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Coherent boundaries of Lagrangian vortices in fluid
flows have recently been identified as closed orbits
of line fields associated with the Cauchy—Green strain
tensor. Here, we develop a fully automated procedure
for the detection of such closed orbits in large-
scale velocity datasets. We illustrate the power of
our method on ocean surface velocities derived from
satellite altimetry.

1. Introduction

Lagrangian coherent structures (LCSs) are exceptional
material surfaces that act as cores of observed tracer
patterns in fluid flows (see [1,2] for reviews). For oceanic
flows, the tracers of interest include salinity, temperature,
contaminants, nutrients and plankton—quantities that
play an important role in the ecosystem and even in
the climate. Fluxes of these quantities are typically
dominated by advective transport over diffusion.

An important component of advective transport in
the ocean is governed by mesoscale eddies, i.e. vortices
of 100-200km in diameter. While eddies also stir and
mix surrounding water masses by their swirling motion,
here we focus on eddies that trap and carry fluid
in a coherent manner. Eddies of this kind include
the Agulhas rings of the Southern Ocean. They are
known to transport massive quantities of warm and
salty water from the Indian Ocean into the Atlantic
Ocean [3]. Current limitations on computational power
prevent climate models from resolving mesoscale eddies
in their flow field. As the effect of mesoscale eddies on
the global circulation is significant [4], the correct
parametrization of eddy transport is crucial for the
reliability of these models. As a consequence, there is
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growing interest in systematic and accurate eddy detection and census in large global datasets, as
well as in quantifying the average transport of trapped fluid by all eddies in a given region [5-7].

This quantification requires (i) a rigorous method that provides specific coherent eddy
boundaries and (ii) a robust numerical implementation of the method on large velocity datasets.

A number of vortex definitions have been proposed in the literature [8,9], most of which are of
Eulerian type, i.e. they use information from the instantaneous velocity field. Typical global eddy
studies [5-7,10] are based on such Eulerian approaches. Evolving eddy boundaries obtained from
Eulerian approaches, however, do not encircle and transport the same body of water coherently
[9,11]. Instead, fluid initialized within an instantaneous Eulerian eddy boundary will generally
stretch, fold and filament significantly. Yet, only coherently transported scalars resist erosion
by diffusion in a way that a sharp signature in the tracer field is maintained. All this suggests
that coherent eddy transport should ideally be analysed via Lagrangian methods that take into
account the evolution of trajectories in the flow (e.g. [12-17]). Notably, however, none of these
methods focuses on the detection of vortices and none provides an algorithm to extract exact
eddy boundaries in unsteady velocity fields.

Only recently have mathematical approaches emerged for the detection of coherent
Lagrangian vortices. These include the geometric approach [8,11] and the set-oriented approach
[18-20]. Here, we follow the geometric approach to coherent Lagrangian vortices, which defines
a coherent material vortex boundary as a closed stationary curve of the averaged material strain
[11]. All solutions of this variational problem turn out to be closed material curves that stretch
uniformly. Such curves are found as closed orbits of appropriate planar line fields [11].

In contrast to vector fields, line fields are special vector bundles over the plane. In their
definition, only a one-dimensional subspace (line) is specified at each point, as opposed to a vector
at each point. The importance of line-field singularities in Lagrangian eddy detection has been
recognized in [11], but has remained only partially exploited. Here, we point out a topological
rule that enables a fully automated detection of coherent Lagrangian vortex boundaries based
on line-field singularities. This in turn makes automated Lagrangian eddy detection feasible for
large ocean regions.

Based on the geometric approach, coherent Lagrangian vortices have so far been identified in
oceanic datasets [11,21], in a direct numerical simulation of the two-dimensional Navier-Stokes
equations [22], in a smooth area-preserving map [23], in a kinematic model of an oceanic jet [23]
and in a model of a double gyre flow [24]. With the exception of [11], however, these studies did
not use the topology of line-field singularities. Furthermore, none of them offered an automated
procedure for Lagrangian vortex detection.

The orbit structure of line fields has already received considerable attention in the scientific
visualization community (see [25,26] for reviews). The problem of closed orbit detection was
posed by Delmarcelle [25, §§5.2.3] and was considered by Wischgoll & Meyer [27], building
on Wischgoll & Scheuermann [28]. In that approach, numerical line-field integration is used
to identify cell chains that may contain a closed orbit. Then, the conditions of the Poincaré—
Bendixson theorem are verified to conclude the existence of a closed orbit for the line field. This
approach, however, does not offer a systematic way to search for closed orbits in large datasets
arising in geophysical applications.

This paper is organized as follows. In §2, we recall the index theory of planar vector fields. In
§3, we review available results on indices for planar line fields and deduce a topological rule for
generic singularities inside closed orbits of such fields. Next, in §4, we present an algorithm for
the automated detection of closed line-field orbits. We then discuss related numerical results on
ocean data, before presenting our concluding remarks in §5.

2. Index theory for planar vector fields

Here, we recall the definition and properties of the index of a planar vector field [29]. We denote
the unit circle of the plane by S!, parametrized by the mapping (cos2xs,sin2xs) e S C R?,
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5 € [0, 1]. In our notation, we do not distinguish between a curve y : [a,b] — R? as a function and
its image as a subset of R?.

Definition 2.1 (index of a vector field). For a continuous, piecewise differentiable planar vector
field v:DCR? — R2 and a simple closed curve y ST S R?, let 6: [0,1] - R be a continuous
function such that 6(s) is the angle between the x-axis and v(y(s)). Then, the index (or winding
number) of v along y is defined as

ind, (v):= %(9(1) —6(0)),

that is, the number of turns of v during one anti-clockwise revolution along y. Clearly, 6 is well
defined only if there is no critical point of v along y, i.e. no point at which v vanishes.

The index defined in definition 2.1 has two important properties [30]:

(i) Decomposition property:
ind, (v) =ind,, (v) +ind,, (v),

whenever y =y Uy \ (y1 N y2), and ind,,(v) are well defined.
(if) Homotopy invariance:

indy (v) =ind; (v),

whenever y can be obtained from y by a continuous deformation (homotopy).

If y encloses exactly one critical point p of v, then the index of p with respect to v,
ind(p, v) :=ind, (v),

is well defined, because its definition does not depend on the particular choice of the enclosing
curve by homotopy invariance. Furthermore, the index of y equals the sum over the indices of all
enclosed critical points, i.e.

ind, (v) =) ind(p;,v),

provided all p; are isolated critical points. Finally, the index of a closed orbit I" of the vector field v
is equal to 1, because the vector field turns once along I". Therefore, closed orbits of planar vector
fields necessarily enclose critical points.

3. Index theory for planar line fields

We now recall an extension of index theory from vector fields to line fields [31]. Let P! be the set
of one-dimensional subspaces of R?, i.e. the set of lines through the origin 0 € R2. P! is sometimes
also called the projective line, which can be endowed with the structure of a one-dimensional
smooth manifold [32]. This is achieved by parametrizing the lines via the x-coordinate at which
they intersect the horizontal line y = 1. The horizontal line y = 0 is assigned the value co.

Equivalently, elements of P! can be parametrized by their intersection with the upper
semicircle, denoted S}_, with its right and left endpoints identified. This means that lines through
the origin are represented by a unique normalized vector, pointing in the upper half-plane and
parametrized by the angle between the representative vector and the x-axis (figure 1). A planar
line field is then defined as a mapping 1: D € R?> — P!, with its differentiability defined with the
help of the manifold structure of P'.

Line fields arise in the computation of eigenvector fields for symmetric, second-order tensor
fields [33,34]. Eigenvectors have no intrinsic sign or length: only eigenspaces are well defined
at each point of the plane. Their orientation depends smoothly on their base point if the
tensor field is smooth and has simple eigenvalues at that point. At repeated eigenvalues,
isolated one-dimensional eigenspaces (and hence the corresponding values of the line field)
become undefined.
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Figure 1. The geometry of the projective line and its parametrization. The double-headed arrows represent one-dimensional
subspaces of the plane, i.e. elements of IP". The upper semicircle SL is shown as a solid line, its endpoints as light points
and the unit circle S as a dotted line. The dark points represent intersections of the lines with y = 1and with the unit circle,
respectively. (Online version in colour.)

Points to which a line field cannot be extended continuously are called singularities. These
points are analogous to critical points of vector fields. Away from singularities, any smooth line
field can locally be endowed with a smooth orientation. This implies the local existence of a
normalized smooth vector field, which pointwise spans the respective line. Conversely, away
from critical points, smooth vector fields induce smooth line fields when one takes their linear
span pointwise.

Based on the index for planar vector fields, we introduce a notion of index for planar line fields
following [31]. First, for some differentiable line field 1 and along some closed curve y : S 15 R?
pick at each point y (f) the representative upper half-plane vector from 1(y(t)). This choice yields a
normalized vector field along y which is as smooth as 1, except where 1 o y crosses the horizontal
subspace. At such a point, there is a jump-discontinuity in the representative vector from right to
left or vice versa. To remove this discontinuity, the representative vectors are turned counter-
clockwise by o : S}_ — 81, (cos27ssin 27s) > (cos 4xs, sin4xs), s € [0, %], i.e. the parametrizing
angle is doubled. Thereby, the left endpoint with angle = is mapped onto the right endpoint
with angle 0. This representation « o 1 permits the extension of the notion of index to planar line
fields as follows.

Definition 3.1 (index of a line field). For a continuous, piecewise differentiable planar line
field 1: D € R? — P! and a simple closed curve y : S! — R?, we define the index of 1along y as

ind, (1) := Jind,, (@ o ).

The coefficient % in this definition is needed to correct the doubling effect of «. It also makes
the index for a line field, generated by a vector field in the interior of y, equal to the index of
that vector field. As definition 3.1 refers to definition 2.1, the additional definitions and properties
described in §2 for vector fields carry over to line fields.

We call a curve y an orbit of 1, if it is everywhere tangent to 1. The scientific visualization
community refers to orbits of line fields arising from the eigenvectors of a symmetric tensor as
tensor (field) lines or hyperorbit (trajectories) [27,33,34].

By definition, the index of singularities of line fields can be a half integer, as opposed to the
vector-field case, where only integer indices are possible. Also, two new types of singularities
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(a) (b)

Figure 2. Orbit topologies in the vicinity of the two generic line-field singularity types: trisector (a) and wedge (b). Al lines
represent orbits, the solid lines correspond to boundaries of hyperbolic sectors.

W, T)=(2,0) W, T)y=@3,1)

Figure 3. Possible topologies inside closed orbits: the (W, T) = (2, 0) configuration (a) and the (3,1) configuration (b). In
practice, we have only observed the simpler (2, 0) configuration.

emerge in the line-field case: wedges (type W) of index +%, and trisectors (type T) of index —%
[33,34]. The geometry near these singularities is shown in figure 2.

Node, centre, focus and saddle singularities also exist for line fields, but these singularities
turn out to be structurally unstable with respect to small perturbations to the line field [33].

In this paper, we assume that only isolated singularities of the generic wedge and trisector types
are present in the line field of interest. In that case, we obtain the following topological constraint
on closed orbits of the line field.

Theorem 3.2. Let I be a continuous, piecewise differentiable line field with only structurally stable
singularities. Let I" be a closed orbit of 1, and let D denote the interior of I". We then have

W=T+2, (3.1)
where W and T denote the number of wedges and trisectors, respectively, in D.

Proof. First, I has index 1 with respect to 1, i.e. ind (1) = 1. Second, its index equals the sum
over all enclosed singularities, i.e.

> indr(p;, 1) =ind (1) = 1. (3.2)

1
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As we consider structurally stable singularities only, these are isolated and of either wedge or
trisector type. From (3.2), we then obtain the equality

sW-T=1,
from which equation (3.1) follows. [ ]

Consequently, in the interior of any closed orbit of a structurally stable line field, there are
at least two singularities of wedge type, and exactly two more wedges than trisectors. Thus, a
closed orbit necessarily encircles a wedge pair, and hence the existence of such a pair serves as a
necessary condition in an automated search for closed orbits in line fields. In figure 3, we sketch
two possible line-field geometries in the interior of a closed orbit.

4. Application to coherent Lagrangian vortex detection

Finding closed orbits in planar line fields is the decisive step in the detection of coherent
Lagrangian vortices in a frame-invariant fashion [11,21,23]. Before describing the algorithmic
scheme and showing results on ocean data, we briefly introduce the necessary background and
notation for coherent Lagrangian vortices.

(a) Flow map, Cauchy—Green strain tensor and A-line field

We consider an unsteady, smooth, incompressible planar velocity field u(t,x) given on a finite
time interval [fg, to + T1], and the corresponding equation of motion for the fluid,

x =u(t, x).

We denote the associated flow map by FingT, which maps initial values xg at time ty to their

respective position at time t + T. Recall that the flow map is as smooth as the velocity field u. Its
linearization can be used to define the Cauchy—Green strain tensor field
to+T ._ (ypto+T\T mypto+T

C,  =(DF."") DF,"",
which is symmetric and positive-definite at each initial value. The eigenvalues and eigenvectors
of C52+T characterize the magnitude and directions of maximal and minimal stretching locally
in the flow. We refer to these positive eigenvalues as A1 < Ay, with the associated eigenspaces
spanned by the normalized eigenvectors & and &;.

As argued by Haller & Beron-Vera [11], the positions of coherent Lagrangian vortex boundaries
at time f are closed stationary curves of the averaged tangential strain functional computed from
Cig'q. All stationary curves of this functional turn out to be uniformly stretched by a factor of
A > 0 under the flow map ngJrT. These stationary curves can be computed as closed orbits of the
A-line fields nf, spanned by the representing vector fields

Ay — A2 AZ—x

+ 2 1

= + . 4.1
VIA \/)VZ )\1 %-1 \/)\12 )\1 %-2 ( )

We refer to orbits of nf as A-lines. In the special case of A =1, the line field nli coincides with
the shear line field defined in [23], provided that the fluid velocity field u(t, x) is incompressible.

We refer to points at which the Cauchy-Green strain tensor is isotropic (i.e. equals a
constant multiple of the identity tensor) as Cauchy—-Green singularities. For incompressible flows,
only CZ)‘JFT =1is possible at Cauchy—Green singularities, implying A1 = A =1 at these points. The
associated eigenspace fields, &1 and &, are ill-defined as line fields at Cauchy—-Green singularities,
thus generically the line fields &7, & and iﬁ have singularities at these points. Conversely, the
singularities of the line fields &, & and nli are necessarily Cauchy-Green singularities, as seen
from the local vector-field representation in equation (4.1).
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2
oD 5

Figure 4. The original domain of definition of nf (grey) and the domain D (white), towhich nf can be continuously extended
via the line field &,. Also shown is a point p denoting a Cauchy—Green singularity.

Following [11,23], we define an elliptic LCS as a structurally stable closed orbit of n}\i for some
choice of the & sign and for some value of the parameter 1. We then define a (coherent Lagrangian)
vortex boundary as the locally outermost elliptic LCS over all choices of 1.

(b) Index theory for A-line fields

In regions where 11 < 12 < A, is not satisfied, nf is undefined. Such open regions necessarily arise
around Cauchy-Green singularities, and hence 7;° does not admit isolated point-singularities.
Consequently, the index theory presented in §3 does not immediately apply to the A-line field.
We show below, however, that Cauchy-Green singularities are still necessary indicators of closed
orbits of 77/\i for arbitrary A.

For A >1, the set D% ={X2 <22}, on which nf is undefined, consists of open connected
components. All Cauchy-Green singularities are contained in some of these D2-components. A
priori, however, there may exist D% -components that do not contain Cauchy-Green singularities.

On the boundary GD%, we have A, = 22, and hence nf coincides with & on 8D/2\, as shown
in figure 4. Therefore, we may extend nf into D% by letting nf(x) =& (x) for all x e D?, thereby
obtaining a continuous, piecewise differentiable line field, whose singularity positions coincide
with those of the &-singularities.

Theorem 3.2 applies directly to the continuation of the line field nic and enables the detection
of closed orbits lying outside the open set D%. In the case A < 1, the line field nik can similarly be
extended in a continuous fashion into the interior of the set D}\ ={i > A2}, through the definition
niﬁ (x):=£&1(x) forall x € D}\.

After its extension into the set Dy = D}\ U D%, the line field nf inherits each Cauchy—Green
singularity either from & or from &. A priori, the same Cauchy-Green singularity may have
different topological types in the & and & line fields. By Delmarcelle [25, theorem 11], however,
this is not the case: corresponding generic singularities of & and &; share the same index and
have the same number of hyperbolic sectors. Furthermore, the separatrices of the &-singularity
are obtained from the separatrices of the &-singularity by reflection with respect to the singularity.
In summary, £&1-wedges correspond exactly to &-wedges, and the same holds for trisectors. For
the singularity type classification for n%, A#1, we may therefore pick &, irrespective of the
signof A — 1.

The singularity-type correspondence extends also to the limit case A =1, i.e. to nli, as follows.
Consider the one-parameter family of line-field extensions ni‘. By construction, the locations of nf
point singularities coincide with those of the &-singularities for any A. Variations of A correspond
to continuous line-field perturbations, which leave the types of structurally stable singularities
unchanged. Hence, the types of nli—singularities must match the types of corresponding
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Figure 5. (a) Vortex boundary (A = 0.975) for the left vortex of the double gyre flow. In the centre, the pair of wedge
singularities determines the topology of the A-line field »;” and therefore indicates a candidate region for closed orbits. The
A-lines are launched from the Poincaré section to find the outermost closed orbit. (b) A blow-up of the centre of the vortex with
the detailed circular topology of the A-line field ; in the vicinity of the (2, 0) wedge pair configuration (cf. figure 3). (Online
version in colour.)

nic-singularities, or equivalently of corresponding &-singularities. To summarize, we obtain the
following conclusion.

Proposition 4.1. Any closed orbit of a structurally stable nf field necessarily encircles Cauchy—Green
singularities satisfying equation (3.1).

(c) Asimple example: coherent Lagrangian vortex in the double gyre flow

We consider the left vortex of the double gyre flow [35], defined on the spatial domain [0, 1] x
[0,1] by the ODE

x = —w Asin(rf(x)) cos(y)

and
1y =mAcos(rf(x)) sin(wy)dyf (¢, x),

where

f(t,x) = & sin(wt)x® 4 (1 — 2¢ sin(wt))x.

We choose the parameters of the flow model as A =0.2,¢ =0.2, w =n/5,tp =0and T =5x/2.

In the A-line field shown in figure 51, we identify a pair of wedge singularities. Any closed
A-line must necessarily enclose this pair by proposition 4.1. This prompts us to define a Poincaré
section through the midpoint of the connecting line between the two wedges. For computational
simplicity, we select the Poincaré section as horizontal. Performing a parameter sweep over
)-values, we obtain the outermost closed orbit shown in figure 5a for a uniform stretching rate of
A =0.975. Other non-closing orbits and the A-line field are also shown for illustration. In addition,
we show the line-field topology around the wedge pair in the vortex core in figure 5b.

In this simple example, the vortex location is known, and hence a Poincaré section could
manually be set for closed orbit detection in the A-line fields. In more complex flows, however,
the vortex locations are a priori unknown, making a manual search unfeasible.
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(d) Implementation for vortex census in large-scale ocean data

Our automated Lagrangian vortex-detection scheme relies on proposition 4.1, identifying
candidate regions in which Poincaré maps for closed A-line detection should be set up. In
several tests on ocean data, we only found the (W, T)=(2,0) singularity configuration inside
closed A-lines. This is consistent with our previous genericity considerations. Consequently, we
focus on finding candidate regions for closed A-lines as regions with isolated pairs of wedges
in the & field. In the following, we describe the procedure for an automated detection of
closed A-lines.
(1) Locate singularities. Recall that Cauchy-Green singularities are points, where C;ngT =L
We find such points at subgrid-resolution as intersections of the zero-level sets of the
functions ¢q := Cq1 — Cyp and ¢y := C1p = Cp1, where Cij denote the entries of the Cauchy-
Green strain tensor.

(2) Select relevant singularities. We focus on generic singularities, which are isolated and are
of wedge or trisector type. We discard tightly clustered groups of singularities, which
indicate non-elliptic behaviour in that region. Effectively, the clustering of singularities
prevents the reliable determination of their singularity type. To this end, we select a
minimum distance threshold between admissible singularities as 2Ax, where Ax denotes
the grid size used in the computation of C§8+T. We obtain the distances between closest
neighbours from a Delaunay triangulation procedure.

(8) Determine singularity type. Singularities are classified as trisectors or wedges, following
the approach developed in [36]. Specifically, a circular neighbourhood of radius >0
is selected around a singularity, so that no other singularity is contained in this
neighbourhood. With a rotating radius vector r of length r, we compute the absolute
value of the cosine of the angle enclosed by r and &, i.e. cos(Z(r, &)) = |r - &|/r, with the
eigenvector field & interpolated linearly to 1000 positions on the radius r circle around
the singularity. The singularity is classified as a trisector, if r is orthogonal to &, at exactly
three points of the circle, and parallel to & at three other points, which mark separatrices
of the trisector (figure 2). Singularities not passing this test for trisectors are classified as
wedges. Other approaches to singularity classification can be found in [33,37], which we
have found too sensitive for oceanic datasets.

(4) Filter. We discard wedge points whose closest neighbour is of trisector type, because
these wedge points cannot be part of an isolated wedge pair. We further discard single
wedges whose distance to the closest wedge point is larger than the typical mesoscale
distance of 2° ~200 km. The remaining wedge pairs mark candidate regions for elliptic
LCSs (figure 6a).

(5) Launch i-lines from a Poincaré section. We set up Poincaré sections that span from the
midpoint of a wedge pair to a point 1.5° apart in the longitudinal direction (figure 6b).
This choice of length for the Poincaré section captures eddies up to a diameter of 3° ~
300 km, an upper bound on the accepted size for mesoscale eddies. For a fixed A-value,
A-lines are launched from 100 initial positions on the Poincaré section, and the return
distance P(x) — x is computed. Zero crossings of the return distance function correspond
to closed A-lines. The position of zeros is subsequently refined on the Poincaré section
through the bisection method. The outermost zero crossing of the return distance marks
the largest closed A-line for the chosen A-value. To find the outermost closed A-line over all
A-values, we vary A from 0.85 to 1.15 in 0.01 steps, and pick the outermost closed orbit as
the Lagrangian eddy boundary. During this process, we make sure that eddy boundaries
so obtained do enclose the two wedge singularities used in the construction, but no other
singularities.

The runtime of our algorithm is dominated by the fifth step, the integration of A-lines, as
illustrated in table 1 for the ocean data example in §4e. This is the reason why our investment
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Figure 6. Visualization of the eddy detection algorithm for an ocean surface flow. (a) Singularities of the Cauchy—Green strain
tensor of trisector type (triangles) and wedge type (circles: kept, dots: discarded). Wedge pairs are candidate cores of coherent
eddies. A total of 40 wedge pairs were finally selected for further analysis out of all singularities (crosses) by the procedure
described in §4d. (b) Poincaré sections anchored at the centre of the selected wedge pairs. Coherent vortex boundaries are
found as closed A-lines intersecting these Poincaré sections. (c) Boundaries of 14 coherent eddies on 24 November 2006. The
logyy X, field is shown in the background as an illustration of the stretching distribution in the flow. (Online version in colour.)
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Table 1. Runtime of the algorithm for the Agulhas dataset on a CPU with 2.2 GHz and 32 GB RAM. As the integration of A-lines
is the computationally most expensive part, the reduction of the number of candidate regions to only 40 by application of index
theory yields a significant computational advantage.

runtime (s) no. points
(1) localization 1.0 14 M singularities
(2) selection 12.8 912 singularities
(3) classification 85.9 414 wedges
(4) filtering 0.5 78 wedges
(5) integration ~ 200/wedge pair/A-value 40 wedge pairs
end result — 14 eddies

in the selection, classification and filtering of singularities before the actual A-line integration has
been so beneficial.

(e) Coherent Lagrangian vortices in an ocean surface flow

We now apply the method summarized in steps (1)-(5) to two-dimensional unsteady velocity
data obtained from AVISO satellite altimetry measurements. The domain of the dataset is the
Agulhas leakage in the Southern Ocean, represented by large coherent eddies that pinch off from
the Agulhas current of the Indian Ocean.

Under the assumption of a geostrophic flow, the sea surface height /1 serves as a streamfunction
for the surface velocity field. In longitude-latitude coordinates (¢, 8), particle trajectories are then
solutions of

6= doh(¢,6,6) and 6= mawh(%@ H,
where g is the constant of gravity, R is the mean radius of the Earth and f(0) := 22 sin6 is the
Coriolis parameter, with £2 denoting the Earth’s mean angular velocity. For comparison, we
choose the same spatial domain and time interval as in [11,21]. The integration time T is also
set to 90 days.

Figure 6 illustrates the steps of the eddy detection algorithm. From all singularities (black
crosses, trisectors—red triangles) of the Cauchy-Green strain tensor, isolated wedge pairs are
extracted (figure 6a, kept wedges—green circles, discarded wedges—red dots) and closed orbits
are found by launching A-lines from Poincaré sections anchored at those wedge pairs (figure 6b).
Altogether, 14 out of the selected wedge pairs are encircled by closed orbits and, hence, by
coherent Lagrangian eddy boundaries (figure 6c). The reduction to candidate regions consistent
with proposition 4.1 leads to a significant gain in the computational speed. This is because the
computationally expensive integration of the A-line field is only carried out in these regions
(table 1). For comparison, the computational cost on a single Poincaré section is already higher
than the cost of identifying the candidate regions. Note also that two regions contain three
wedges, which constitute two admissible wedge pairs. This explains how 78 wedges constitute
40 wedge pairs altogether.

T S
R2f(0) cos 6

5. Conclusion

We have discussed the use of index theory in the detection of closed orbits in planar line
fields. Combined with physically motivated filtering criteria, index-based elliptic LCS detection
provides an automated implementation of the variational results of Haller & Beron-Vera [11] on
coherent Lagrangian vortex boundaries. Our results further enhance the power of LCS detection
algorithms already available in the Matlab toolbox LCS TOOL [24].

Our approach can be extended to three-dimensional flows, where line fields arise in the
computation of intersections of elliptic LCSs with two-dimensional planes [38]. Applied over
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several such planes, our approach allows for an automated detection of coherent Lagrangian
eddies in three-dimensional unsteady velocity fields.

Automated detection of Lagrangian coherent vortices should lead to precise estimates on the
volume of water coherently carried by mesoscale eddies, thereby revealing the contribution of
coherent eddy transport to the total flux of volume, heat and salinity in the ocean. Related work
is in progress.
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