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Abstract

Typical fluid particle trajectories are sensitive to changes in their initial con-
ditions. This makes the assessment of flow models and observations from
individual tracer samples unreliable. Behind complex and sensitive tracer
patterns, however, there exists a robust skeleton of material surfaces, La-
grangian coherent structures (LCSs), shaping those patterns. Free from the
uncertainties of single trajectories, LCSs frame, quantify, and even forecast
key aspects of material transport. Several diagnostic quantities have been
proposed to visualize LCSs. More recent mathematical approaches iden-
tify LCSs precisely through their impact on fluid deformation. This review
focuses on the latter developments, illustrating their applications to geo-
physical fluid dynamics.

137

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
5.

47
:1

37
-1

62
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

80
.2

18
.2

29
.1

21
 o

n 
01

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



FL47CH07-Haller ARI 24 November 2014 9:57

1. INTRODUCTION

Material coherence emerges ubiquitously in fluid flows around us (Figure 1). It admits distinct
signatures in virtually any diagnostic scalar field or reduced-order model associated with these
flows. Signatures, however, do not reveal the root cause of flow coherence. The theory of La-
grangian coherent structures (LCSs) seeks to isolate this root cause by uncovering special surfaces
of fluid trajectories that organize the rest of the flow into ordered patterns.

Lagrangian fluid motion is inherently unstable owing to its sensitivity with respect to initial
conditions. Velocity model comparisons based on advecting individual fluid particles are therefore
virtually guaranteed to produce poor results. By contrast, LCSs are robust features of Lagrangian
fluid motion that point beyond idiosyncrasies of individual trajectories and enable a systematic
comparison of models with experiments and with each other.

The LCS acronym was coined by Haller & Yuan (2000) to describe the most repelling,
attracting, and shearing material surfaces that form the skeletons of Lagrangian particle dynamics.
Uncovering such surfaces from experimental and numerical flow data promises a simplified
understanding of the overall flow geometry, an exact quantification of material transport, and
a powerful opportunity to forecast, or even influence, large-scale flow features and mixing
events.

Classic dynamical systems theory offers major help in analyzing Lagrangian coherence in
autonomous (i.e., time-independent), time-periodic, and quasiperiodic velocity fields. It reveals a
wealth of recurrent motions in such temporally idealized flows, ranging from simple fixed points
through periodic orbits to stable and unstable manifolds, KAM (Kolmogorov-Arnold-Moser) tori,
and chaotic invariant sets (Guckenheimer & Holmes 1983). In the limit of infinitely long times,
these recurrent structures gain decisive influence over tracer patterns and become the LCSs of
the flow (Figure 2).

This situation changes drastically for temporally aperiodic flows, such as those in Figure 1.
These flows have no fixed points or stable and unstable manifolds tied to fixed points. No fluid
particle in the ocean or atmosphere will form a periodic orbit or a KAM torus either. Thus,
although the comparisons made in Figure 2 with the observed patterns of Figure 1 are truly
inspiring, one needs to remember that the idealized trajectories shown in Figure 2 simply do not
exist in realistic fluid flows.

Three basic approaches aim to close the gap between real-life observations and classic nonlin-
ear flow structures. First, one may identify the idealized structures of Figure 2 in a temporally
simplified (steady, time-periodic, or quasiperiodic) analytic model and conjecture the existence of
similar structures in the true flow by analogy. Several accessible reviews discuss this approach (see
Ottino 1989; Wiggins 1992, 2005; Jones & Winkler 2002; Samelson & Wiggins 2006). Second,
one may run heuristic flow diagnostics on temporally complex flow data and point out similarities
between features of the diagnostics and observed flow patterns. Comprehensive reviews of this

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1
Coherent Lagrangian patterns in nature. (a) Spiral eddies in the Mediterranean Sea in 1984 (Paul Scully-Power/NASA). (b) Swimmers
carried by a rip current at Haeundae Beach, South Korea, in the summer of 2012. Panel b courtesy of Joo Yong Lee/Sungkyunkwan
University. (c) A sudden extension of the Deepwater Horizon oil spill in the Gulf of Mexico in June 2010 (NASA). (d ) Transport of
warm water revealed by the sea surface temperature distribution around the Gulf Stream in 2005 (NASA). (e) Jupiter’s Great Red Spot
seen from the Voyager 1 mission in February 1979 (NASA/JPL, with image processing by Björn Jónsson). ( f ) Phytoplankton bloom
east of Tasmania ( Jeff Schmaltz/MODIS Rapid Response Team, NASA/GSFC). ( g) Water carried by a tornado off the Florida Keys
( Joseph Golden/NOAA). (h) Steam rings blown by Mount Etna in November 2013. Panel h courtesy of Tom Pfeiffer/http://www.
volcanodiscovery.com.

138 Haller

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
5.

47
:1

37
-1

62
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

80
.2

18
.2

29
.1

21
 o

n 
01

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.volcanodiscovery.com
http://www.volcanodiscovery.com


FL47CH07-Haller ARI 24 November 2014 9:57

a b

c d

e f

g h

www.annualreviews.org • Lagrangian Coherent Structures 139

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
5.

47
:1

37
-1

62
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

80
.2

18
.2

29
.1

21
 o

n 
01

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



FL47CH07-Haller ARI 24 November 2014 9:57

KAM curve on a 
Poincaré section

Saddle fixed point
Compare with Figure 1b,c

Steady shear flow
Compare with Figure 1d

Center fixed point
Compare with Figure 1e,f

Steady shear flow
Compare with Figure 1g

Homoclinic tangle
Compare with Figure 1a

KAM torus
Compare with Figure 1h

Figure 2
Classic dynamical system structures in steady and time-periodic fluid flows that are reminiscent of the flow
patterns in Figure 1. Abbreviation: KAM, Kolmogorov-Arnold-Moser.

approach are given by Provenzale (1999), Boffetta et al. (2001), Jones & Winkler (2002), Peacock
& Dabiri (2010), and Samelson (2013).

The present review surveys a third approach. Instead of cataloging idealized motions and then
pointing out their impact on tracers as a side result (Figure 2), I focus on deconstructing observed
types of material coherence, such as those in Figure 1, and then seek the exact dynamical structures
that create these forms of coherence in nonidealized flow data.

This inverse problem necessitates a careful rethinking of nonlinear dynamical systems theory
for finite-time flows, ultimately revealing previously unknown, yet all-pervasive LCSs. I review
the principles and mathematics underlying this approach below and show how it brings a new
level of understanding to complex geophysical flow data.

Further mathematical methods outside the scope of this review target the interiors of coherent
flow regions, as opposed to the LCSs bounding these regions. Examples include probabilistic
methods for detecting almost-invariant and finite-time coherent sets (Froyland & Padberg-Gehle
2014), ergodicity-based methods for time-periodic flows (Budišić & Mezić 2012), and braid-
theoretical methods for flows with recurrent trajectories (Allshouse & Thiffeault 2012).

I also omit a survey of Eulerian diagnostic approaches to flow coherence, such as the Okubo-
Weiss criterion (Okubo 1970, Weiss 1991), the Q-criterion (Hunt et al. 1988), the �-criterion
(Chong et al. 1990), the Hua-Klein criterion (Hua & Klein 1998, Hua et al. 1998), and the λ2-
criterion ( Jeong & Hussain 1995). These approaches can effectively frame coherent features of
the instantaneous velocity field but lack objectivity (see Section 2.1). Furthermore, coherently
evolving velocity features tend to differ substantially from coherently moving fluid parcels, and
hence from LCSs, in unsteady flows (see, e.g., Beron-Vera et al. 2013).
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2. REQUIREMENTS FOR A SELF-CONSISTENT LAGRANGIAN
COHERENT STRUCTURE THEORY

I start with a set of basic requirements that have proven necessary for self-consistent LCS results
on benchmark problems.

2.1. Objectivity

A fundamental axiom of mechanics is objectivity, which postulates that material response is in-
dependent of the observer (Gurtin 1981). Objectivity requires that we add Coriolis and centrifu-
gal forces to the Navier-Stokes equations in a rotating frame so that the velocity field solving
these equations in the rotating frame generates the same material evolution as in an inertial
frame.

LCSs, as skeletons of material response, should therefore be objectively identified. An LCS
theory is objective if its conclusions are invariant under Euclidean coordinate changes of the form

y = Q(t)x + p(t), (1)

with Q(t) denoting a time-dependent proper orthogonal tensor and p(t) denoting a time-dependent
translation (Truesdell & Noll 2004).

Figure 3a illustrates the issue with nonobjective coherent structure detection. Most nonobjec-
tive diagnostics misclassify the unsteady flow shown, owing to its closed and rotating streamlines, as
elliptic or vortical (Haller 2005). In reality, it is a rotating saddle flow, as shown by the evolving red
tracer pattern initially seeded inside a closed streamline. Similar examples of hidden Lagrangian
instabilities disguised by closed streamlines emerge from simulations of two-dimensional turbu-
lence (see Section 5.1).

Instantaneous Eulerian diagnostics used in assessing Lagrangian coherence fail the test of
objectivity (Haller 2005, Ouellette 2012). Objective Lagrangian diagnostics include relative
and absolute dispersion (Provenzale 1999, Bowman 2000, Jones & Winkler 2002), finite-time
Lyapunov exponents (FTLEs; see Section 4), finite-size Lyapunov exponents (FSLEs; see Aurell
et al. 1997, Joseph & Legras 2002, d’Ovidio et al. 2004), effective diffusivity (Nakamura 1996,
Haynes & Shuckburgh 2000, Shuckburgh & Haynes 2003), stretching in particle-fixed frames
(Tabor & Klapper 1994, Lapeyre et al. 1999, Haller & Iacono 2003), affine versus nonaffine
decomposition of material deformation (Kelley & Ouellette 2011), and invariants of the Cauchy-
Green strain tensor (see Sections 5 and 6).

Early mathematical criteria for LCSs were all nonobjective sufficient conditions (Haller & Poje
1998; Haller 2000, 2001a, 2002). They assumed sustained saddle-type behavior in the Eulerian
frame and gave bounds on the unsteadiness of the velocity field under which attracting and repelling
surfaces also exist in the Lagrangian frame. As rigorous sufficient conditions, these results give
no false positives for LCSs but may give false negatives in the selected frame. Later criteria for
LCS based on the strain acceleration tensor (Haller 2001b, 2005; Duc & Siegmund 2008) were
objective but still only sufficient, not necessary. Thus, these results may also give false negatives,
albeit consistently in all frames.

Heuristic nonobjective LCS diagnostics (see, e.g., Mancho et al. 2013) are often simple to
compute but may yield both false positives and false negatives in a given frame. This causes no
harm in simple canonical examples, such as steady or time-periodic flows, for which one readily
recognizes and discounts misclassified flow regimes (see, e.g., Mezić et al. 2010). Nonobjectivity,
however, becomes a limitation in now-casting, transport estimating, and decision making in real
time for complex flows, for which the correct answer is not a priori known.

www.annualreviews.org • Lagrangian Coherent Structures 141

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
5.

47
:1

37
-1

62
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

80
.2

18
.2

29
.1

21
 o

n 
01

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



FL47CH07-Haller ARI 24 November 2014 9:57

2.2. Finite Time

The observed geophysical flow patterns of Figure 1 evolve aperiodically during their finite life
span. For such finite times, routinely used asymptotic concepts, such as stability, stable and unsta-
ble manifolds, and chaotic advection, become mathematically undefined. A Lagrangian method
can only capture nonrecurrent material patterns systematically if it is designed for finite-time
dynamical systems.

Most classic definitions of material stability, however, lose their ability to distinguish individ-
ual trajectories over finite times owing to the continuity of fluid trajectories with respect to initial
positions. For instance, defining exceptional, hyperbolic fluid trajectories as those with nonzero
FTLEs (Shadden et al. 2005, Wiggins 2005) would mark all but finitely many trajectories excep-
tional in any finite-time flow. Similarly, defining distinguished hyperbolic trajectories (DHTs)
through a finite-time version of classic exponential dichotomies (Ide et al. 2002, Branicki &
Wiggins 2009) would identify all fluid trajectories as DHTs in any finite-time flow. Mathematical
approaches utilizing these ideas necessarily turn out to be problematic under scrutiny.

Even in recurrent infinite-time dynamical systems, finite-time tracer evolution is governed by
LCSs different from those identified for asymptotic tracer motion. For instance, Figure 3b shows
how an evolving attracting LCS provides the true finite-time centerpiece of a tracer pattern near
a nonlinear saddle, as opposed to the classic unstable manifold of the saddle (Farazmand & Haller
2013).

2.3. Lagrangian Invariance

The word Lagrangian in the LCS acronym conveys that the detected material surface must be
evolving with the flow. Several diagnostic approaches advertised as Lagrangian do not actually
satisfy this requirement. Instead, they assess Lagrangian coherence over sliding time windows of
the form [t0, t0 + T ], where the initial time t0 sweeps through the observational time period.

Although this approach illustrates some aspects of flow evolution, the structures obtained at
different t0 values belong to different finite-time dynamical systems and generally do not evolve into
each other. Sliding-window analysis is nevertheless widespread in the use of FTLEs, inspired by
the expectation that ridges of these fields are almost invariant under variations of t0 (see Section 4).

Figure 3c illustrates the issue with sliding-window-type approaches. In this steady flow ex-
ample, sliding-window FTLE analysis gives a fixed ridge at x = 0 for all t0 values, incorrectly
suggesting a repelling LCS fixed along the y axis. The actual LCS is the black material line mov-
ing to the right, prevailing as the strongest repeller within an initially tightly stacked set of blue
material lines (Haller 2011).

This example also underlines that LCSs are invariant surfaces in the extended phase space of
position and time (see Figure 4a). In the space of positions, therefore, they move with the flow,
even in steady flows. LCSs converge to classic invariant manifolds over longer times, should such
manifolds exist in the infinite-time limit (Figure 3b).

2.4. Spatial Convergence

Temporal convergence for a Lagrangian diagnostic field is meaningless in a finite-time set-
ting, but spatial convergence to a continuous limit is reasonable to expect under computational
grid refinement. This is to ensure that the field uniquely identifies a material point as part of
an LCS.

Virtually all Lagrangian approaches are associated with the flow map, which advects all fluid
particles over the same time interval, thereby mimicking experimental flow visualization by tracers.
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Figure 3
Basic Lagrangian coherent structure (LCS) benchmarks. (a) A rotating saddle misclassified as a vortex by
most nonobjective diagnostics. Panel a courtesy of Francisco J. Beron-Vera. (b) Finite-time attracting LCS
( green) not captured by the classic unstable manifold ( purple) near a nonlinear saddle point. Panel b adapted
with permission from Farazmand & Haller (2013). (c) Lack of Lagrangian invariance in sliding-window
finite-time Lyapunov exponent (FTLE) analysis. Panel c adapted with permission from Haller (2011). (d ) A
discontinuous finite-size Lyapunov exponent (FSLE) field and smooth FTLE field over the same grid for a
steady gyre. Panel d adapted with permission from Karrasch & Haller (2013).
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(t)

(t1)

(t)

Figure 4
(a) Material surface evolution in the extended phase space. (b) Material surface evolution in the phase space,
the geometry of the invariants of the Cauchy-Green strain tensor C, and their relation to the generalized
Green-Lagrange deformation tensor Eλ.

For a smooth (or smoothed) velocity data set, the flow map is a smooth function of initial conditions
over finite times (Arnold 1973); thus spatial convergence is not an issue.

A notable exception is FSLE analysis, which involves running the flow map over different times
for different initial conditions, until local stretching reaches a prescribed threshold (Aurell et al.
1997, Lai & Tél 2011). This computation generically leads to intrinsic jump discontinuities in
the FSLE field along codimension-one surfaces of initial conditions (Karrasch & Haller 2013).
Figure 3d shows these FSLE discontinuities for a steady gyre flow, while the FTLE field remains
smooth for the same grid resolution.

3. OBJECTIVE DESCRIPTION OF LAGRANGIAN DEFORMATION

Here I review the classic objective quantities describing material deformation and survey compu-
tational methods targeting these quantities in fluid flows. I start with a velocity field v(x, t), which
generates trajectories through the differential equation

ẋ = v(x, t), x ∈ U , t ∈ [t0, t1]. (2)

The positions x = (x1, x2, x3) vary in a bounded flow domain U ⊂ R
3, with times t ranging over a

finite time interval [t0, t1]. The solutions of Equation 2 are denoted by x(t; t0, x0), with x0 referring
to the initial position at time t0. In the case of two-dimensional flows, we have x = (x1, x2) and
U ⊂ R

2 in Equation 2.

3.1. Flow Map

Central to the Lagrangian description of fluid motion is the flow map

F t
t0 (x0) := x(t; t0, x0), x ∈ U , t ∈ [t0, t1], (3)

144 Haller

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
5.

47
:1

37
-1

62
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

80
.2

18
.2

29
.1

21
 o

n 
01

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



FL47CH07-Haller ARI 24 November 2014 9:57

taking an initial position x0 to its current position x(t; t0, x0) at time t. For any smooth velocity field
v(x, t), the flow gradient ∇F t

t0 (x0) is an invertible matrix, serving as the normalized fundamental
matrix solution of the equation of variations (Arnold 1973)

ẏ = ∇v(x(t; t0, x0))y . (4)

Let us consider a hypersurface M(t0) of initial fluid positions (i.e., a smooth set that has dimension
one less than that of U ). A material surface

M(t) := F t
t0 (M(t0)) (5)

will then be the time-t position of the initial surface M(t0) evolving under the flow (see
Figure 4a).

3.2. Strain Tensors

In exploring Lagrangian coherence, we are interested in finding material surfaces M(t) with an
exceptional impact on the deformation of nearby material elements. The local deformation along
any trajectory traveling inM(t) is reflected by the evolution of infinitesimal perturbations y(t) to the
trajectory. These perturbations evolve under Equation 4 and can be written as y(t) = ∇Ft

t0 (x0)y(t0)
because ∇F t

t0 (x0) is the fundamental matrix solution of Equation 4 satisfying ∇Ft0
t0 (x0) = I . The

squared magnitude of an evolving perturbation at the final time t1 is therefore equal to

|y(t1)|2 = 〈∇F t1
t0 (x0)y(t0), ∇F t1

t0 (x0)y(t0)
〉 = 〈y(t0), C(x0)y(t0)〉,

where the right Cauchy-Green strain tensor C(x0) is defined as (Truesdell & Noll 2004)

C(x0) = [∇F t1
t0 (x0)

]T ∇F t1
t0 (x0). (6)

This symmetric tensor is positive definite owing to the invertibility of ∇Ft1
t0 . The eigenvalues

λi (x0) and eigenvectors ξi (x0) of C(x0) satisfy

Cξi = λiξi , |ξi | = 1, i = 1, . . . , n; 0 < λ1 ≤ · · · ≤ λn, ξi ⊥ ξ j , i 
= j, (7)

where n = 2 for two-dimensional flows, and n = 3 for three-dimensional flows. The tensor C
and its invariants depend on the choice of the time interval [t0, t1], suppressed here for notational
simplicity. In incompressible flows, det C = ∏

i λi ≡ 1 holds. Thus, for generic x0 locations, for
which the eigenvalues of C are not repeated, we have

0 < λ1 < 1 < λn.

Figure 4b illustrates the geometric meaning of the invariants of the Cauchy-Green deformation
tensor. An infinitesimally small sphere initialized at point x0 is carried by the flow along the
trajectory x(t; t0, x0) into a small ellipsoid, whose n principal axes are aligned with the vectors
ri (x0) = ∇F t1

t0 (x0)ξi (x0). The length of the i-th principal axis is
√

λi (x0) times the radius of the
initial sphere.

We also use a generalized family of Green-Lagrange strain tensors defined as

Eλ(x0) = 1
2

[C(x0) − λ2 I ], λ > 0, (8)

which measures the deviation of the infinitesimal deformation at x0 from a uniform spherical
expansion by a factor of λ, as illustrated in Figure 4. For λ = 1, we recover the classic Green-
Lagrange tensor, as defined by Truesdell & Noll (2004). The tensor Eλ(x0) is symmetric but
generally not positive definite. Indeed, its eigenvalues are νi (x0) = λi (x0) − λ2, some of which will
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typically be positive and the others negative. The tensor fields C(x0) and Eλ(x0) remain invariant
under Euclidean changes of coordinates and hence are objective.

3.3. Computing the Deformation Gradient

Neither the flow map nor its gradient is objective, but both are necessary for computing C(x0)
and Eλ(x0). Solving Equation 4 directly tends to give noisy results for ∇Ft

t0 (x0) as a function of x0.
Instead, for Lagrangian coherence calculations, Haller (2001a) proposed using the finite-difference
approximation

∇F t
t0 (x0) ≈

⎛
⎜⎜⎜⎝

x1(t;t0,x0+δ1)−x1(t;t0,x0−δ1)
|2δ1|

x1(t;t0,x0+δ2)−x1(t;t0,x0−δ2)
|2δ2|

x1(t;t0,x0+δ3)−x1(t;t0,x0−δ3)
|2δ3|

x2(t;t0,x0+δ1)−x2(t;t0,x0−δ1)
|2δ1|

x2(t;t0,x0+δ2)−x2(t;t0,x0−δ2)
|2δ2|

x2(t;t0,x0+δ3)−x2(t;t0,x0−δ3)
|2δ3|

x3(t;t0,x0+δ1)−x3(t;t0,x0−δ1)
|2δ1|

x3(t;t0,x0+δ2)−x3(t;t0,x0−δ2)
|2δ2|

x3(t;t0,x0+δ3)−x3(t;t0,x0−δ3)
|2δ3|

⎞
⎟⎟⎟⎠ , (9)

with a small vector δi pointing in the xi coordinate direction. For two-dimensional flows, only the
first 2 × 2 minor matrix of Equation 9 is relevant.

The computational cost of evaluating Equation 9 can be prohibitive in three dimensions. With
an emphasis on computing the largest singular value of ∇Ft

t0 (x0), Shadden (2012) and Peikert et al.
(2014) give excellent surveys of related numerical methods.

Two-dimensional approximations to ∇F t
t0 (x0) also reduce the computational cost. One may

confine the numerical grid to two-dimensional surfaces and compute the directional derivatives
of F t

t0 (x0) only along these surfaces (Garth et al. 2007). Alternatively, one may ignore vertical
velocities (but not the variation of horizontal velocities) in stratified flows, rendering the last row
of the deformation gradient in Equation 9 zero (Sulman et al. 2013).

As a new approach, Leung (2011, 2013) proposes a partial differential equation–based computa-
tion of the flow map using a level-set approach. This technique requires no velocity interpolation,
but its advantages and accuracy have yet to be demonstrated beyond simple kinematic models. In
an experimental setting, Raben et al. (2014a,b) consider the direct numerical reconstruction of the
flow gradient ∇F t

t0 (x0) from observed particle tracks.
Fluid trajectories may leave the computational domain prematurely in velocity fields with

limited spatial coverage. Issues created by this fact and a way to address them are discussed by
Tang et al. (2010a, 2011a,b) and Kafiabad et al. (2013) with applications to wind fields measured
over airports.

3.4. Material Advection

Once an influential material surface is identified as an LCS at time t0, its later positions are deter-
mined by advection under the flow map, as in Equation 5. For two-dimensional flows, Mancho et al.
(2003) compare numerical methods for accurate material line advection. For three-dimensional
flows, Branicki & Wiggins (2009) develop an adaptive numerical method for accurate material
surface advection. Recent approaches render initial LCS positions explicitly as parameterized lines
and surfaces (see Sections 5 and 6), which aids their numerical advection as material surfaces.

3.5. Forward-Backward Time Duality

Earlier approaches to LCSs focused on locating material instabilities that prevail in forward-
time applications of the flow map. Identifying attracting material structures at time t0 for a flow
known over [t0, t1] was only thought possible from a separate backward-time calculation from t0.
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Alternatively, both attracting and repelling LCSs were computed at time (t0 + t1)/2 from separate
forward and backward calculations over half of the available data. As a drawback, the first approach
requires the velocity field prior to t0 to be available. In addition, both approaches effectively
analyze different finite-time dynamical systems in forward and backward time yet superimpose
the conclusions for these different systems.

More recent results (Haller & Sapsis 2011, Farazmand & Haller 2013, Karrasch 2013, Blazevski
& Haller 2014) highlight a duality principle between the backward- and forward-time flow map,
enabling the computation of all relevant material surfaces from a single numerical run.

3.6. Computing the Invariants of C(x0)

Diagnostic approaches to LCS computation (see Section 4) focus on spatial features in the dom-
inant eigenvalue field of C(x0). As shown by Haller (2002), the location of these features is sur-
prisingly robust under numerical and measurement errors, even if the actual numerical values of
the eigenvector field are inaccurate.

More recent approaches to LCS also require the accurate computation of the eigenvalues
and eigenvectors of C(x0). This necessitates the use of auxiliary grids for differentiation, and the
orientation and desingularization of the strain eigenvector field for the purposes of tensor-line
calculations (see Sections 5 and 6).

4. THE FINITE-TIME LYAPUNOV EXPONENT: AN OBJECTIVE
DIAGNOSTIC FOR LAGRANGIAN COHERENT STRUCTURES

4.1. Motivation

Locating LCSs would normally require a detailed assessment of the stability of material surfaces in
the flow domain of interest. A first-order approach to this problem simply involves the detection of
material surfaces along which infinitesimal deformation is larger or smaller than off these surfaces.

To this end, we seek the initial position M(t0) of a material surface M(t) along which infinites-
imal spheres stretch the most by time t1. As illustrated in Figure 4, the largest possible stretching
at a point x0 is given by

√
λn(x0), which typically grows exponentially. The average exponent of

this growth can be determined as

�
t1
t0 (x0) = 1

t1 − t0
log

√
λn(x0),

known as the FTLE at the initial position x0.
The initial position M(t0) of an LCS can then be sought as an extremizing surface (a ridge or

a trench) of the scalar field �
t1
t0 (x0). Several contested mathematical definitions exist for ridges.

Here, I state only informally that a ridge of a scalar field is a hypersurface along which one sees a
smaller change in the value of the scalar than in directions transverse to the ridge. A trench can
then be defined as a ridge of the negative of the scalar field. The recent ridge definition of Karrasch
& Haller (2013) guarantees the structural stability of the FTLE ridge under perturbation, which
is suitable for LCS analysis of flow data with noise.

4.2. History

Plots of �t
t0 (x0) over initial conditions as indicators of mixing regions already have been provided

by Pierrehumbert & Yang (1993), followed by von Hardenberg et al. (2000). Doerner et al. (1999)
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a

cb

Repelling LCS Attracting  LCS

Repelling LCS Attracting  LCS

Repelling LCSAttracting  LCS

Figure 5
(a) The Lagrangian skeleton of turbulence in a two-dimensional rotating flow experiment. Repelling Lagrangian coherent structure
(LCS) candidates (red ) are ridges of the forward-time finite-time Lyapunov exponent (FTLE). Attracting LCS candidates (blue) are
ridges of the backward-time FTLE. Panel a reproduced with permission from Mathur et al. (2007). (b) A similar computation for the
von Kármán vortex street behind a cylinder, with the height of the gray surface representing the maximum of forward- and
backward-time FTLEs. Panel b reproduced with permission from Kasten et al. (2010). (c) Repelling (red ) and attracting (blue) LCSs for
a perturbed four-vortex-ring model for the 2002 splitting of the Antarctic ozone hole. Panel c reproduced with permission from Lekien
& Ross (2010).

also note that contours of the FTLE align closely with unstable manifolds of classic, infinite-time
dynamical systems.

Provenzale (1999) and Bowman (2000) put forward the idea to use relative dispersion, a dis-
cretized form of the FTLE, to highlight Lagrangian features. Although relative dispersion as a
statistical tool has well-established properties (LaCasce 2008), its spatially discretized nature has
prevented attempts to relate its features mathematically to the stability of material surfaces.

The first works connecting FTLE ridges to repelling LCSs through the above heuristic ar-
gument were by Haller (2001a, 2002). Next, the FTLE was applied to LCS extraction from
time-periodic laboratory experiments by Voth et al. (2002) and then from turbulent flow experi-
ments by Mathur et al. (2007), shown in Figure 5a. Further high-end visualizations of LCSs via
FTLE ridges by Kasten et al. (2010) and Lekien & Ross (2010) are shown in Figure 5b,c.

A number of applications to numerical and experimental data followed, as surveyed by Peacock
& Dabiri (2010), Shadden (2012), and Peacock & Haller (2013). Recent studies of LCSs in astro-
physical plasmas via FTLE ridges appear in Yeates et al. (2012), Rempel et al. (2013), and Chian
et al. (2014). Experimental work by Kelley et al. (2013) suggests that FTLE ridges also tend to
mark the zeros of scale-to-scale energy flux in weakly turbulent, two-dimensional flows.
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Mathematical criteria relating FTLE ridges to repelling LCS were obtained by Haller (2002,
2011), Farazmand & Haller (2012b), Tang et al. (2011b), and Karrasch (2012), with applications
by Mathur et al. (2007), Green et al. (2007, 2010, 2011), and Tang et al. (2010b, 2011a,b).

Another related Lagrangian indicator, FSLEs, was originally conceived to study finite-size
material perturbations in a statistical fashion (Aurell et al. 1997). However, Joseph & Legras
(2002), d’Ovidio et al. (2004), Bettencourt et al. (2013), and others also employ FSLEs in LCS
detection, assuming an equivalence between ridges of the FSLE and FTLE fields. Scrutinizing
this assumption, Karrasch & Haller (2013) find that only FSLE ridges with moderate variation
in their height are guaranteed to signal nearby FTLE ridges. Peikert et al. (2014) argue that
computational advantages attributed to FSLEs over FTLEs in earlier studies originate from poor
parameter choices and sampling artifacts.

Beron-Vera et al. (2010, 2012) focus specifically on trenches of the FTLE field. They observe
that trenches coinciding in forward and backward FTLE calculations mark shearless invariant tori
(zonal jet cores) in spatially periodic geophysical flows. Haller & Sapsis (2011) show that trenches
of the FTLE field graphed over time t1 fluid positions mark attracting LCSs at time t1.

4.3. Issues with Finite-Time Lyapunov Exponents

Without the additional mathematical criteria mentioned in Section 4.2, the FTLE approach to
hyperbolic LCS detection is heuristic. It ignores the direction ξn(x0) of largest stretching at x0,
which may well be along or close to directions tangent to M0. Indeed, Haller (2002, 2011) gives
examples of FTLE ridges along shearing surfaces. Branicki & Wiggins (2010) further illustrate
inconsistencies between hyperbolic LCS and the FTLE field on simple examples. Karrasch (2013)
shows that attracting LCSs of incompressible flows are also ridges of the FTLE field, but they are
invariably missed because of finite numerical resolution.

Shadden et al. (2005, 2007) seem to resolve these mathematical questions simply by defining
an LCS, M̂(t), as a second-derivative ridge of the FTLE field �t+T

t (x0) for evolving times t and
fixed integration time T. The M̂(t) family so defined, however, does not satisfy the invariance
requirement in Equation 5, as illustrated in Section 2.3. To this end, Shadden et al. (2005) provide
a flux formula that suggests small material flux through M̂(t). Lipinski & Mohseni (2010) use this
formula to derive a further measure of how close M̂(t) is to being Lagrangian.

These ideas have since turned out to be problematic upon closer examination. Second-
derivative FTLE ridges do not exist in generic fluid flows (Norgard & Bremer 2012, Schindler
et al. 2012), and the flux formula of Shadden et al. (2005, 2007) derived for such ridges is generally
invalid (Haller 2011). For the two-dimensional steady flow in Figure 3c, for instance, the flux
formula of Shadden et al. (2005) predicts zero leading-order flux per unit length through the
FTLE ridge at x = 0. The actual material flux, however, is equal to one.

Although FTLE plots remain popular visual diagnostics of Lagrangian coherence, more reliable
mathematical methods have been developed for the explicit identification of LCSs as parameterized
material surfaces. These material surfaces now also include elliptic LCSs (Lagrangian vortices)
and parabolic LCSs (Lagrangian jet cores), beyond the hyperbolic LCSs originally targeted by
the FTLE approach. I survey these results in Sections 5 and 6 below.

5. LOCAL THEORY OF LAGRANGIAN COHERENT STRUCTURES

The local theory of LCSs builds on their original definition as the pointwise strongest repelling,
attracting, or shearing material surfaces in the flow over a time interval of interest. At an initial
point x0, we let n0 denote a unit normal to an initial material surface M(t0), as in Figure 6. While
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ρt
t0

(x0,n0)

x0

n0

Tx0
xt

Δ

F t
t0

( x0 )n0

σ t
t0

(x0, n0)

(t)
(t0)

Txt
(t)(t0)

Figure 6
Quantifying normal repulsion and tangential shear along an evolving material surface M(t).

the tangent plane of M(t0) is mapped into a tangent space of the deformed surface M(t1) by the
linearized flow map ∇F t1

t0 (x0), the advected normal ∇F t1
t0 (x0)n0 generally does not remain normal

to M(t1). In addition to a normal component of length ρ(x0, n0), the advected normal also has a
tangential component of length σ (x0, n0), as shown in Figure 6.

If ρ(x0, n0) > 1, then the evolving material surface exerts net normal repulsion on nearby fluid
elements. Similarly, ρ(x0, n0) < 1 signals that the material surface attracts fluid elements along
its normal direction. In contrast, σ (x0, n0) > 0 indicates shear exerted by M(t) on nearby fluid
elements, as first noted by Tang et al. (2011a) for two-dimensional flows.

These geometric concepts enable a precise definition of LCSs. Specifically, a repelling (at-
tracting) LCS over the interval [t0, t1] is a material surface M(t) whose net repulsion ρ(x0, n0) is
pointwise maximal (minimal) with respect to perturbations of the initial normal vector field n0.
I refer to repelling and attracting LCSs collectively as hyperbolic LCSs. Similarly, a shear LCS
over the interval [t0, t1] is a material surface M(t) whose net shear σ (x0, n0) is pointwise maximal
with respect to perturbations of the initial normal vector field n0.

Farazmand & Haller (2012a, 2013) and Blazevski & Haller (2014) find that the initial positions
of hyperbolic and shear LCSs must necessarily be orthogonal to specific vector fields, as detailed
in the n = 2, 3 column of Table 1. The shear normal vector field n± appearing in this column is
given by

n±(x0) =
√ √

λ1(x0)√
λ1(x0) + √

λn(x0)
ξ1(x0) ±

√ √
λn(x0)√

λ1(x0) + √
λn(x0)

ξn(x0). (10)

Later positions of the LCS within the time interval [t0, t1] can be obtained by Lagrangian advection,
as described in Equation 5. The local approach described here can also be used to develop detection
methods for hyperbolic LCSs in higher-dimensional (n ≥ 3) steady flows (Teramoto et al. 2013).

5.1. Lagrangian Coherent Structures in Two-Dimensional Flows

For two-dimensional flows (n = 2), the normals shown in the first column of Table 1 uniquely
define the tangents of LCSs, thus providing differential equations that these LCSs must solve
(Farazmand & Haller 2012a, 2013; Haller & Beron-Vera 2012). The n = 2 column of Table 1
summarizes the corresponding ordinary differential equations (ODEs).

These differential equations reveal a foliation of the fluid flow by LCS curves. Indeed, the
trajectories of ṙ = ξ1(r) (shrink lines) and those of ṙ = ξ2(r) (stretch lines) decompose the full
material deformation into attractive and repulsive components. One obtains a skeleton of the
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Table 1 Local constraints on the initial position M(t0) of a Lagrangian coherent structure (LCS)
over the time interval [t0, t1]

LCS n = 2, 3 n = 2 n = 3

Normal to M(t0) ODE for M(t0) ODE for M(t0) ∩ � M(t0) location
Attracting ξ1(x0) ṙ = ξ2(r) r ′ = n
(r) × ξ1(r) 〈∇ × ξ1, ξ1〉 = 0
Repelling ξn(x0) ṙ = ξ1(r) r ′ = n
(r) × ξ3(r) 〈∇ × ξ3, ξ3〉 = 0
Shear n±(x0) ṙ = η±(r) r ′ = n
(r) × n±(r) 〈∇ × n±, n±〉 = 0

The eigenvalues λi and eigenvectors ξi featured in the formulae are those of the Cauchy-Green strain tensor C. The
dimension of the flow is n. Abbreviation: ODE, ordinary differential equation.

most influential hyperbolic LCS by finding the locally most repelling shrink lines and the locally
most attracting stretch lines, as described by Farazmand & Haller (2012a). A more efficient recent
approach finds the most influential hyperbolic LCSs as shrink lines through local maxima of λ2(x0)
and stretch lines through local minima of λ1(x0) (Onu et al. 2014).

The trajectories of ṙ = η±(r) (shear lines) mark the fundamental geometry of shearing patterns,
with the shear vector field defined as

η±(r) :=
√ √

λ2(x0)√
λ1(x0) + √

λ2(x0)
ξ1(x0) ±

√ √
λ1(x0)√

λ1(x0) + √
λ2(x0)

ξ2(x0). (11)

Remarkably, any piece of a shear line advected in an incompressible flow has the exact same arc
length at time t1 as at time t0 (Haller & Beron-Vera 2012). This conservation property gives special
significance to closed shear lines [i.e., limit cycles of ṙ = η±(r)]. In incompressible flows, both the
arc length and the interior area of these closed curves are preserved by the flow map Ft1

t0 , making
closed shear lines the time-aperiodic analogs of the KAM curves known from time-periodic flows
(see Figure 2). For this reason, I refer to closed shear lines as elliptic LCSs. Furthermore, I
consider the outermost member of a nested elliptic LCS family to be the boundary of a coherent
Lagrangian vortex (see Section 6 for a generalization of this idea).

Figure 7 illustrates LCSs computed as shrink lines, stretch lines, and shear lines in a velocity
field obtained from a direct numerical simulation of forced, two-dimensional turbulence. Appli-
cations to ocean data are provided by Olascoaga & Haller (2012), Beron-Vera et al. (2013), and
Olascoaga et al. (2013).

A MATLAB implementation of two-dimensional local LCS results (LCS Tool) surveyed here
is available at https://github.com/jeixav/LCS-Tool, with a detailed description given by Onu
et al. (2014).

In related work, Ma & Bollt (2013) seek shape-coherent set boundaries as locations where the
forward- and backward-time dominant strain eigenvectors enclose a minimal angle. This approach
tacitly assumes that strain eigenvectors obtained via a backward-time analysis starting from time
t0 will continue to play a distinguished role after t0. In recurrent model flows, this procedure is
indeed expected to yield sets of curves close to the LCSs described in Table 1. In nonrecurrent
flows, however, shape-coherent boundaries will generally not mark LCSs for the reasons described
in Section 3.5.

5.2. Lagrangian Coherent Structures in Three-Dimensional Flows

In three dimensions (n = 3), surfaces orthogonal to a given vector field may only exist where
the helicity of the vector field vanishes (Palmerius et al. 2009). Accordingly, LCS initial positions
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Figure 7
Hyperbolic and elliptic Lagrangian coherent structures (LCSs) in a direct numerical simulation of two-dimensional forced turbulence.
(a) Instantaneous streamlines. (b) Repelling LCS (blue), attracting LCS (red ), and Lagrangian vortex boundaries (with gray interior) at
the same time instance. Figure adapted from Farazmand & Haller (2014).

satisfying the general orthogonality constraints given in Table 1 may exist only at the locations
summarized in the second n = 3 column of Table 1.

Blazevski & Haller (2014) derive ODEs for the intersection curves of initial LCS surfaces
with an arbitrary two-dimensional surface 
 selected for visualization purposes (see the first n =
3 column in Table 1). They call the trajectories of these ODEs reduced stretch lines, reduced
shrink lines, and reduced shear lines, respectively (see Figure 8a). These lines are the simplest to
compute when 
 is a plane, and hence the normal n
 does not depend on the location r.

In locating LCSs, one selects the trajectories of the above ODEs on which the corresponding
zero helicity conditions hold with the highest accuracy. This process provides isolated intersection
curves between initial LCS positions M(t0) and the surface 
. Fitting a smooth surface to such
intersection curves obtained for a whole family of 
 surfaces provides a numerical approximation
to M(t0). This process reveals sharply defined elliptic barriers in the chaotically forced ABC flow
(Figure 8b) that defy the intense deformation experienced by nearby fluid elements (Figure 8c).
Finally, Figure 8d shows how the same approach yields coherent cylindrical Lagrangian eddy
boundaries in the three-dimensional oceanic Southern Ocean State Estimate data set (Mazloff
et al. 2010).

6. GLOBAL THEORY OF LAGRANGIAN COHERENT STRUCTURES

The local approach surveyed in the previous section finds LCSs as material surfaces with
locally maximal repelling, attracting, or shearing impact on neighboring fluid elements. For
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Figure 8
Construction of a shear Lagrangian coherent structure (LCS) in three-dimensional unsteady flows. (a) The geometry of reduced shear
lines on a plane 
 intersecting the initial LCS position M(t0) transversely. (b) Elliptic LCS (toroidal shear LCS) in the chaotically
forced ABC flow, extracted over the time interval [0, 10]. A circular ring (red ) is initialized slightly outside of the LCS for later
reference. (c) The material evolution of the elliptic LCSs (eddy core and outer boundary) and the ring under the flow map F15

0 , showing
the coherence of the LCS to be atypical. (d ) Cylindrical elliptic LCS extracted from the Southern Ocean State Estimate data set. Panels
a–c reproduced with permission from Blazevski & Haller (2014). Panel d courtesy of Daniel Blazevski.

two-dimensional flows, global variational principles are now also available, targeting LCSs
as material lines with exceptional global coherence properties. As shown below, these global
approaches recover the results of local LCS theory but also reveal further LCSs, such as weakly
but coherently stretching material vortices and Lagrangian jet cores.
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6.1. Lagrangian Coherent Structures as Extremum Curves
of Absolute Deformation

Instead of characterizing the impact of LCSs on nearby material curves, one may focus on
the internal dynamics of LCSs. Motivated by the classic planar invariant manifolds shown in
Figure 2, Haller & Beron-Vera (2012) propose to find repelling and shear LCSs in planar flows
as least-stretching material lines. Similarly, attracting LCS may be sought as least-stretching
curves in backward time over the same time interval.

The initial positions of least-stretching material lines turn out to be geodesics of the Rieman-
nian metric c (u, v) = 〈u, Cv〉 induced by the Cauchy-Green strain tensor C. These geodesics all
deform to straight lines under the flow map F t1

t0 and thus are generally inconsistent with LCSs
obtained from the local theory in Section 5. Nevertheless, the boundary conditions arising in the
variational principle put forward by Haller & Beron-Vera (2012) suggested a global role of stretch
lines and shrink lines, which was subsequently confirmed by the geodesic LCS methods surveyed
below.

6.2. Lagrangian Coherent Structures as Stationary Curves
of Relative Deformation

The deformation of a general material element is subject to simultaneous straining and shearing.
In a smooth flow, the averaged straining and shearing along two, ε-close material lines will differ
by an O(ε) amount over a finite time interval.

We may seek an LCS as an exceptional material curve whose ε-close neighbors show no O(ε)
change in their averaged straining or shearing values. This means that the average shearing or
straining across the LCS varies significantly less than what is expected near a generic material
curve.

6.2.1. Stationary curves of average shear: hyperbolic and parabolic Lagrangian coherent
structures. A stationary shear LCS is a centerpiece of a thin strip of material lines whose averaged
Lagrangian shear (see Figure 6) shows an order of magnitude less variation than what the width
of the region would generally warrant. Working out the details of this definition, Farazmand
et al. (2014) obtain that such stationary shear LCSs coincide with null geodesics of the Lorentzian
metric

g(u, v) = 〈u, Dv〉 , D(x0) = 1
2

[C(x0)
 − 
C(x0)], 
 =
(

0 −1
1 0

)
. (12)

It turns out that any such null geodesic is composed of shrink lines and stretch lines, as listed in
the second column of Table 2.

Table 2 Conditions for a Lagrangian coherent structure (LCS) obtained as a geodesic of the
Lorentzian deformation metric g(u, v)

Type of 2D geodesic LCS M(t0) solves Boundary condition
Hyperbolic, attracting ṙ = ξ2(r) Fixed with C 
= I
Hyperbolic, repelling ṙ = ξ1(r) Fixed with C 
= I
Parabolic ṙ = ξ2(r) alternating with ṙ = ξ1(r) Variable with C = I
Elliptic ṙ = η±

λ (r) Periodic

The eigenvalues λi and eigenvectors ξi are those considered in Table 1. The vector fields η±
λ (r) are defined in Equation 14.
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Hyperbolic LCSs re-emerge from this stationary shear approach as individual shrink line or
stretch line trajectory segments between end points for which C 
= I holds. Such segments,
however, are only stationary curves of the averaged shear under special variations that leave their
end points fixed.

In contrast, a parabolic LCS (or generalized jet core) is a smooth, alternating chain of shrink
lines and stretch lines that connects points for which C = I. Out of all such chains, only those
qualify as LCSs that are also weak minimizers of the neutrality, a measure of how close the LCS
is as a whole to being neutrally stable (Farazmand et al. 2014).

Remarkably, such stretch-shrink chains are stationary curves of the averaged shear with re-
spect to all variations, including those that perturb their end points. This implies that parabolic
LCSs should prevail in tracer patterns more strongly than hyperbolic LCSs. Indeed, as Figure 1
illustrates, jet cores tend to have sharper centerpieces than hyperbolic LCSs in geophysical observa-
tions. The last column of Table 2 summarizes the boundary conditions of shearless geodesic LCSs.

Figure 9c shows the geodesic extraction of the Lagrangian jet core (parabolic LCS) surrounding
the Antarctic stratospheric polar vortex. Hadjighasem & Haller (2014a,b) identify parabolic LCSs
acting as material cores of zonal jets in the atmosphere of Jupiter (see Figure 9d ).

Parabolic LCSParabolic LCS

Elliptic LCSElliptic LCS

a   Transport of water by black-hole eddies

b   Transport of water by a sea-surface-height (SSH) eddy

c

d

Transported water after 0, 45, 90, 135, 180, and 225 days

SSH eddy

25˚W 10˚E

35˚S

South Atlantic

25˚W

10˚E

35˚S

18.5˚S

8
BH eddies

7
6
5
4
3
2 Transported water after 0, 45, 90, 135, 180, and 225 days

8

7
6

4

3

5

2

South Atlantic

Parabolic LCS

Elliptic LCS

Parabolic LCS

Elliptic LCS

Parabolic LCS

Elliptic LCS

Figure 9
Geodesic Lagrangian coherent structure (LCS) detection from geophysical data. (a) Black-hole-type eddies in the southern Atlantic
Ocean, extracted from three months of satellite altimetry velocities and then advected over nine months. (b) The Lagrangian evolution
of fluid in a coherent eddy identified from the same data by the Eulerian algorithm of Chelton et al. (2011). Panel b reproduced with
permission from Haller & Beron-Vera (2013). Copyright Cambridge University Press. (c) Parabolic LCS (red ) serving as the
Lagrangian core of a zonal jet encircling the Antarctic polar vortex in the Canadian Middle Atmosphere Model. Also shown are two
elliptic LCSs (black) forming the boundaries of the jet. Panel c courtesy of Mohammad Farazmand. (d ) Parabolic LCS (red ) as zonal jet
cores and an elliptic LCS (black) forming the Lagrangian boundary of the Great Red Spot of Jupiter. The time-resolved velocity field
used in the analysis is extracted from video footage of the NASA Cassini mission using the ACCIV algorithm of Asay-Davis et al.
(2009). Image from NASA, reproduced from Hadjighasem & Haller (2014a).
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6.2.2. Stationary curves of average strain: elliptic Lagrangian coherent structures. A
stationary-strain shear LCS is a centerpiece of a thin strip of material lines whose averaged normal
repulsion (see Figure 6) shows an order of magnitude less variation than what the width of the
region would generally warrant. In incompressible flows, this is equivalent to the requirement that
the averaged tangential stretching of the LCS shows no leading-order change across neighboring
material curves.

As shown by Haller & Beron-Vera (2013, 2014), stationary curves of the tangential stretching
functional coincide with null geodesics of the Lorentzian metric family,

gλ(u, v) = 〈u, Eλv〉 , λ > 0, (13)

with the generalized Green-Lagrange strain tensor Eλ(x0) defined in Equation 8. Such null
geodesics are tangent to one of the vector fields

η±
λ (x0) =

√
λ2(x0) − λ2

λ2(x0) − λ1(x0)
ξ1(x0) ±

√
λ2 − λ1(x0)

λ2(x0) − λ1(x0)
ξ2(x0), (14)

with λi and ξi defined in Equation 7. I refer to closed orbits of the vector fields (Equation 14) as
elliptic LCSs (see Table 2).

As null geodesics of a Lorentzian metric that have periodic space-like projections, limit cycles
of η±

λ are mathematically equivalent to photon spheres (Claudel et al. 2001) surrounding black
holes in general relativity. This analogy implies the necessary existence of a metric singularity (a
point for which C = I) within each elliptic LCS, which in turn expedites the detection of such
LCSs in large velocity data sets (Haller & Beron-Vera 2013, Karrasch et al. 2014).

Selecting the outermost member of a family of λ-dependent limit cycles generalizes the idea
of a Lagrangian vortex boundary from outermost nonstretching cycles (λ = 1 in Section 5.1) to
outermost uniformly stretching cycles. By the cosmological analogy between uniformly stretch-
ing vortex boundaries and photon spheres, material eddies encircled by maximal limit cycles of
Equation 14 may be referred to as black-hole eddies.

Black-hole eddies reveal the exact Lagrangian footprints (Figure 9a) of coherent Agulhas rings,
such as the one inferred from Figure 1f. This in turn provides specific transport estimates for the
coherent part of the Agulhas leakage (Haller & Beron-Vera 2013). A further high-profile example
identified by Hadjighasem & Haller (2014a,b) is the coherent material core of Jupiter’s Great Red
Spot (see Figure 9d ).

7. SUMMARY AND OUTLOOK

The tool kit for the detection of Lagrangian coherent structures has matured to a level allowing
the full Lagrangian skeleton of a general turbulent flow to be determined over a finite time interval
of interest (compare Figure 1 with Figures 7–9).

Indeed, LCSs can now be accurately identified from experimental data (Voth et al. 2002;
Mathur et al. 2007; Raben et al. 2014a,b); coherent Lagrangian eddy transport in ocean models can
readily be quantified (Beron-Vera et al. 2013); detailed Lagrangian now-casting for the ocean and
atmosphere is within reach (Tang et al. 2011a,b; Shuckburgh 2012; Bozorgmagham et al. 2013);
and LCS-based short-term forecasting has become a reality (Coulliette et al. 2007, Olascoaga &
Haller 2012, Olascoaga et al. 2013).

Recent developments promise much needed improvement in computational efficiency and
visualization (Garth et al. 2007, Sadlo & Peikert 2007, Sadlo et al. 2010, Brunton & Rowley 2010,
Barakat et al. 2012, Conti et al. 2012). These advances will be critical to three-dimensional LCS
computations targeting specific material surfaces.
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Further work is required to explore the relation of the geometric LCS methods surveyed here
to topological (Allshouse & Thiffeault 2012), ergodicity-based (Budišić & Mezić 2012), observer-
based (Mezić 2013), and probabilistic (Froyland & Padberg-Gehle 2014) approaches that target
domains enclosed by LCSs. Finally, promising extensions of LCS concepts for passive tracers are
underway for finite-size particle motion (Peng & Dabiri 2009, Sapsis et al. 2011) and for reactive
front propagation (Mahoney et al. 2012, Mitchell & Mahoney 2012).
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