td

along the boundary, yielding the relation

rsx,0,td = rsx,0,t0dexp −FE
t0

t

vysx,0,sddsG .

FIG. 1. Fluid separation along a nonhyperbolic time-dependent unstable
manifold Mstd.
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We further assume thatrsx,0 ,td remains uniformly
bounded along the boundary, which implies

UE
t0

t

vysx,0,sddsU ø Kd , ` s10d

for some positive constantKd. Note that for incompressible
flows, vysx,0 ,td=−uxsx,0 ,td;0, and hences10d is always
satisfied.

We also assume that for any finite timet0, the velocity
field v admits a finite asymptotic average

v0sxd = lim
T→`

1

T
E

t0−T

t0

vsx,tddt s11d

on bounded sets. In their discussion on aperiodic averaging,
Sanders and Verhulst8 call such a vsx ,td a Krylov–
Bogoliubov–Mitropolsky vector field.

Finally, we assume that the function

Dsx,td =E
t0

t

fvsx,sd − v0sxdgds, s12d

as well as its spatial derivatives up to third order, remain
bounded uniformly fortø t0 on bounded sets.

B. Locally incompressible normal form

Using the no-slip boundary conditionss3d, we rewritev
as

vsx,td = fyA1sx,y,td,yB1sx,y,tdg,

with the functions

A1sx,y,td =E
0

1

uysx,sy,tdds,

B1sx,y,td =E
0

1

vysx,sy,tdds.

Fluid particle motions then satisfy the differential equa-
tion

ẋ = yA1sx,y,td,

ẏ = yB1sx,y,td. s13d

If v is incompressible, thenB1sx,0 ,td=0, and hence the sec-
ond equation ins13d contains no linear term iny.

In compressible flows, the lineary term in yB1sx,y,td
can still be removed by letting

y = expFE
t0

t

B1sx,0,sddsGỹ = expFE
t0

t

vysx,0,sddsGỹ,

s14d

wheret0 is an arbitrary fixed time. Indeed, substitutings14d
into s13d and dropping the tilde, we obtain the normal form

ẋ = yA2sx,y,td,

ẏ = y2C2sx,y,td, s15d

for particle motions near the boundary, with

A2sx,y,td

= expFE
t0

t

vysx,0,sddsGA1Sx,y expE
t0

t

vysx,0,sdds,tD ,

C2sx,y,td = expFE
t0

t

vysx,0,sddsGDyB1sx,0,td + Osyd.

C. Near-steady locally incompressible normal
form

To focus on the dynamics near they=0 boundary, we
apply the rescalingy→ey in s15d with a small positive pa-
rametere to obtain

ẋ = efsx,td + e2gsx,t;ed, s16d

where

fsx,td = S yA2sx,0,td
y2C2sx,0,td

D ,

gsx,t;ed = Sy2fDyA2sx,0,td + Oseydg

y3fDyC2sx,0,td + Oseydg D .

For smalle, s16d is a slowly varying system. We, there-
fore, expect the main features of the particle dynamics near
the y=0 boundary to be captured by the averaged version of
s16d. Indeed, as we show in Appendix A, there exists a
change of variablesx=sx,yd°j=sj ,hd under whichs16d
becomes

j̇ = ef0sjd + e2f1sj,td + Ose3d, s17d

with

f0sjd =1 h lim
T→`

1

T
E

t0−T

t0

A2sj,0,tddt

h2 lim
T→`

1

T
E

t0−T

t0

C2sj,0,tddt2 ,

f1sj,t,ed = Djfsj,tdw − Djwf0sjd + gsj,t;0d. s18d

This result can also be derived from the classic work of
Bogoliubov and Mitropolsky9 on asymptotic averaging.

III. SUFFICIENT CONDITION FOR FIXED UNSTEADY
SEPARATION

In view of the normal forms17d, compressible flows
near a no-slip boundary can be viewed as small perturbations
of steady incompressible flows. After the change of coordi-
natesx°j, therefore, we can construct the time-dependent
separation profiles as small perturbations of the steady sepa-
ration profiles. Such steady profiles can be located by apply-
ing Prandtl’s criterion to the leading-order steady velocity
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field in s17d. This approach yields the following sufficient
condition for unsteady separation in flows with an
asymptotic mean.

Theorem 1. Suppose that the assumptions of Sec. III A
hold, and

lim
T→`

1

T
E

t0−T

t0

expFE
t0

t

vysg,0,sddsGuysg,0,tddt = 0,

lim
T→`

1

T
E

t0−T

t0

expSE
t0

t

vysg,0,sddsDFuxysg,0,td

+ uysg,0,tdE
t0

t

vxysg,0,sddsGdt , 0,

lim
T→`

1

T
E

t0−T

t0

expFE
t0

t

vysg,0,sddsGvyysg,0,tddt . 0 s19d

are satisfied for some timet0 at a boundary pointp=sg ,0d.
Thenp is a fixed unsteady separation point, i.e.,p admits a
nonhyperbolic unstable manifold that remains uniformly
bounded away from they=0 boundary for alltø t0.

We prove Theorem 1 in Appendix B.

As noted by Haller,4 fixed unsteady reattachmentcan be
viewed as the convergence of fluid particles to a no-slip
boundary along a nonhyperbolicstable manifoldssee Fig. 2d.
Reversing time in the proof of Theorem 1, we obtain that
fixed unsteady reattachment points satisfy

lim
T→`

1

T
E

t0−T

t0

expFE
t0

t

vysg,0,sddsGuysg,0,tddt = 0,

lim
T→`

1

T
E

t0−T

t0

expSE
t0

t

vysg,0,sddsDFuxysg,0,td

+ uysg,0,tdE
t0

t

vxysg,0,sddsGdt . 0,

lim
T→`

1

T
E

t0−T

t0

expFE
t0

t

vysg,0,sddsGvyysg,0,tddt , 0.

IV. SEPARATION PROFILE FROM HIGHER-ORDER
AVERAGING

By the structure of the averaged normal forms17d, we
obtain sx,yd=sg ,yd as a first-order approximation for the
separation profile, i.e., for the unstable manifold emanating
from the separation point. This approximation is refined by
the higher-order averaging ofs17d.

As we show in Appendix C, second-order averaging
leads to an exact expression for the time-varying separation
slope sthe slope of the separation profile at the separation
pointd. Specifically, for incompressible flows, at any timet0,
the tangent of the angle enclosed by they axis and the sepa-
ration profile at the boundary is given by

f0st0d = tanfast0dg = −

lim
T→`

1

T
E

t0−T

t0 Fuyysg,0,td + 3uxysg,0,tdE
t0

t

uysg,0,sddsGdt

3 lim
T→`

1

T
E

t0−T

t0

uxysg,0,tddt

, s20d

which agrees with the formula derived by Haller4 for general
incompressible flows. For the compressible version ofs20d,
see formulasC9d.10

V. AN EXAMPLE: UNSTEADY SEPARATION BUBBLE
FLOW

In this section, we test our separation criterion on vari-
ants of an unsteady separation bubble model derived by
Ghosh et al.,7 who obtained the model from the Navier–

Stokes equation using the perturbative procedure of Perry
and Chong.11

A. Time-periodic incompressible separation bubble

We first consider the original velocity field derived by
Ghoshet al.7 for the study of passive scalar transport near an
unsteady separation bubble. The velocity field is of the form

usx,y,td = − y + 3y2 + x2y − 2
3y3 + bxy sinvt,

FIG. 2. Fuid reattachment along a nonhyperbolic time-dependent stable
manifold Mstd.
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vsx,y,td = − xy2 − 1
2by2sinvt, s21d

with the wall located aty=0. This velocity field is analytic
and remains uniformly bounded in backward time on com-
pact sets.

Verifying the assumptions of Sec. II A, we first note that

v0sxd = 1− y + 3y2 + x2y −
2

3
y3

− xy2 2 , s22d

thus the velocity field admits a finite asymptotic average on
bounded sets of thesx,yd plane. Also, the function

Dsx,td =
bscosvt0 − cosvtd

v 1 xy

−
1

2
y22

and its derivatives are uniformly bounded in time on
bounded sets, thus our assumptions listed in Sec. II A are
satisfied.

By the time-periodicity ofs21d, the incompressible ver-
sion s8d of our sufficient separation criterion gives fixed un-
steady separation at a pointsg ,0d if

E
0

T

uysg,0,tddt = 0, E
0

T

uxysg,0,tddt , 0. s23d

In this example,s23d yields the sufficient separation con-
dition

− 1 +g2 = 0, 2g , 0, s24d

which in turn gives the fixed separation point location
g=−1. Thus, there exists a separation point ats−1,0d in

agreement with the numerical observations of Ghoshet al.
By comparison, the sufficient separation criterions4d–s6d of
Haller4 applied to this example gives

− 1 +g2 = 0, 2g + b sinvt , 0, t P R, s25d

and hence only guarantees separation atg=−1 for b,2.
Calculating the separation slope froms20d, we find that

f0st0d = 1 +
b

v
cosvt0.

We show a numerical simulation in Fig. 3 for the case of
b=3, in which conditionss25d fail, but our separation crite-
rion correctly predicts fixed unsteady separation.

B. Quasiperiodic incompressible separation bubble

The velocity field,

usx,y,td = − y + 3y2 + x2y − 2
3y3 + xyfb1sinv1t

+ b2sinv2tg,

vsx,y,td = − xy2 − 1
2y2fb1sinv1t + b2sinv2tg, s26d

is a quasiperiodic generalization ofs21d whenv1/v2 is irra-
tional. Physically,s26d models the loss of stability of a steady
separation bubble that develops oscillations with two domi-
nant frequencies.

The averaged velocityv0sxd is again equal tos22d, and
the functionDsx ,td takes the form

FIG. 3. sColord. Time-periodic separa-
tion bubble with parametersb=3 and
v=2p. Particles with different colors
are released from different sides of the
predicted profile. We also plot instan-
taneous streamlines and the instanta-
neous zero of the skin frictionsde-
noted by a small squared.
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Dsx,td = Sb1

v1
fcosv1t0 − cosv1tg +

b2

v2
fcosv2t0

− cosv2tgD1 xy

−
1

2
y22 ,

which is again uniformly bounded on bounded sets along
with its spatial derivatives. Thus the hypotheses of Theorem
1 are again satisfied.

Applying the incompressible separation conditions8d to
this example gives a result identical tos24d, hence the flow
separates ats−1,0d. This time, the separation slope formula
s20d yields

f0st0d = 1 +
b1

v1
cosv1t0 +

b2

v2
cosv2t0.

We show a numerical verification of the separation location
and slope in Fig. 4.

C. Quasiperiodic compressible separation bubble

We consider a compressible modification ofs21d in the
form

usx,y,td = − y + 3y2 + x2y − 2
3y3 + bxy sinv1t,

vsx,y,td = − xy2 − 1
2by2sinv1t +

sinv2t

k − cosv2t
y, s27d

with the parameterk.1. For this strongly compressible ve-
locity field, we have

expFE
t0

t

vysx,0,sddsG =
sk − cosv2td1/v2

sk − cosv2t0d1/v2
, `,

thus our assumptions10d on bounded densities is satisfied.
The averaged velocity field is agains22d, and we have

Dsx,td

= 1 b/vscosvt0 − cosvtdxy

− b/s2vdscosvt0 − cosvtdy2 + y/v2 en
k − cosv2t

k − cosv2t0
2 ,

thusDsx ,td and its spatial derivatives are uniformly bounded
on bounded sets. Thus all assumptions of Sec. II A are again
satisfied.

Choosingv1=p andv2=1 for concreteness, we obtain a
quasiperiodic velocity field. The sufficient separation condi-
tions s19d then predict fixed unsteady separation at a point
sg ,0d whenever

lim
T→`

1

T
E

t0−T

t0 k − cost

k − cost0
s− 1 +g2 + bg sinptddt

=
ksg2 − 1d
k − cost0

= 0,

lim
T→`

1

T
E

t0−T

t0 k − cost

k − cost0
s2g + b sinptddt

=
2kg

k − cost0
, 0,

FIG. 4. sColord. Separation in the qua-
siperiodic incompressible separation
bubble model. The parameters areb1

=b2=2, v1=2p, andv2=Î2.
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lim
T→`

1

T
E

t0−T

t0 k − cost

k − cost0
s− 2g − b sinptddt

= −
2kg

k − cost0
. 0.

These conditions again imply that fixed unsteady separation
takes place ats−1,0d.

Computing the general compressible slope formulasC9d,
we obtain

f0st0d =
k + 1/6

k − cost0
+

b

v

k cospt0
k − cost0

+
b

k − cost0
Scosfsv + 1dt0/2g

v + 1

+
cosfsv − 1dt0/2g

v − 1
D .

The simulations shown in Fig. 5 confirm this separation
slope and the separation location.

D. Aperiodic incompressible separation bubble

Finally, we consider the aperiodic-in-time separation
bubble flow

usx,y,td = − y + 3y2 + x2y − 2
3y3 + bxy sinspt2/2d,

vsx,y,td = − xy2 − 1
2by2sinspt2/2d.

The Fresnel integral

Sstd =E
0

t

sinSp

2
t2Ddt

is approximated by

Sstd ,
1

2
−

1

pt
cosSp

2
t2D

for large values oft, which confirms the boundedness ofs11d
and s12d on bounded sets.

Following the same steps as in the previous examples,
we find that the points−1,0d is a separation point and the
separation slope is given by the constantf0=1. We show the
corresponding numerical simulations in Fig. 6.

E. Conclusions

In this paper, we have shown how the method of aver-
aging can be used to strengthen the sufficient unsteady sepa-
ration criterion of Haller4 in the case of fluid flows with a
well-defined asymptotic mean velocity. Such means certainly
exist for the time-periodic and quasiperiodic flows, but also
appear to be present in turbulent boundary layers.

The work presented here is one of the few known physi-
cal applications of first- and second-order aperiodic averag-
ing. We stress that we applied averaging without an adiabatic
assumption on the velocity field. The slowly varying nature
of the separation problem arises from the presence of the
no-slip boundary.

The application of averaging methods to moving un-
steady separation remains an open question. In moving sepa-
ration, the location of the separation point changes in time,

FIG. 5. sColord. Separation in the qua-
siperiodic compressible separation
bubble model withb=k=3.
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and hence will not be captured by averaging over infinite
times. Still, an appropriately modified finite-time averaging
method may lead to an improvement of the moving separa-
tion criterion of Haller.4
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APPENDIX A

In this and later appendixes, we assume that the velocity
field vsx ,td is at least three-times continuously differentiable
in its arguments. This assumption is needed for our forth-
coming changes of variables to be well defined.

To derive the normal forms17d, we first introduce the
near-identity change of variables

x = j + ewsj,td, sA1d

with j=sj ,hd, and with a uniformly bounded functionw to
be specified later. We then rewrites15d as

ẋ = j̇ + eDjwj̇ + e
]w

]t
= efsj + ew,td + e2gsj + ew,td

= efsj,td + e2fDjfsj,tdw + gsj,tdg + Ose3d, sA2d

where theOse3d term remains bounded by the assumptions
of Sec. II A. for all tø t0, with t0 arbitrary but fixed.

From the transformed equationssA2d, we obtain

sI + eDjwdj̇ = eFfsj,td −
]w

]t
G + e2fDjfsj,tdw + gsj,tdg

+ Ose3d.

If iDjwi remains uniformly bounded for alltø t0, then, for
small enoughe, we obtain

j̇ = esI + eDjwd−1Ffsj,td −
]w

]t
+ eDjfsj,tdw + egsj,tdG

+ Ose3d.

Using

sI + eDjwd−1 = I − eDjw + Ose2d,

we obtain the equivalent system

j̇ = eFfsj,td −
]w

]t
G + e2FDjfsj,tdw − Djw fsj,td

+ Djw
]w

]t
+ gsj,tdG + Ose3d. sA3d

In general, we cannot eliminateOsed for any choice of
w, becausefsj ,td has asgenerally nonzerod asymptotic mean

FIG. 6. sColord. Fixed unsteady sepa-
ration in the aperiodic separation
bubble model.
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by assumption, whereas]w /]t always has zero asymptotic
mean. Instead, we selectw to satisfy

wsj,td =E
t0

t

ffsj,td − f0sjdgdt, f0sjd

= lim
T→`

1

T
E

t0−T

t0

fsjddt, sA4d

which turnssA3d into

j̇ = ef0sjd + e2fDjfsj,tdw − Djw f0sj,td + gsj,tdg

+ Ose3d, sA5d

as claimed ins17d.
It remains to note that theOse2d andOse3d terms insA5d

remain uniformly bounded in time ifw, as well as its deriva-
tives up to second order, remain uniformly bounded fort
ø t0. By sA4d, iDj

kwi remains uniformly bounded fork=0, 1,
2, 3, if

lim sup
t→−`

IE
t0

t

Dj
kffsj,td − f0sjdgdtI , `

remains uniformly bounded for the samek. But this last con-
dition is satisfied by the last assumption of Sec. II A.

APPENDIX B

To prove Theorem 1, we first rewrite the averaged nor-
mal form s17d as

j̇ = ehfa0sjd + Osehdg,

ḣ = eh2fc0sjd + Osehdg, sB1d

with

a0sjd = lim
T→`

1

T
E

t0−T

t0

A2sj,0,tddt,

c0sjd = lim
T→`

1

T
E

t0−T

t0

C2sj,0,tddt. sB2d

Recall that by assumptions19d, we have

a0sgd = 0, aj
0sgd , 0, c0sgd . 0. sB3d

Next, we localizesB1d in the j direction near the candi-
date separation pointP=sg ,0d by introducing the new vari-
able

z = j − g.

Rewriting sB1d in terms of thesz ,hd variables, we obtain

ż = ehzfaj
0sgd + Osehd + Oszdg,

ḣ = eh2fc0sgd + Osehd + Oszdg, sB4d

where the termsOsehd andOszd are uniformly bounded in
the vicinity of sz ,hd=s0,0d for all tø t0, by the assumptions
of Sec. II A.

Following Ref. 4, we shall construct an unstable mani-
fold sthe separation profiled for systemsB4d in the cone

Q = hsz,hd:uzu ø h, 0 ø h ø bj, sB5d

whereb is a positive constant to be selected below.
Along theh=b boundary ofQ, we obtain from Eq.sB4d

and assumptionsB3d that

ḣuh=b = eb2fc0sgd + Osed + Oszdg ù
1
2eb2c0sgd . 0,

sB6d

provided that we selecte and b small enough. For such
choices ofe andb, sB6d shows that trajectories intersecting
the h=b boundary ofQ leaveQ immediately.

Next, we consider thez=h boundary of the coneQ, on
which, by sB3d and sB4d, we have the estimate

żuz=h = ezhfaj
0sgd + Osehd + Oszdg ,

1
2ezhaj

0sgd , 0

sB7d

for all tø t0, provided thate andb are small enoughsimply-
ing thathP f0,bg is smalld.

EquationsB4d and assumptionsB3d also reveal that for
e ,b.0 sufficiently small,

ḣuz=h = eh2fc0sgd + Osed + Oszdg .
1
2eh2c0sgd . 0,

sB8d

thus trajectories intersecting thez=h boundary of the coneQ
immediately enter the cone. An identical argument estab-
lishes the same conclusion for thez=−h boundary ofQ.

Based onsB6d–sB8d, we conclude that fore andb suf-
ficiently small, the extended form ofsB4d,

ż = ezhaj
0sgd + e2h2m1sz,h,t,ed + ehz2m2sz,h,t,ed,

ḣ = eh2c0sgd + ehm3sz,h,t,ed + zm4sz,h,t,ed,

ṫ = 1, sB9d

has trajectories with the following properties on the closed
setQ=Q3R.

sad The set of initial particle positionssz0,h0,t0d that
immediately leaveQ in backward timeis given by
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Wim = hsz,h,td P Q:uzu = h, h P s0,bgj,

which is the union of the two disjoint components

W±
im = hsz,h,td P Q:z = ± h, h P s0,bgj.

sbd If Wev denotes the set of initial conditionssz0,h0,t0d
that eventually leaveQ in backward time, thenWim is a
relatively closed subset ofWev. In other words, if a sequence
within W±

im converges to a point outsideW±
im, then that point

is necessarily atz=h=0, which is outsideWev.
The propertiessad and sbd, by definition, makeQ a

backward-timeWazewski setfor the extended systemsB9d
scf. Hale12d. As a result, the Wazewski principle holds forQ:
the mapG :Wev→Wim that maps initial positions inQ to
their point of exit in backward time is continuous.

Using the Wazewski principle, we want to argue that
there are trajectories that never leaveQ in backward time
once they enter it. Assume the contrary, i.e., assume now that
all initial conditions inQ eventually leaveQ in backward
time. This would imply

Wev = Q − hz = h = 0j,

which would be a contradiction, because thenWev would be
connected, and hence could not be mapped by a continuous
mapG into the disconnected setWim.

We therefore conclude thatWevÞQ−hz=h=0j, i.e.,
there is a nonempty setW` of initial fluid particle positions
that stay inQ for all backward times. By definition,W` is an
invariant set and is necessarily smooth int, because it is
composed of fluid trajectories that are smooth int.

Next we want to argue that all solutions inW` tend to
z=h=0 in backward time. Consider a specific initial condi-
tion sz0,h0,t0dPW`, and denote the trajectory emanating
from this initial position byfzstd ,hstd ,tg. Along this trajec-
tory, we have

ḣstd = eh2fc0sgd + ehm3sz,h,t,ed + zm4sz,h,t,edg,

which, upon integration, gives

hstd =
h0

1 + eE
t

t0

fc0sgd + ehm3sz,h,s,ed + zm4sz,h,s,edgds

ø
h0

1 + eE
t

t0

fc0sgd − ebum3sz,h,s,edu − bum4sz,h,s,edugds

.

This last equation holds for alltø t0, because the trajec-
tory we consider stays inQ for all backward times. For small
enoughe and b, the uniform boundedness ofmksz ,h ,s,ed
within Q leads to the estimate

hstd ø
b

1 + eE
t

t0 1

2
c0sgddt

=
b

1 +
1

2
ec0sgdst0 − td

, sB10d

allowing us to conclude that

lim
t→−`

hstd = 0.

In other words, trajectories that never leaveQ in back-
ward time will necessarily converge to theh=0 boundary of
the coneQ. By the definition ofQ, however, this conver-
gence in theh direction implies

lim
t→−`

zstd = 0.

We therefore conclude that all trajectories inW`

converge toh=z=0 in backward time, thusW` is an un-
stable manifold forp=sg ,0d for all tø t0.

APPENDIX C

Here we derive the incompressible separation slope for-
mula s20d by second-order averaging of the normal form
s17d. For the following, we need to assume that the velocity
field vsx ,td in s2d is a classCr function with r ù4. First,
supplementing the notation introduced insB2d with

asj,td = A2sj,0,td,

csj,td = C2sj,0,td,

fsj,td =E
t0

t

fasj,sd − a0sjdgds,

csj,td =E
t0

t

fcsj,sd − c0sjdgds, sC1d

we rewrite the averaged normal forms17d as
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j̇ = ef0sjd + e2f1sj,td + Ose3d, sC2d

with

f0sjd = fha0sjd,h2c0sjdg,

f1sj,td = Djfsj,tdw − Djwf0sjd + gsj,t;0d,

fsj,td = S hasj,td
h2csj,td

D ,

wsj,td = S hfsj,td
h2csj,td

D ,

gsj,t;0d = Sh2DyA2sj,0,td
h3DyC2sj,0,td

D .

Evaluating the functionf1sj ,td, we find that

f1 = S haj a

h2cj 2hc
DS hf

h2c
D − S hfj f

h2cj 2hc
DS ha0

h2c0D
+ Sh2DyA2sj,0,td

h3DyC2sj,0,td
D = Sh2F

h3G
D ,

with

Fsj,td = saj − c0df + ac − fja
0 + DyA2sj,0,td,

Gsj,td = cjf + 2sc − c0dc − cja
0 + DyC2sj,0,td.

With the above form off1sj ,td at hand, we perform
second-order averaging on systemsC2d by seeking a near-
identity coordinate change

j = m + e2hsm,td, m = sm,ld sC3d

that removes the explicit time dependence insC2d at order
Ose2d. As in the case of first-order averaging, we eliminate
the oscillatory part off1sj ,td by pickingh appropriately. We
then obtain the second-order averaged normal form

ṁ = elfa0smd + elF0smdg + Ose3l3d,

l̇ = el2fc0smd + elG0smdg + Ose3l4d, sC4d

where

F0sjd = lim
T→`

1

T
E

t0−T

t0

fsaj − c0df + ac − fja
0

+ DyA2sj,0,tdgdt,

G0sjd = lim
T→`

1

T
E

t0−T

t0

fcjf + 2sc − c0dc − cja
0

+ DyC2sj,0,tdgdt. sC5d

Neglecting the time-dependent terms in the normal form
s17d and rescaling time by lettingdt /dt=elstd, we obtain the
system

m8 = a0smd + elF0smd,

l8 = lc0smd + el2G0smd, sC6d

which, under the conditions of Theorem 1, has an unstable
manifold atsm ,ld=sg ,0d. This hyperbolic unstable manifold
is tangent to the unstable eigenvector

e= S eF0sgd
c0sgd − aj

0sgd
D .

Recalling that at timet= t0,

sm,ld = sj,hd + Ose2d = sx,ỹ/ed + Osed = sx,y/ed + Osed,

we conclude that the slope of the eigenvectore relative to the
y axis in the originalsx,yd coordinates is given by

f0st0d =
F0sgd

c0sgd − aj
0sgd

, sC7d

where all the three averaged quantities depend ont0, the
starting point of the asymptotic averaging operation

s·d0 = lim
t→`

1

T
E

t0−T

t0

s·ddt.

To evaluatesC7d, we first note that bysC1d,

lim
T→`

1

T
E

t0−T

t0

asg,tdcsg,tddt = lim
T→`

1

THffsg,tdcsg,tdgt0−T
t0 −E

t0−T

t0

fsg,tdfcsg,td − c0sgddtgJ
= − lim

T→`

1

T
E

t0−T

t0

fsg,tdfcsg,td − c0sgdgdt, sC8d
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where we useda0sgd=0 and the uniform boundedness off andc in time. UsingsC5d and sC8d, we obtain

F0sgd = lim
T→`

1

T
E

t0−T

t0

fsaj − c0df − fja
0 + ac + DyA2sj,0,tdgj=gdt

= lim
T→`

1

T
E

t0−T

t0 Fsaj − c0dE
t0

t

a ds− sc − c0dE
t0

t

a ds+ DyA2sj,0,tdG
j=g

dt

= lim
T→`

1

T
E

t0−T

t0 Fsaj − cdE
t0

t

a ds+ DyA2sj,0,tdG
j=g

dt,

which together withsC7d yields the slope formula

f0st0d =

limT→`

1

T
E

t0−T

t0 HDyA2sg,0,td + fajsg,td − csg,tdgE
t0

t

asg,sddsJdt

limT→`

1

T
E

t0−T

t0

fcsg,td − ajsg,tdgdt

sC9d

in the sx, ỹd coordinates.

For incompressible flows,y= ỹ for all t, becausevysg ,0 ,td=0 in s14d. We then obtain fromsC9d the separation slope

f0st0d =

limT→`

1

T
E

t0−T

t0 H1

2
uyysg,0,td + Fuxysg,0,td −

1

2
vyysg,0,tdGE

t0

t

uysg,0,sddsJdt

limT→`

1

T
E

t0−T

t0 F1

2
vyysg,0,td − uxysg,0,tdGdt

= −

limT→`

1

T
E

t0−T

t0 Fuyysg,0,td + 3uxysg,0,tdE
t0

t

uysg,0,sddsGdt

3 limT→`

1

T
E

t0−T

t0

uxysg,0,tddt

in the originalsx,yd coordinate system, as claimed ins20d.
We finally note thathsm ,td must be uniformly bounded

for all backward times for the second-order averaged system
to be well defined. Becausehsm ,td is selected so that

]h

]t
= SFsx,td − F0sxd

Gsx,td − G0sxd
D

= S ajf + ac − fc0 + DyA2sj,0,td
cjf + 2sc − c0dc + DyC2sj,0,td

D
− lim

T→`

1

T
E

t0−T

t0 S ajf + ac − fc0 + DyA2sj,0,td
cjf + 2sc − c0dc + DyC2sj,0,td

Ddt,

we require that the integrals

E
t0

t

fsaj − c0df + DyA2sj,0,sdg − hfsaj − c0dfg0

+ DyA2
0sj,0djds,

E
t0

t

fcjf + 2sc − c0dc + DyC2sg,0,sd

− hscjfd0 + 2fsc − c0dcg0 + DyC2
0sj,0djgds, sC10d

remain uniformly bounded ast→−`, in addition to our pre-
vious assumptions.
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