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Abstract. Recent advances enable the simultaneous computation of both at-
tracting and repelling families of Lagrangian Coherent Structures (LCS) at the

same initial or final time of interest. Obtaining LCS positions at intermedi-

ate times, however, has been problematic, because either the repelling or the
attracting family is unstable with respect to numerical advection in a given

time direction. Here we develop a new approach to compute arbitrary posi-

tions of hyperbolic LCS in a numerically robust fashion. Our approach only
involves the advection of attracting material surfaces, thereby providing accu-

rate LCS tracking at low computational cost. We illustrate the advantages of

this approach on a simple model and on a turbulent velocity data set.

1. Introduction. Hyperbolic Lagrangian Coherent Structures (LCS) in a two-
dimensional unsteady flow are locally most repelling or most attracting material
lines over a given finite time interval I = [t1, t2] of interest [8]. Both mathemat-
ical methods and intuitive diagnostic tools have been developed to locate LCS in
finite-time unsteady velocity fields with general time dependence (see [5] for a recent
review.)

Most computational approaches to LCS seek their initial or final positions as
curves of initial conditions that lead to locally maximal trajectory separation in for-
ward or backward time. This repulsion-based approach requires two numerical runs:
one forward-time run that renders the time-t1 position of forward-repelling LCS,
and one backward-time run that reveals the time-t2 position of forward-attracting
LCS. Determining the positions of these material surfaces at an intermediate time
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Exact Numerical

Figure 1. Forward advection of a classic stable manifold (a re-
pelling LCS over finite times). Inaccuracies in determining the ini-
tial location of the LCS lead to exponentially growing errors and
accumulation along the unstable manifold even if numerical errors
were fully absent in the advection.

t accurately, however, comes at high computational cost: it requires the accurate
numerical advection of curves that are unstable in the time direction of advection
(see Fig. 1, as well as the discussion in [3]).

A recent computational advance is offered by [3], showing how both repelling
and attracting LCS can be simultaneously obtained either at t1 or t2 from a single
numerical run. This approach renders an attracting LCS at a time t ∈ [t1, t2]
as the advected image of the initial LCS position at time t1. Similarly, the time-t
position of a repelling LCS can be obtained by backward-advecting its position from
time t2 to t. Both of these computations track attracting material surfaces, and
hence are numerically robust. However, they involve the advection of LCS from two
different initial times, and hence are necessarily preceded by two separate numerical
advections of a dense enough grid of initial conditions. Altogether, therefore, the
computational cost of constructing both repelling and attracting LCS at arbitrary
times t ∈ [t1, t2] has remained relatively high.

Here we propose a new computational strategy for two-dimensional incompress-
ible flows. Our strategy builds on results from [3], [9] and [13, 11], enabling the
reconstruction of all hyperbolic LCS for arbitrary times t ∈ [t1, t2] in a numer-
ically robust fashion. This approach involves a single integration of trajectories
from a full numerical grid, followed by the advection of select attracting material
segments from local extrema of the singular value field of the flow gradient. This
procedure yields substantial savings in computational time, as well as increased
numerical accuracy in LCS detection and tracking. We demonstrate these advan-
tages on a simple analytical flow example and on a direct numerical simulation of
two-dimensional turbulence.

This paper is organized as follows. In Section 2, we fix our notation and recall
relevant findings from [9] on the singular value decomposition of the linearized flow
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map. In Section 3 we present our attraction-based approach to hyperbolic LCS in
the context of the recent geodesic theory of LCS [6, 2, 1]. In Section 4, we provide
a proof of concept in the autonomous Duffing oscillator and compare our approach
to previous ones in a simulation of two-dimensional turbulence, before concluding
in Section 5.

2. Set-up. Consider a smooth, two-dimensional vector field v(x, t), defined over a
finite interval I := [t1, t2] and over spatial locations x ∈ D ⊂ R2. The trajectories
generated by v(x, t) satisfy the ordinary differential equation

ẋ = v(x, t). (1)

The t1-based flow map is denoted by F t2
t1 : x1 7→ x2, mapping initial values x1 from

time t1 to their position at time t2 along the corresponding solution of (1). We
recall that the flow map is as smooth in x1 as is v in x.

At any x1 ∈ D, the deformation gradient DF t2
t1 (x1) is a matrix that admits a

singular value decomposition (SVD) of the form

DF t2
t1 = ΘΣΞ>, Θ =

(
θ2 θ1

)
,Ξ =

(
ξ2 ξ1

)
∈ O(2), Σ =

(
σf
2 0

0 σf
1

)
, (2)

with σf
2 ≥ σf

1 > 0 on the flow domain D. The numbers σf
2, σ

f
1 are the singular values

of DF t2
t1 ; the columns of Ξ (i.e., ξ2 and ξ1) are the right singular vectors of DF t2

t1 ;

the columns of Θ (i.e., θ2 and θ1) are the left singular vectors of DF t2
t1 . From (2),

we see that

DF t2
t1 (x1) ξi (x1) = σf

i (x1) θi (x2) , x2 = F t2
t1 (x1), i ∈ {1, 2} .

We recall that the singular values σf
2(x1) and σf

1(x1) measure infinitesimal stretch-
ing and compression along the trajectory starting from x1. Furthermore, the unit
vectors ξ2 (x1) and ξ1 (x1) are the tangent vectors pointing to the directions of
strongest stretching and compression under the linearized flow DF t2

t1 (x1).
If the velocity field is incompressible, i.e., ∇x · v(x, t) ≡ 0, then det (DF ) =

σf
1σ

f
2 = 1, and consequently

σf
2 = 1/σf

1. (3)

As a result, local maxima of σf
2 (locally strongest-stretching points) coincide with

local minima of σf
1 (locally strongest-compressing points). At any point x1 ∈ D,

the average exponential rate of largest stretching over the time interval [t1, t2] of
length T = t2 − t1 is defined as

Λf (x1) :=
1

T
log σf

2 (x1) ,

which is referred to as the (forward) finite-time Lyapunov exponent (FTLE). In the
incompressible case, Eq. (3) shows that the FTLE can equally well be considered
as a measure of the strongest local compression at x1.

For the backward flow from t2 to t1, the backward deformation gradient is given
by

DF t1
t2 (x2) =

[
DF t2

t1 (x1)
]−1

= ΞΣ−1Θ>, (4)

with Σ−1 =

(
σb
1 0
0 σb

2

)
=

(
1/σf

2 0
0 1/σf

1

)
. The singular values of DF t1

t2 are therefore

given by

σb
2 (x2) = 1/σf

1(x1), σb
1 (x2) = 1/σf

2(x1), x2 = F t2
t1 (x1), (5)
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and the backward right singular vectors are given by θ1 and θ2, the strongest- and
weakest-stretching directions at x2 in backward time.1

Eq. (3) shows that the maximal (minimal) singular value of the linearized flow
map is equal to the maximal (minimal) singular value of the linearized inverse flow
map. Thus, local maxima of σf

2 are mapped bijectively to local maxima of σb
2 by

the flow map. We summarize the equivalences of local extrema of the forward and
backward singular value fields as follows:

x1 at t1
F

t2
t1−−→ x2 = F t2

t1 (x1) at t2

σf
2–maximum ⇐⇒ σb

1–minimum
if incompressible m m

σf
1–minimum ⇐⇒ σb

2–maximum.

(6)

In terms of the backward FTLE field, we recover [7, Prop. 2] for the incompressible
case:

Λb (x2) =
1

T
log σb

2 (x2) =
1

T
log

(
σf
1 (x1)

)−1
=

1

T
log σf

2 (x1) = Λf (x1) .

In summary, as argued in [9], the SVD of DF t2
t1 yields complete forward and

backward stretch information from a unidirectional flow computation.

3. Forward and backward geodesic theory of hyperbolic LCS . The follow-
ing definition recalls the hyperbolic LCS candidates obtained from two-dimensional
geodesic LCS theory.

Definition 3.1 (Shrink and stretch lines, [2, 3]). We call a smooth curve γ a
forward ( or backward) shrink line, if it is pointwise tangent to the ξ1 (or θ2) field.
Similarly, we call γ a forward ( or backward) stretch line, if it is pointwise tangent
to the ξ2 (or θ1) field.

Shrink and stretch lines are solutions of a variational principle put forward in [1]
for LCS. This principle stipulates as a necessary condition that the time t1 positions
of hyperbolic LCS must be stationary curves of the averaged Lagrangian shear [1].
This variational principle leads to the result that time t1 positions of hyperbolic
LCS are necessarily null-geodesics of an appropriate Lorentzian metric associated
with the deformation field [1]. This prompts us to refer to the underlying approach
as geodesic LCS theory.

Away from points where σf
2 = σf

1 at t = t1 and σb
2 = σb

1 at t = t2, both the initial
and the final flow configuration is foliated continuously by mutually orthogonal
forward and backward shrink and stretch lines. As discussed in [3, 9], the following
equivalence relations hold:

at t1
F

t2
t1−−→ at t2

forward shrink line ⇐⇒ backward stretch line
⊥ ⊥

forward stretch line ⇐⇒ backward shrink line.

(7)

The forward shrink and stretch lines provide candidate curves for the positions of
repelling and attracting LCS at time t1. To find the positions of actual hyperbolic

1The superscripts f and b refer to forward and backward time, respectively.
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LCS as centerpieces of observed tracer deformation, we seek members of these two
line families that evolve into locally most attracting or repelling material lines over
the time interval [t1, t2].

To this end, we follow [13, 11] to require a sufficient condition that hyperbolic LCS
must satisfy. Specifically, the time t1 positions of forward repelling LCS are shrink
lines that intersect local maxima of σf

2; the time t1 positions of forward attracting
LCS are stretch lines that intersect local minima of σf

1. The time t2 positions
of backward-repelling and backward-attracting LCS are defined analogously using
the backward singular-value fields σb

2 and σb
1 . By the equivalences detailed above,

forward-attracting LCS, as evolving material lines, coincide with backward repelling
LCS. Similarly, forward-repelling LCS, as evolving material lines, coincide with
backward-attracting LCS.

If the vector field v(x, t) is incompressible, then the relation (3) forces local
maxima of σf

2 to coincide with local minima of σf
1. As a consequence, both forward-

repelling and forward-attracting LCS intersect the maxima of σf
2 at time t1. This

fact will simplify our upcoming computational algorithm considerably for incom-
pressible flows.

As noted earlier, reconstructing a full forward-attracting LCS as a material line
involves advecting its time t1 position under the flow map. This is a self-stabilizing
numerical process, as it tracks an attracting surface. In contrast, reconstructing
a forward-repelling LCS from its time t1 position by flow advection is an unstable
numerical process. Indeed, the smallest initial errors in identifying the LCS position
are quickly amplified, as shown in Fig. 1.

Relations (6) and (7), however, allow us to compute the forward-repelling LCS
equivalently as backward-attracting LCS. Specifically, forward-repelling LCS posi-
tions at a time t ∈ [t1, t2] can be equivalently obtained from advection under the
backward flow map F t

t2 . The curves to be advected under F t
t2 are just the backward

stretch lines running through local minima of σb
1 . By (5), however, local minima of

σb
1 are just the images of local maxima of σf

2 under the flow map F t2
t1 .

The computation of stretch lines still involves the integration of direction fields,
for which orientation issues have to be resolved (see [14, 2]). A new feature we in-
troduce here is to advect short line segments (tangents) as opposed to whole stretch
lines running through the appropriate extrema of the singular value fields. This idea
exploits the tangentially stretching and normally attracting nature of stretch lines,
saves on computational cost, and produces highly accurate results, as we demon-
strate later. We summarize our attraction-based LCS construction in Fig. 2 for
the case of incompressible flows. For compressible flows, forward-attracting LCS at
time t1 are still constructed from local minima of σf

1, but backward-attracting LCS
at t2 are constructed from advected local maxima of σf

2, which generally differ from
advected local minima of σf

1.

Numerical implementation. Here we summarize the computational steps re-
sulting from our previous considerations, assuming a forward-time advection of the
chosen numerical grid.

1. Compute flow map and its linearization: We solve the ODE (1) from
a sufficiently dense grid of initial conditions to obtain a discrete approxima-
tion to the flow map F t2

t1 . We also obtain a numerical approximation to the

linearized flow map DF t2
t1 at the grid points by one of four methods: (i) solv-

ing the equation of variations associated with (1), (ii) finite-differencing F t2
t1
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Figure 2. Illustration of the attraction-based LCS extraction for
an incompressible flow at an arbitrary time t ∈ [t1, t2]. Here A
denotes a short vector parallel to ξ2 at a local maximum x∗1 of the
σf
2(x) field . Similarly, R denotes a short vector parallel to θ1 at

the point x∗2 = F t2
t1 (x∗1). Recall that both forward-repelling and

forward-attracting LCS intersect the maxima of σf
2 at time t1 in

case of incompressibility.

along the grid, (iii) finite-differencing on a smaller auxiliary grid [2], (iv) via
convolution with Gaussian kernels [12].

2. Compute singular values: We compute the singular-value decomposition
of the deformation gradient tensor field DF t2

t1 . This yields the singular values

σf
i as well as the right- and left-singular vector fields ξi and θi, respectively.

The singular values σb
i are obtained directly from the relation (5).

3. Select seeding points for LCS: We need to identify points of strongest
attraction, i.e. local minima of σf

1 at the initial time and local minima of σb
1

at the final time. While the first are identified directly, the latter are advected
images of local maxima of σf

2 under the flow map F t2
t1 . In the incompressible

case, the points of strongest attraction coincide with local maxima of σf
2 and

their advected images under F t2
t1 , respectively. As in [11], we start by sorting

all local maxima in ascending order by the values of σf
1 or descending order

by the values of σf
2. We then pick the first point p1 in the ordered list and

discard all local extrema in a small neighborhood of p1. From the remaining
points on the list, we pick the first point p2 and discard extrema in a small
neighborhood of p2, and so on. This procedure filters out local extrema in
noisy singular value fields.

4. Compute hyperbolic LCS: For any time t ∈ [t1, t2] of interest, we use the
flow map F t

t1 to advect short line segments tangent to ξ2(pi) at the points pi
identified in the previous step. The resulting set of curves form the time t
positions of attracting LCS. In the incompressible case, we use the flow map
F t
t2 to advect short line segments tangent to θ1(F t

t2(pi)) at the points F t2
t1 (pi).

Recall that the characteristic stretching directions for the backward flow are
obtained from the forward time computation in step (2) due to Eq. (4). The
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Figure 3. In the background, the FTLE field for integration time
T = 2.5 is shown. On top, we show the zero energy level H = 0
(yellow), the shrink line (cyan), and a straight line aligned with
θ1(0) (short line segment not aligned with the homoclinic, magenta)
at t2 = 2.5 together with its image at t1 = 0 (magenta). The
left figure shows that all structures highlight the homoclinic loop
with reasonable accuracy. The magnification in the middle shows,
however, a significant deviation of the shrink line from the stable
manifold. At the same time, the backward-advected straight line
segment approximates the stable manifold perfectly. The right plot
shows both the shrink line and the image of the backward stretch
line segment to perform well near the origin.

resulting set of curves form the time t positions of repelling LCS. For the
advection of line segments, the use of an adaptive integration scheme may be
necessary. This is to fill emerging large gaps between adjacent points due to
stretching, and to mitigate the possibly high curvature in the tracked material
curve (see, e.g., [10]).

4. Examples.

4.1. Duffing oscillator. We first consider a rescaled version of the unforced, un-
damped Duffing oscillator with Hamiltonian

H(x, y) =
1

4
x4 − 2x2 +

1

2
y2.

This example has already been used to illustrate shrink and stretch line context
by [3] locally around the origin, showing the convergence of forward- and backward
maximal stretch directions to the unstable and stable subspaces, respectively. In
our present computations, we use the times t1 = 0 and t2 = T = 2.5.

In Fig. 3, we compare the results from the earlier numerical LCS detection scheme
used in [6] to our approach described in Section 3. While the left plot shows all
structures to highlight the homoclinic loop, the middle plot shows that the shrink
line deviates from the loop visibly at the first turn. In contrast, the backward-
advected line segment stays close to the loop. The right plot shows that at the
origin, both the shrink line and the advected stretch line indicate consistently the
direction of strongest attraction.

Fig. 4 gives further quantitative evidence that the backward-advected backward
stretch line gives a better approximation to the actual repelling LCS position at
time t1 than the direct computation of this LCS position from forward shrink lines.
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Figure 4. Left: Comparison of FTLE along the backward-
advected backward stretch line (magenta) and the forward shrink
line (cyan). Note that the advected stretch line has a uniformly
higher repulsion rate and is therefore a better approximation to
the repelling LCS. Right: Backward-advected particle blob of ini-
tial diameter 1.0 (yellow), backward-advected stretch line (dashed
magenta) and forward shrink line (cyan), showing that the advected
stretch line is a better approximation to the backward attracting
(i.e. repelling) LCS. (The numerical advection is performed by the
Matlab routine ode45 with absolute and relative error tolerance
of 10−8.)

Even in this simple example, therefore, the actual evolution of a shrink line and
a backward-advected backward stretch line are noticeable different, although they
should theoretically be identical. The root cause is numerical errors in the singular
vector computation, as well as the limited ability of the discrete numerical grid to
approximate a repelling LCS (local stable manifold) as a continuous curve. The
error is initially invisible, but starts to accumulate rapidly during integration of the
ξ2 (θ1) field and advection.

4.2. Two-dimensional turbulence. As a second example, we consider the two-
dimensional Navier–Stokes equations

∂tv + v · ∇v = −∇p+ ν∆v + f,

∇ · v = 0,

v(·, 0) = v0,

where the unsteady velocity field v(x, t) is defined on the two-dimensional domain
U = [0, 2π] × [0, 2π] with doubly periodic boundary conditions. As in [3, 4], we
use a standard pseudo-spectral method with 512 modes in each direction, and 2/3
de-aliasing to solve the above Navier–Stokes equations with viscosity ν = 10−5

on the time interval [0, 100]. The flow integration is then carried out over the
interval t ∈ [50, 100], in which the turbulent flow has fully developed, by a fourth-
order Runge–Kutta method with variable step-size. The initial condition v0 is the
instantaneous velocity field of a decaying turbulent flow. The external force f is
random in phase and band-limited, acting on the wave-numbers 3.5 < k < 4.5.

In Fig. 5(middle), we plot repelling (red) and attracting (blue) LCS at the middle
time instance t = 75. As described in Section 3, these LCS were launched as straight
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Figure 5. Attracting (blue) and repelling (red) LCS in a simula-
tion of two-dimensional turbulence over the time interval [50, 100].
Left: Initial line segments at t1 = 50 for the attracting LCS. Mid-
dle: Hyperbolic LCS positions at t = 75. Right: Initial line seg-
ments at t2 = 100 for the repelling LCS.
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Figure 6. Left: shrink lines computed directly at t1 = 50 as
curves tangent to the ξ1(x) line field that intersect local maxima
of σf

2. Middle: the same shrink lines (in red) advected to t = 75
to highlight repelling LCS positions at that time. The gray curves
are backward-advected stretch lines from t2 = 100 that run through
the time t2 positions of trajectories starting from local maxima of
σf
2 at time t1. Right: a close-up view of the middle panel, clearly

showing dramatic local inaccuracies from the forward calculation,
resembling the effect shown in Fig. 1.

line segments of length 0.1 from local σf
2–maxima and their flow images, which are

σb
2–maxima, see Fig. 5(left) and (right). The filtering radius for local σf

2–maxima
was set to 0.2, yielding a reduction from 11, 000 to 229 seeding points.

We plot forward shrink lines at the initial time t1 = 50 in Fig. 6(left), and
compare their forward-advected images (red) at the intermediate time t = 75 with
the backward advected stretch lines (gray), seeded at the corresponding points
(see the middle panel of Fig. 6). Analytically, these curves should coincide. In
some locations, they indeed agree well, but in other locations, the discrepancy is
dramatic (see the close-up view in the right panel of Fig. 6). This is the consequence
of the effect illustrated in Fig. 1, showing the clear advantage of our method over
the forward-time tracking of a repelling LCS.
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5. Conclusions. We have proposed a paradigm shift in the detection of hyperbolic
Lagrangian Coherent Structures (LCS). Instead of detecting initial positions of LCS
as curves of maximal forward repulsion, we seek them as backward-advected loca-
tions of maximal backward attraction. While these two approaches are theoretically
equivalent, the latter approach (developed here) eliminates an inherent numerical
instability of the former approach (used in prior work). We have demonstrated that
our attraction-based approach leads to substantial improvements in accuracy and
computational cost.

We have discussed our approach in the framework of the geodesic theory [6, 3,
1], because this theory allows for the explicit computation of hyperbolic LCS as
parametrized curves. The proposed focus on attraction, however, automatically
extends to potential future refinements in LCS computations.

The advection of identified hyperbolic LCS in the stable time direction is a simple
idea, but relies heavily on the notion of a forward-time attracting LCS, which has
been proposed only recently [3]. We have combined this notion with the SVD of
the deformation gradient and with the seeding of straight line segments at points
of locally strongest attraction to obtain a dynamically consistent and numerically
robust approach to compute LCS. Extensions of these ideas to higher dimensions
are possible and will be communicated elsewhere.
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