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Unsteady fluid flow separation by the method of averaging
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We use the method of averaging to improve recent separation criteria for two-dimensional unsteady
fluid flows with no-slip boundaries. Our results apply to general compressible flows that admit a
well-defined asymptotic average. Such flows include periodic and quasiperiodic flows, as well as
aperiodic flows with a mean component. As an example, we predict and verify the unsteady
separation location and angle in variants of an oscillating separation bubble mo&s0®
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I. INTRODUCTION v(x,t) = [u(x,y,t),0(x,y, 0], 2

Fluid flow separation is generally regarded as the detach®ith the no-slip boundary condition
ment of fluid from a no-slip boundary. Expressed in terms of u(x,0,t) =v(x,0,H) =0, (3)
energy principles, separation takes place when the kinetic
energy of the flow near the wall is depleted by the viscoughe steady separation criteri¢b) fails, as was already noted
stresses within the boundary layer. These large energy lossBy Sears and Tellion’ Specifically, instantaneous zeros of
typ|ca||y lead to a degradation in the 0perati0na| perfor-the wall shear do not coincide with the locations of fluid
mance of engineering devices. For example, separation onRfeakaway. A number of authors, most notably Sears and
bluff body, such as a circular cylinder, increases the pressurgellionis’ and Van Dommelen and Shémroposed exten-
drag dramatically, whereas in a diffuser, separation decreas&#ns of Prandtl’s criterion to unsteady flows, but a generally

the pressure recovery. applicable and rigorous criterion did not emerggee the
work by Hallef for a survey.
A. Prior work on flow separation Studying the time-periodic incompressible flows, Shar-

iff, Pulliam, and Otting realized thatfixed separatiorfi.e.,
separation at a constant locatjan unsteady flows can still
. ) be viewed as a material ejection from the boundary along a
v.(>.<):[u(x,y),u(x,y)] that satisfy the no-slip boundar}/ €ON* time-dependent unstable manifold, i.e., a material line that
dition u(x, 0)=v(x,0)=0 on they=0 boundary. Prandtl's cri- 5 in1< 10 the separation point in backward titsee Fig. 1
terion says that separation takes place at a boundary pm% contrast, moving separation(i.e., separation at time-
Xo=(7,0) whenever varying location cannot be described by classical unstable
manifolds, because that would contradict the invariance of
uy(y,0) =0, those manifolds.
Shariff, Pulliam, and Ottind argued that a necessary
condition for fixed separation in two-dimensional time-
Uyy(7,0) <O0. (1) periodic incompressible flows is

In a classic paper, Prantitierived a separation criterion
for two-dimensional steady incompressible velocity fields

T

In physical terms, Prandtl's steady separation criterion
uy(y,0,)dt=0, (4)
0

requires zero wall-shear and negative wall-shear gradient.
Under these conditions, the fluid breaks away from the
boundary along a streamline that emanates frgnthe sepa- with T denoting the period. This zero mean-skin-friction
ration point. In dynamical systems terms, the separatingrinciple, however, was obtained from an unverified assump-
streamline is the unstable manifold &f in the particle- tion on the associated Poincaré map, as was pointed out by
motion equation ofx=v(x). Due to the no-slip boundary Yuster and Hackborf.

conditions, this unstable manifold is nonhyperbolic: the ve-  The latter authors rederive) rigorously for small

locity gradientVv admits a pair of zero eigenvaluesxat time-periodic perturbations of steady incompressible flows.
For time-dependent velocity fields of the form For such flows, Yuster and Hackb8ralso found that condi-
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¥y 1 (to t
lim —J ex j vy(7,0,9)ds |vy,(y,0,)dt>0, (7)
Too T tg-T to

wheret, is arbitrary but fixed. The first of the above three
conditions is a necessary separation criterion that follows
directly from (5). The separation criteriof¥) also applies to
moving and curved no-slip boundaries after a simple change
x of coordinates, as explained by Haffer.

Y For velocity fields with a well-defined asymptotic mean,
the sulfficient separation conditigi) improves(5) and(6) in

fwo ways. First,(7) covers general compressible flows, and
hence applies to real-life aerodynamic problems. Sec@dhd,
only requires the weighted average of the skin-friction gra-
dient to be negative, as opposed (&, which requires the
tion (4), as well as the second condition(ib) applied to the  skin-friction gradient to be negative for all times.

steady limit, give a sufficient separation criterion. Their ap- ~ For incompressible flows, we hawg(y,0)=-vy,(y,0),
proach, however, does not extend to aperiodic, compressiblend the no-slip boundary condition implies,(x,0,t)

M)

FIG. 1. Fluid separation along a nonhyperbolic time-dependent unstabl
manifold M(t).

or far-from-steady flows. =vy(y,0,0)=0. Thus,(7) simplifies to
Recently, Hallet showed that in any two-dimensional 1 (to
velocity field, fixed separation points satisfy lim —f uy(7,0,0)dt=0,
T—o _
. . to-T
lim sup f exp[f vy(y,O,s)ds] uy(y,0,7)dr| <o 1 (to
== | Ut to lim —f Uyy(7,0,H)dt < 0. (8)
CHEEE

) ) i ) . For steady incompressible flow@®) further simplifies to the
where t, is an arbitrary but fixed time. In mathematical p,gngil condition(1).

terms, (5) is a necessary condition for a boundary point e derive(7) by transforming the general compressible
(7,0) to admit a nonhyperbolic unstable manifold that re-ye|ocity field (2) to a normal form which is a small pertur-
mains uniformly bounded away from thye=0 boundary for  pation of a steady incompressible flow in the vicinity of the
all times t<t,. For steady flows(5) becomes identical to poyndary. We then combine the method of aperiodic averag-
Prandtl’s first separation condition (). ~ing with a topological invariant manifold construction to
For incompressible flows, Halféshowed that a suffi- show the existence of a nonhyperbolic unstable manifold
cient condition for a fixed unsteady separatiorfiat0) is (5) emanating from the boundary poirity,0) whenever (7)
appended with holds. Next, we derive the time-varying slope of this mani-
fold from second-order averaging. Finally, we illustrate our
Uy(7,0) <-c<0, teR, (6) results on periodic, quasiperiodic, and aperiodic versions of a

) i ) two-dimensional separation bubble flow originally derived
wherecy>0 is a constant. Again, for steady flow$) sim- by Ghosh, Leonard, and Wiggiﬁs.

plifies to Prandtl’s second condition 1). Hallef* also for-
mulated a theory of moving unsteady separation using the
concept offinite-time unstable manifolds
Il. NORMAL FORM NEAR A NO-SLIP WALL
B. Results A. Assumptions

~Inthis paper, we improve the sufficient separation crite-  we assume that the velocity fieldx,t) in (2) satisfies
ria (5) and (6) for two-dimensional unsteady velocity fields the no-slip boundary conditiof8). We further assume that
that admit a finite asymptotic average in time. For suche fluid conserves mass near the separation point, i.e., the

flows, we show that a sufficient criterion for fixed unsteadyfuid density fieldp(x,t) locally satisfies the continuity equa-
separation aty,0) is tion

i 1f‘o -ft 0 d_ 0.0dt=0 pet V- (pv)=0. 9
— 1 1 1 7t t: L . e
TI_,n!cT T &b 0 0y(7,0,8)ds |Uy(7.0.0 Because of the no-slip boundary conditiaids, Eq. (9)
) ) simplifies to

p(%,0,t) = p(x,0,H)vy(%,0,1)
vy(7,0,9)ds | | Uyg(,0,)

1 (to [t
lim —J exp| f
T T to-T L/t

0 along the boundary, yielding the relation

t t
+ uy(y,O,t)ft vxy(y,o,s)ds] dt<o, p(x,0,t) = p(x,0,tp)exp —lJt vy(x,O,s)ds] .

0
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We further assume thap(x,0,t) remains uniformly X=yA(X,Y,1),

bounded along the boundary, which implies

t Y =y°Co(X,y 1), (15)

f vy(%,0,9)ds| < Ky< (100 for particle motions near the boundary, with
to
Ax(X,Y,1)

for some positive constan€y. Note that for incompressible ; ;
rov_vs,_ vy(X,0,)=-Uy(x,0,t)=0, and hencg10) is always =ex f vy(x,0,5)ds Al<x,y expf vy(x,O,s)dst),
satisfied. to tg

We also assume that for any finite timg the velocity

field v admits a finite asymptotic average t
C,(x,y,t) =ex vy(X,0,8)ds [DyB4(x,0,t) + O(y).
to

1t

vO(x) = lim —f v(x,t)dt (12)
T—oe b Jt-T

0 C. Near-steady locally incompressible normal

on bounded sets. In their discussion on aperiodic averagingfj?rm

Sanders and Verhufstcall such av(x,t) a Krylov— To focus on the dynamics near tlye0 boundary, we
Bogoliubov—Mitropolsky vector field. apply the rescaling — ey in (15) with a small positive pa-
Finally, we assume that the function rametere to obtain
t x = ef (x,t) + €2g(x,t;¢€), 16
A= | [v(x,9)-Vvo(x)]ds, (12) (o gt (0
to where
as well as its spatial derivatives up to third order, remain F(x.t) = ( yAx(x,0,1) )
bounded uniformly fot<t, on bounded sets. ' y?Cy(x,0,t) )’
B. Locally incompressible normal form ( \ (yZ[DyAz(x,O,t) +0O(ey)] )
. . " . alx,t;e) = .
Using the no-slip boundary conditiori3), we rewritev y¥DyCy(x,0,t) + O(ey)]

as For smalle, (16) is a slowly varying system. We, there-

v(x,1) = [yA (%Y, 1), yB(x,y,1)], fore, _expect the main features of the particle dynamics_ near
they=0 boundary to be captured by the averaged version of
with the functions (16). Indeed, as we show in Appendix A, there exists a
change of variablex=(x,y)— &=(&, ) under which(16)
becomes

£= %) + EFHEN +O(), (17)
with

1
Al(x,y,t):J uy(x,sy,t)ds,
0

1
B,(x,y,t) = J vy(X,sy,t)ds. 1 [t
0 7lim ?f Ay(£,0,1)dt
Fluid particle motions then satisfy the differential equa-  O(g) = e

. ‘ :
tion 72lim 'IE'J i C,(£,0,h)dt
x=yAX Y1), et
f1(£,t,€) = DA (& )w — DwFO(£) + g(£,1;0). (18)
y=yBi(xy,1). (13

This result can also be derived from the classic work of
If v is incompressible, theB,(x,0,t)=0, and hence the sec- Bogoliubov and Mitropolsky on asymptotic averaging.
ond equation in(13) contains no linear term ig.

In compressible flows, the linear term in yB,(x,Yy,t) Il. SUFFICIENT CONDITION FOR FIXED UNSTEADY
can still be removed by letting SEPARATION
t t In view of the normal form(17), compressible flows
y= exp[f Bl(X,O,s)ds}Y/ = exp{f vy(X,O,S)dS}S'/, near a no-slip boundary can be viewed as small perturbations
to to of steady incompressible flows. After the change of coordi-

(14)  natesx—§, therefore, we can construct the time-dependent

separation profiles as small perturbations of the steady sepa-

wheret is an arbitrary fixed time. Indeed, substitutifity) ration profiles. Such steady profiles can be located by apply-
into (13) and dropping the tilde, we obtain the normal form ing Prandtl’s criterion to the leading-order steady velocity
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y As noted by Hallef, fixed unsteady reattachmecdn be
viewed as the convergence of fluid particles to a no-slip
boundary along a nonhyperbobtable manifoldsee Fig. 2

M(f) Reversing time in the proof of Theorem 1, we obtain that
fixed unsteady reattachment points satisfy

1 (to t
lim —f exp[f vy(y,o,s)ds] uy(7,0,t)dt=0,
'Y x T—»ooT IO—T tO
FIG. 2. Fuid reattachment along a nonhyperbolic time-dependent stable
manifold M (t). 1 %) t
ym ?f ex f vy(7,0,9)ds || uy(7,0,t)
—o b Jg-1 to
field in (17). This approach yields the following sufficient !
condition for unsteady separation in flows with an *Uy(7.0 . Uxy(7.0,8)ds|dt>0,
0

asymptotic mean.
Theorem 1. Suppose that the assumptions of Sec. Il A

hold, and 1 (o t
; ; lim —f ex f vy(7,0,9)ds | vy, (y,0,0)dt < 0.
0 Tt t

1 T—o
lim —f exp{f vy(y,O,s)ds} uy(y,0,H)dt=0,
Too T to-T t

0

1 to t
lim —f exp(f vy(y,O,s)ds> {uxy(y,o,t) IV. SEPARATION PROFILE FROM HIGHER-ORDER
T~>ocT tO_T tO AVERAG'NG
t
+ uy(y,o,t)f vy(7,0,9)ds|dt <0, By the structure of the averaged normal foff), we
to obtain (x,y)=(v,y) as a first-order approximation for the

separation profile, i.e., for the unstable manifold emanating
1Y t from the separation point. This approximation is refined by
T“ch}f exp{f Uy(%o's)ds} vyy(y,0.0dt>0 (19 the higher-order averaging 617).

o7 o As we show in Appendix C, second-order averaging
are satisfied for some timg at a boundary poinp=(vy, 0). leads to an exact expression for the time-varying separation
Thenp is a fixed unsteady separation point, ig.admits a  slope (the slope of the separation profile at the separation
nonhyperbolic unstable manifold that remains uniformlypoint). Specifically, for incompressible flows, at any tirmge
bounded away from thg=0 boundary for alt<t,. the tangent of the angle enclosed by yhaxis and the sepa-

We prove Theorem 1 in Appendix B. ration profile at the boundary is given by

to t
lim lj [uyy(y,o,t) + 3uxy(y,0,t)J uy(y,O,s)ds] dt
1,

T— T to

folto) = tarfa(ty)] = - (20

1 ’
3I|m?ft Uyy(7,0,0)dt

T—oe O_T

which agrees with the formula derived by Hafiéor general Stokes equation using the perturbative procedure of Perry
incompressible flows. For the compressible versiori20), and Chong?
see formulaC9).*°

A. Time-periodic incompressible separation bubble

V. AN EXAMPLE: UNSTEADY SEPARATION BUBBLE We first consider the original velocity field derived by
FLOW Ghoshet al.” for the study of passive scalar transport near an

. . . o _unsteady separation bubble. The velocity field is of the form
In this section, we test our separation criterion on vari-

ants of an unsteady separation bubble model derived by 9. 2 2 )
Ghoshet al,” who obtained the model from the Navier—  U(xY, =-y+3y?+x%y - 5y°+ Bxysint,
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to=17.0 to = 20.4

FIG. 3. (Color). Time-periodic separa-
tion bubble with parameter8=3 and
w=27. Particles with different colors
are released from different sides of the
predicted profile. We also plot instan-
taneous streamlines and the instanta-
neous zero of the skin frictioride-
noted by a small square

lo = 24.95

05
0
-15 -1 0.5
v(X,y,t) = = Xy? - %'[)’yzsin ot, (21) agreement with the numerical observations of Gheslal.

. _ o ~ By comparison, the sufficient separation criteri@n—(6) of
with the wall located ay=0. This velocity field is analytic Hajlef* applied to this example gives

and remains uniformly bounded in backward time on com-

pact sets. _ _ ~1+9%2=0, 2y+fBsinwt<0, teR, (25)
Verifying the assumptions of Sec. Il A, we first note that

s o 2.4 and hence only guarantees separatioy=atl for 3<2.
Vo =~ y+ 3y + Xy - 3y (22) Calculating the separation slope frd0), we find that
thus the velocity field admits a finite asymptotic average on
bounded sets of th&,y) plane. Also, the function
We show a numerical simulation in Fig. 3 for the case of

X
y B=3, in which conditiong25) fail, but our separation crite-
—oy2 rion correctly predicts fixed unsteady separation.
2

fo(to) =1+ éCOSO()to.
w

B(coswty— coswt)

A(x,t) =

and its derivatives are uniformly bounded in time on B. Quasiperiodic incompressible separation bubble

bounded sets, thus our assumptions listed in Sec. Il A are The velocity field,

satisfied.
By the time-periodicity of(21), the incompressible ver- u(x,y,t) = =y + 3y? + x2y — §y3 +xy[ B1Sin w;t
sion (8) of our sufficient separation criterion gives fixed un- .
steady separation at a poiny, 0) if + Bosin wat],
T T
J | W(»0Ddt=0, fo Uy(7,0.0)dt < 0. (23 (Y0 ==X = 3YABisinwit + Bosinwyt],  (26)

In this example(23) yields the sufficient separation con- is a quasiperiodic generalization (1) when w,/ w, is irra-
dition tional. Physically(26) models the loss of stability of a steady
—1+4220, 2y<0, (24) separation bupble that develops oscillations with two domi-
nant frequencies.
which in turn gives the fixed separation point location The averaged velocity®(x) is again equal t¢22), and
y=-1. Thus, there exists a separation point(at,0) in the functionA(x,t) takes the form
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to =17.0 to =20.0
1 1
0.5 0.5 <
0
-1.5 -1 -0.5
to=22.7
1
FIG. 4. (Color). Separation in the qua-
siperiodic incompressible separation
0.5 bubble model. The parameters s8¢
=B,=2, =27, and w,=2.
0
-1.5 -1 -0.5
to=25.9
1

05

t 1/w.
— COSw,t)"“2
A(X,t) = (&[cos%to - coswqt] + &[coswto exp f vy(x,0,8)ds | = % <o,
w1 w3 t (k= coswytg)™'“2
Xy thus our assumptiofiL0) on bounded densities is satisfied.
~coswat] || }yz ; The averaged velocity field is agai#2), and we have
2

A(X,t)
which is again uniformly bounded on bounded sets along

with its spatial derivatives. Thus the hypotheses of Theorem

1 are again satisfied. =
Applying the incompressible separation conditi@ to

this example gives a result identical (84), hence the flow

separates dt-1,0). This time, the separation slope formula thusA(x,t) and its spatial derivatives are uniformly bounded

Blo(coswty — coswt)xy
K— COSwot |,

- Bl(2w)(coswty — coswt)y? + ylw, € Kk — COSw,t,

(20) yields on bounded sets. Thus all assumptions of Sec. Il A are again
satisfied.
folte) =1 + &cosmto + &COSwzto. Choosingw,;=m andw,=1 for concreteness, we obtain a
w1 w2 quasiperiodic velocity field. The sufficient separation condi-

ntions (19) then predict fixed unsteady separation at a point

We show a numerical verification of the separation locatio
(v,0) whenever

and slope in Fig. 4.

K — cost

to
C. Quasiperiodic compressible separation bubble lim lf ———— (- 1+ 92+ Bysinat)dt
T—»ooT tO—T K~ COStO

We consider a compressible modification(2f) in the

form _k(¥#- 1) —0
u(xy, 1) = —y+3y?+x%y = 3y*+ pxysinwit, e~ costo
i 1 (% x-cost
= w2 - L2 _,_L"’Zt 27 Iim—f ——(2y+ Bsinwt)dt
U(X,y,t) Xy2 Zﬂy Sin (.O]_t K— Coswzty, ( ) T—»ooT '[O—T K— Costo
with the parametekx>1. For this strongly compressible ve- — 2Ky
locity field, we have k—-costy
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to = 18.0 to =20.4

FIG. 5. (Color). Separation in the qua-
siperiodic compressible separation
bubble model with3=x=3.

1% «k-cost t
lim = f L2 (- 2y - Bsinmt)dt st = f sin<£72>dr
Tow T to-T K~ COStO 0 2
___ 2%y -0 is approximated by
K—-costy

» . . : S(t)~1——co Ty
These conditions again imply that fixed unsteady separation 2 ot 2
takes place at-1,0). _ _
Computing the genera| Compressib|e S|ope fOI’I’Tﬁ(HQ), for Iarge values of, which confirms the boundedness(d:ﬂ)

we obtain and(12) on bounded sets.
Following the same steps as in the previous examples,
fo(ty) = x+1/6 B Kcosmly we find that the poin{-1,0) is a separation point and the
EA costy w k- Cost, separation slope is given by the constéyxt 1. We show the
corresponding numerical simulations in Fig. 6.
LB (cos{(m 1ty/2] ponding J
K — COoSty w+1l E. Conclusions
N cog(w - 1)t0/2]) In this paper, we have shown how the method of aver-
w-1 ' aging can be used to strengthen the sufficient unsteady sepa-

_ _ o . _ ~ ration criterion of Hallet in the case of fluid flows with a
The simulations shown in Fig. 5 confirm this separationyell-defined asymptotic mean velocity. Such means certainly

slope and the separation location. exist for the time-periodic and quasiperiodic flows, but also
appear to be present in turbulent boundary layers.
D. Aperiodic incompressible separation bubble The work presented here is one of the few known physi-
Finally, we consider the aperiodic-in-time separation¢@l applications of first- and second-order aperiodic averag-
bubble flow ing. We stress that we applied averaging without an adiabatic
assumption on the velocity field. The slowly varying nature
u(x,y,t) = -y + 3y + X%y — 3y3 + Bxy sin(nt?/2), of the separation problem arises from the presence of the
no-slip boundary.
DY) = = Xy2 — %,Byzsin(thIZ). The applicf'ition of _averaging methoc_is to movi_ng un-
steady separation remains an open question. In moving sepa-
The Fresnel integral ration, the location of the separation point changes in time,
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to =17.0

A5 a1 05 15

FIG. 6. (Color). Fixed unsteady sepa-
ration in the aperiodic separation
bubble model.

and hence will not be captured by averaging over infinite . W

times. Still, an appropriately modified finite-time averaging (| + €DW)§= E[f(fvt) - E} + E[DF (£ )W +g(£1)]
method may lead to an improvement of the moving separa-

tion criterion of Haller* +0(€).
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In this and later appendixes, we assume that the velocity
field v(x,t) is at least three-times continuously differentiable Using
in its arguments. This assumption is needed for our forth-
coming changes of variables to be well defined.

To derive the normal forn{17), we first introduce the (I +eDaw) ™t =1 - eDaw + O(€),
near-identity change of variables
x=&+ew(§), (A1)

we obtain the equivalent system
with £€=(¢&, n), and with a uniformly bounded function to

be specified later. We then rewrif&5) as

o . 9 : ow
X=&+eDWE+ Ea_vtv = ef (£ + ew,t) + €2g(£ + ew, 1) &= G{f(ﬁt) - E} + Gz[Dgf(f,t)W —Daw f(&1)
= 3 JwW
(&) + EDAEOW+IED]+O),  (A2) L m} L0, (A3)
where theO(€®) term remains bounded by the assumptions
of Sec. Il A. for allt<tg, with ty arbitrary but fixed. In general, we cannot eliminaté(e) for any choice of
From the transformed equatio2), we obtain w, becausé(£,t) has a(generally nonzenocasymptotic mean
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by assumption, wherea®w/dt always has zero asymptotic
mean. Instead, we selestto satisfy

t
wW(gt) = f [f(&7n - fA(Hldr, %D
to

fo
= lim < J f(&)dt, (A4)
T T to-T
which turns(A3) into
£= (&) + E[DF(£ )W - Do £ + g(£,1)]
+ (’)(63), (A5)

as claimed in(17).

It remains to note that th@(e?) andO(€%) terms in(A5)
remain uniformly bounded in time i, as well as its deriva-
tives up to second order, remain uniformly bounded tfor
<t,. By (A4), ||D§w|| remains uniformly bounded f&=0, 1,
2,3, if

lim su
t——

remains uniformly bounded for the sarkeBut this last con-
dition is satisfied by the last assumption of Sec. Il A.

< o0

t
J D[f(£7) - fAH]d7
t

0

APPENDIX B

Phys. Fluids 17, 067104 (2005)
¢= endal(y) + O(en) + O],

7= en[c(y) + Olen) + O(Y)], (B4)
where the term®(en) and O(¢) are uniformly bounded in
the vicinity of (£, 7)=(0,0) for all t<t,, by the assumptions
of Sec. Il A.

Following Ref. 4, we shall construct an unstable mani-
fold (the separation profijefor system(B4) in the cone

Q={(,n:]¢l<n 0= n=p}, (B5)

where B is a positive constant to be selected below.
Along the »=8 boundary ofQ, we obtain from Eq(B4)
and assumptioiB3) that

7 o= €BC(9) + O(e) + O(0)] = 2eB°(y) > 0,
(B6)

provided that we selec¢ and 8 small enough. For such
choices ofe and B, (B6) shows that trajectories intersecting
the »=8 boundary ofQ leaveQ immediately.

Next, we consider thé=» boundary of the con®, on
which, by (B3) and(B4), we have the estimate

l ey = €ln[ad(y) + Oen) + O] < 3eLnad(y) <0
(B7)

To prove Theorem 1, we first rewrite the averaged nor-

mal form (17) as

£= en[a%(9) + O(en)],

7= en[c%(& + Oen)], (B1)
with
1 (o
a%&) = lim= f Ay(£,0,t)dt,
T T to-T
1 (o
c&) = lim= f C,(£,0,)dt. (B2)
T T to-T
Recall that by assumptiofi9), we have
a%y) =0, aXy) <0, %y >0. (B3)

Next, we localizg(B1) in the £ direction near the candi-
date separation poiR=(y,0) by introducing the new vari-
able

{=&-v.

Rewriting (B1) in terms of the({, n) variables, we obtain

for all t<t,, provided thate and 8 are small enougkimply-
ing that» e [0,4] is smal).

Equation(B4) and assumptioitB3) also reveal that for
€, >0 sufficiently small,

W= = €7LC°(9) + O(e) + O()] > 5enPc() > 0,
(B8)

thus trajectories intersecting tlje » boundary of the con®
immediately enter the cone. An identical argument estab-
lishes the same conclusion for the—» boundary ofQ.

Based on(B6)—(B8), we conclude that foe and 8 suf-
ficiently small, the extended form @¢B4),

£ = elnad(y) + EPmu(L, nt &) + endPmy({ .t e),
n=en’c™(y) + enmg(Z, p.t ) + {my(L, it €),

t=1, (B9)
has trajectories with the following properties on the closed
setQ=QXR.

(@ The set of initial particle position$Zy, 79,tp) that
immediately leaveQ in backward times given by
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WM ={({,7,0) € Q:[¢| =7, 7 e (0,81}, W= Q-{{=9=0},
which is the union of the two disjoint components ) -
, which would be a contradiction, because thW# would be
W ={(¢, 1) € Q:{= %7, ne(0,8]} connected, and hence could not be mapped by a continuous

map[ into the disconnected s&Y™.

We therefore conclude thaV®# Q-{(=7=0}, i.e.,
there is a nonempty s&V” of initial fluid particle positions
that stay inQ for all backward times. By definitionyy” is an
invariant set and is necessarily smoothtjnbecause it is
composed of fluid trajectories that are smoott.in

Next we want to argue that all solutions W”* tend to
{=7=0 in backward time. Consider a specific initial condi-
tion (&o, 70,t0) € W*, and denote the trajectory emanating
from this initial position by[{(t), 5(t),t]. Along this trajec-
tory, we have

(b) If WE¥ denotes the set of initial conditiorigg, 77, to)
that eventually leaveQ in backward time, thenV™ is a
relatively closed subset &F". In other words, if a sequence
within W{" converges to a point outsid#y", then that point
is necessarily at=»=0, which is outsiden®".

The properties(a) and (b), by definition, makeQ a
backward-timeWazewski sefor the extended systerfB9)
(cf. Halé"). As a result, the Wazewski principle holds for.
the mapI':WeY— W™ that maps initial positions irQ to
their point of exit in backward time is continuous.

Using the Wazewski principle, we want to argue that
there are trajectories that never lea@ein backward time
once they enter it. Assume the contrary, i.e., assume now that 7(t) = e77[c%() + enpmg(¢, 7.t,€) + Imu(¢, m.t, )],
all initial conditions in Q@ eventually leaveQ in backward
time. This would imply which, upon integration, gives

o - o

77(t) = to = to .
1+6f [c%(y) + enma(L, 7,5, €) + {my(, 1.5, €)1ds 1+6f [c%(y) - eBms(¢, 7.5, €)| = BIMy(L, 7.5, €)|1ds
t t

This last equation holds for alkt,, because the trajec- converge top=¢=0 in backward time, thu®/” is an un-
tory we consider stays i@ for all backward times. For small stable manifold fop=(y,0) for all t<t,.
enoughe and B, the uniform boundedness of (¢, 7,S, €)

within Q leads to the estimate
APPENDIX C

Here we derive the incompressible separation slope for-
(t) < B _ B (B10) mula (20) by second-order averaging of the normal form
7 to 0 1, ’ (17). For the following, we need to assume that the velocity
1 +Ef Pl (ydr 1 *oe (MN(to—1) field v(x,t) in (2) is a classC' function with r=4. First,
! supplementing the notation introduced(B2) with

allowing us to conclude that a(&t) =Ay(£,01),

lim 7(t)=0. c(£,1) =Cy(£,0,0),

t—s—oo

In other words, trajectories that never lea@ein back- ‘
ward time will necessarily converge to the=0 boundary of d(ED = | [a(¢s) —-a&)]ds,
the coneQ. By the definition ofQ, however, this conver- to
gence in they direction implies

t
(&Y =f [c(é,5) - c(H]ds, (Cy
lim £(t) =0. to

fa—

We therefore conclude that all trajectories W”  we rewrite the averaged normal forth7) as
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£=ef%(§) + EFHEN + O(),
with

(&) =[7a%(8), nc* ()],

TU&D) = DA(& Hw - DanO(&) + g(£1;0),

na(é,t))
f =
(&) (nZC(f,t) ’

_ mb(%,t))
W(f")‘(n%z«f,o ’

. nZDyAZ@,O.t))
g(g’t,O) - <7]3Dyc2(§!0!t) .

Evaluating the functiori'(£,t), we find that
pe( e )L ) )
e 2/ \ty)  \e 2mp) \5c
N ( 7DyPA£,0,1) ) _ ( 7F )
773DyC2(§1 O,t) 7736 ,
with
F(glt) = (a§ - CO)¢ + a(/l_ ¢§a0 + DyA2(§! O,t),

G(&1) =cep+ 2(c— ) if— a7 + D,.Cy(£,0,1).

With the above form off}(£,t) at hand, we perform
second-order averaging on systé@2) by seeking a near-

identity coordinate change

Phys. Fluids 17, 067104 (2005)
= en[%(p) + eNFO(u)] + O(¥N3),

N = eNc%(w) + eNGO(w)] + O(NY), (C4)
where
1l
Fo(¢) = lim = f [(a:=c)p+ay— ¢:a°
T*}WT 10—T

+ DyAZ(gl O!t)]dt:

1
G9= lim = f " e+ 20c- Oy g

T—o O_T
+D,Cy(¢,0,t)]dt. (CH
Neglecting the time-dependent terms in the normal form

(17) and rescaling time by lettindr/dt=e\(t), we obtain the
system

p' =a%w) + eNFOu),

N = NC(p) + eN*GO(w), (C6)

which, under the conditions of Theorem 1, has an unstable
manifold at(w,\)=(v,0). This hyperbolic unstable manifold
is tangent to the unstable eigenvector

e_( eF%(y) )
S\ Ay -ady)

Recalling that at time=t,,
(1,N) = (&) + O(€) = (xTle) + Oe) = (x,yl€) + O(e),

we conclude that the slope of the eigenve&toelative to the
y axis in the original(x,y) coordinates is given by

Fo(y)
(y) -ady)’
where all the three averaged quantities dependyprthe

folto) = (C7)

g=pr e, p=(u) €3 starting point of the asymptotic averaging operation

that removes the explicit time dependence(@®) at order o t
O(€%). As in the case of first-order averaging, we eliminate () :t“fjj ()dt.
the oscillatory part of(&,t) by pickingh appropriately. We o

then obtain the second-order averaged normal form To evaluate(C7), we first note that byC1),

to to
lim 'Ii'f a(y,H)y(y,Hdt= lim E{[ﬂ%t)lﬂ(%t)]:oq_f d(y,vlc(yt) - CO(?’)dt]}
t T T 0 to-T

to
== lim %f B(y,Hle(nb) - c(y)dt, (CY
to-T

T—o0
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where we use@(y)=0 and the uniform boundedness ¢fand ¢ in time. Using(C5) and(C8), we obtain

1t
Fo(y) = lim = f [(ag= )~ p@° +ay+ DyAY(£,0,1)],-,dt
=l Ji-T

to t t
= lim lf l(ag_CO)J a ds- (c—co)j a ds+ DyAz(g,O,t)} dt
t-T t

Tooe Tt ) t &=y
= lim —f l(ag— c)f a ds+ DyA2(§,0,t)] dt,
T T to-T to =y

which together with(C7) yields the slope formula

1o t
t ty

O_T

folto) = (C9

. 1 (o

|Im-|-_m?f [c(yt) —ady,t)]dr
to-T

in the (x,¥) coordinates.

For incompressible flows;=Y for all t, because(y,0,t)=0 in (14). We then obtain fror{C9) the separation slope

1(* J1 1 !
IimTHw—f Uy (70,0 + | U (7,0,0) = Zvyy(7,0,) f uy(7,0,8)dsdt
T 1|2 2 t

fo(to) = T .

1o |1
“mT—»oo_f _Uyy(%ol) - ny(%O,t) dt
t

1 to t
”mT%-T-f {uyy(y,o,t) + 3uxy(y,0,t)f uy(y,O,s)ds} dt
to-T to

1 (to
3 Iimhw? f Uyy(7,0,t)dt
1,

o~ T

in the original(x,y) coordinate system, as claimed (&0). t o o 10
We finally note thath(u,t) must be uniformly bounded J [(as=c’) b+ DyAy(£,0,9] ~ {[(ag— C) f]
for all backward times for the second-order averaged system ~©

to be well defined. Becaus® u,t) is selected so that + DyAg(g,O)}ds,
t
n_(Fw-F0) [ tect+210- 0,309
Z = t
gt~ \G(x,t) - GO(x) ’

- 0 — 0),/10 0 d
{ agh+ au o+ DALEO {(cgd)"+ 2A(c-c)y]"+D,C(£,0)}1ds,  (C10

- <c§¢+ 2(c-cO)y+ Dycz(g,o,t)> remain uniformly bounded as— -, in addition to our pre-

- 1J*t0 ( 8.+ ah— b + DyAL(E,0.) )dt vious assumptions.
—lim= ’

Toe T )7 \Cep + 2(c-cO)y+ D,C,(§,0.0) L. Prandtl, “Uber Flussigkeitsbewegung bei sehr kleiner Reibung,” Verh.
111, Int. Math. Kongr., Heidelberg, 4841904).
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