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The phase space structure in the vicinity of a rank-two saddle is explored both analytically
and numerically. In particular, the geometry of electron dynamics in the neighborhood of
the rank-two saddle associated with the nonsequentual double ionization of helium is ana-
lyzed. As in the rank-one saddle case, codimension-one normally hyperbolic invariant
manifolds turn out to control the rates of the correlated electron dynamics within each
energy surface. The construction of these manifolds, however, is more involved here and
requires the use of pseudo-hyperbolic invariant manifold theory. Two distinct correlated
motions occur, the nonsequential double ionization and the nonsequential exchange of
electrons. The relative rates of crossing the barrier are related to the Lyapunov exponents.
The dynamics associated with the larger of the two Lyapunov exponents predominates.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Correlated motions are observed in the dynamics of virtually all physical systems. The vibrational modes of nuclei within
a molecule are one of the most studied examples [1,2]. The description of these dynamics is based upon a normal mode anal-
ysis of the dynamics in the vicinity of a minimum of the molecular potential energy surface. This analysis yields a set of
dynamical modes that describes the collective motions of nuclei and that are decoupled in the quadratic (harmonic) approx-
imation. This approach will be familiar to all scientists and mathematicians who study the dynamics of mechanical systems
in the vicinity of stable equilibrium points.

The correlated dynamics of electrons represents a more difficult problem. A classic example is the mechanism of an or-
ganic reaction [3,4]. Typically, these consist of a couple of chemical structures, with a series of arrows showing how the elec-
trons must rearrange in the course of the reaction. Chemical bonds are formed and broken in the process of this collective
motion of the electrons [5,6]. Despite valiant efforts, the full complexity of these correlated dynamics are beyond the reach of
current quantum mechanical methods.
. All rights reserved.
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Correlated electronic dynamics are also of importance in atomic systems. Of current interest is the double ionization of
various atoms (and molecules) in an intense laser field [7]. This example presents a case where correlated electron dynamics
can be readily observed and for which theory has had some degree of success. In early studies with less intense lasers, the
processes that were observed involve sequential ionizations, that is, a sequence of single-electron events. It has only been in
the last couple of decades, with the development of lasers of sufficient intensity, that experimentalists have been able to ob-
serve ionization processes involving two and more electrons. Classical-mechanical treatments have found significant interest
as they have been able to account for much of the qualitative features of the experiments [7–9]. For example, it was recog-
nized [10–12] (also classically) that the so-called Stark saddle is a rank-two saddle and that it plays a role in the nonsequen-
tial double electron ionization which is analogous to (but more complex than the) better-known ionization of hydrogen in an
electric field.

This communication builds on these classical ideas of double-ionization, taking Eckhardt and Sacha’s model as its starting
point [10–12]. First, the Stark saddle is identified. It is observed to belong to the C2v point group. In the immediate vicinity of
the saddle point a harmonic approximation is appropriate. A normal mode analysis of the dynamics in the vicinity of the
saddle point identifies three stable or elliptical modes and two unstable or hyperbolic modes. These are the normal modes
and their symmetry properties are identified.

Our discussion at this point turns to the phase space geometry in the vicinity of the Stark saddle point. First the six-
dimensional center manifold of the Stark saddle is identified. It is observed that the center manifold possesses two-dimen-
sional stable and unstable manifolds. Both of these manifolds have a weak (or slow) direction and a strong (or fast) direction.
A geometrical structure consisting of the center manifold together with the slow components of both the stable and unstable
manifolds is constructed. The intersection of this eight-dimensional object with the energy shell is a seven-dimensional sur-
face that plays a role analogous to the normally hyperbolic invariant manifolds (NHIMs) in the transition state theory devel-
oped for rank-one saddles [13–15].

These objects are readily constructed in the harmonic approximation. The question of interest is whether they will con-
tinue to exist with the inclusion of higher order terms. As a consequence of the unbounded nature of the NHIM the classic
theory of normally hyperbolic invariant manifolds cannot be used to conclude the persistence of the NHIM under the addi-
tion of nonlinear terms. This difficulty is surmounted by focusing on the nonlinear continuation of the pseudo-stable and
pseudo-unstable subspaces, resulting in a set of conditions under which these surfaces continue to exist. This extends the
recently formulated geometric transition state theory [13–15] from rank-one saddles to rank-two saddles. A generalization
to saddles of arbitrary rank will appear elsewhere.

In Section 4 some of the more interesting dynamical consequences of this analysis are illustrated using classical trajec-
tories. These and related implications are discussed in Section 5.
2. Helium

Helium is one of the simplest systems in which correlated dynamics can be observed [8,9]. When placed in a strong elec-
tric field, it can ionize when an electron escapes over (or through) the Stark barrier. In the nonsequential double ionization of
Helium both electrons escape together in such a manner that their dynamics are correlated. This is quite distinct from the
more commonly observed multiple-ionization processes that consist of a sequence of single electron events and results with
free-electrons that are not correlated.

The nonsequential double ionization is not the only process that involves correlated dynamics. Consider the scattering of
a free-electron from a He+ ion. Stark resonances are observed. Here the scattering electron crosses and then is trapped behind
the Stark barrier and at some time later one of the electrons escapes. This is a sequence of single electron events and the
dynamics of the free electrons before and after the collision are not correlated. Another feasible process consists of the ex-
change of the two electrons, that is, as the scattering (or free) electron crosses the Stark barrier on its inward journey, the
bound electron crosses the Stark barrier on its outward journey. In these circumstances the dynamics of the free electrons,
before and after the collision, are correlated.

It is clear from this discussion that the Stark barrier plays an important role in the correlated dynamics of this
system.
2.1. Model

The mass of the Helium nucleus is taken to be infinite. The mass of the electrons are taken to be unity. The charge of the
nucleus is +2 while the electrons have charge �1. The system has six degrees of freedom. The three degrees of freedom asso-
ciated with the center of mass are neglected as a direct result of the assumption of the nucleus having infinite mass. The six
degrees of freedom describe the two vectors that point from the nucleus to each of the two electrons. The z-axis is defined to
be in the direction of the electric field. Each of the vectors describing the positions of the two electrons are represented in
cylindrical coordinates, ðq1;/1; z1Þ and ðq2;/2; z2Þ. An additional integral of the motion exists, namely the angular momen-
tum about the z-axis defined by the electric field. Consequently, the problem can be reduced to one of five degrees of free-
dom, as is standard for the n body problem, see [16,17].
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The Hamiltonian is given by:
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The first two terms are the kinetic energy of the two electrons. The third term represents the interaction of the electrons with
the electric field. Here F is the strength of the field. The fourth and fifth terms are the attractive interactions between the
nucleus and the electrons and the last term is the repulsive interaction between the two electrons. It is the last term in this
Hamiltonian that gives rise to the correlation between the two electrons. The zero of the energy scale is chosen when the
three particles are infinitely separated and at rest.

2.2. The Stark saddle

The immediate goal is to locate and characterize the stationary point at the top of the Stark barrier. First observe that the
Stark saddle is in coordinate space and thus Pq1

¼ Pq2
¼ P/1 ¼ P/2 ¼ Pz1 ¼ Pz2 ¼ 0. The standard analysis locates the station-

ary point at q1 ¼ q2 ¼ qs, /1 ¼ p=2, /2 ¼ �p=2 and z1 ¼ z2 ¼ zs ¼
ffiffiffi
3
p

qs and where qs ¼ 31=4=ð2
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p
Þ. The energy of the sad-
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. In all numerical examples the electric field strength is taken to be F ¼ 0:137.

Recall that the variables ðqi;/i; ziÞ are the components of the vector that connects the nucleus with the ith electron. As a
direct consequence of P/1 ¼ P/2 ¼ 0 the dynamics are confined to a vertical plane. While this plane is arbitrary, the choice of
/1 ¼ �/2 ¼ p=2 results in the dynamics being confined to the yz-plane. The equilibrium configuration of the two electrons
and the nucleus is shown in Fig. 1. The point group of this equilibrium configuration is C2v .

In order to determine the stability properties of the Stark saddle the Hamiltonian is expanded in a power series about the
stationary point to obtain the quadratic approximation,
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where rs ¼ 2qs. Standard normal mode analysis is used to decouple the dynamical modes. This yields a Hamiltonian of the
form
H ¼ Es þ
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The coordinate space configuration of the Stark saddle for helium in a strong electric field. The coordinates are chosen such that the Stark saddle lies
z-plane; the electric field lies along the z-axis. In the infinite mass limit the nucleus lies at the origin. The stationary point in the Stark saddle is
when the two electrons are at ð�qs; zsÞ. Observe that qs=zs ¼

ffiffiffi
3
p

. Consequently, the stationary point consists of the three particles sitting at rest in
lateral triangle. The area enclosed is proportional to the field strength. This equilibrium configuration belongs to the point group C2v .
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where I1 ¼ 1
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, and f ðp; qÞ ¼ O qk
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, kþ l P 3, and where f is a Crþ1 function with r P 1. In addi-

tion note that 0 < k2 < k1. The Lyapunov exponents ðkiÞ and normal mode frequencies ðxiÞ are given in Table 1. Observe that
the Stark saddle is of rank two with two unstable modes while the three remaining are stable. The analysis identifies the
irreducible representations which characterize each of the normal modes. Note that both the two unstable modes and
the three stable modes are of different symmetry. Trajectories corresponding to the two unstable (hyperbolic) modes are
shown in Fig. 2. The totally symmetric A1 hyperbolic mode is shown in Fig. 2(a) and the antisymmetric B2 hyperbolic mode
is seen in Fig. 2(e). Observe that in both figures the trajectories of the two electrons are mirror images of each other. The
difference in the dynamical behavior is in the direction that the electron traverses the trajectory. In the first case ðA1Þ both
electrons travel in the same directions as is indicated by the arrows on the trajectories. In the second case ðB2Þ, the trajec-
tories are time-reversed images of each other and the electrons traverse the trajectories in opposite directions. Again, this is
indicated by the arrows on the trajectories.

Clearly, the conjecture that the nature of the correlated dynamics is dependent on the properties of the Stark saddle ap-
pears to be correct. The structure imposed upon phase space by the existence of the Stark saddle will be discussed in the next
section.

3. Phase space geometry

The structure of phase space in the vicinity of the Stark saddle is discussed in this section. The discussion is broken into
two parts. In the first part, the geometry of the linearized Hamiltonian flow is described. In the second, the extension of the
geometry to the full nonlinear system is considered. Unlike in the rank-one saddle case, this extension cannot be accom-
plished through classic normally hyperbolic invariant manifold theory [18]. This is discussed and a method for overcoming
this difficulty is presented in the second subsection. The full details of the proof and its generalization to higher rank saddles
will be presented elsewhere.
Table 1
The normal mode frequencies and Lyapunov exponents. Shown here are the stabilities, symmetry properties and frequencies ðxiÞ of the three stable normal
modes and the Lyapunov exponents ðkiÞ for the two unstable modes. Here F is the electric field strength.

Mode (i) Stability Irreducible representation Frequencies and Lyapunov exponents

1 Unstable B2 k1 ¼ 1:56815F3=4

2 Unstable A1 k2 ¼ 1:21389F3=4

3 Stable A1 x3 ¼ 1:53327F3=4

4 Stable B2 x4 ¼ 0:839251F3=4

5 Stable B1 x5 ¼ 0:936687F3=4

Fig. 2. The two hyperbolic normal modes. Shown here are two classical trajectories. The one labeled (a) is the symmetric ðA1Þ hyperbolic mode and that
labeled (e) is the antisymmetric ðB2Þ hyperbolic mode. The initial conditions were chosen so that the two electrons pass through the Stark saddle (the two
black Dots) at the same time. It should be noted that the two electron trajectories are mirror images of each other and that for the A1 hyperbolic mode the
electrons traverse the two trajectories in same direction while for the B2 hyperbolic mode the electrons traverse the two trajectories in the opposite
directions. The Lyapunov exponents ðk1; k2Þ for these two modes are given in Table 1 where it is seen that the antisymmetric mode is the dominant
hyperbolic mode.
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3.1. Linearized phase space geometry

The linearized Hamiltonian dynamics in the vicinity of the Stark saddle of system (1) is generated by the quadratic
Hamiltonian
H2ðp; qÞ ¼
1
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2
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i q2
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The origin p ¼ 0, q ¼ 0 admits six elliptic directions within the center subspace Ec; rotations within this subspace are gov-
erned by the three frequencies xi. The origin also has a two-dimensional stable subspace Es and a two-dimensional unstable
subspace Eu. The geometry of the phase space for the Hamiltonian (4) is sketched in Fig. 3. Exponential growth and decay in
Es � Eu is governed by the Lyapunov exponents
�k1 < �k2 < 0 < k2 < k1: ð5Þ

Observe that k1 is strictly larger than k2 for all values of the electric fieldF . This will be essential for the linearized geometry to be
relevant for the full Hamiltonian H near the origin. The three frequencies and the two Lyapunov exponents are given in Table 1.

Two invariant subspaces within Es and Eu are defined, respectively, by writing
Es ¼ Es
1 � Es

2; Eu ¼ Eu
1 � Eu

2:
Here Es
i refers to the invariant subspace spanned by the eigenvector corresponding to the exponent �ki; the notation for Eu

i is
similar. Refer to Es

1 and Eu
1 as the strong stable subspace and the strong unstable subspace of the origin, respectively.

Define the k2-unstable subspace of the origin, Eu
k2

, as the maximal invariant subspace in which the norm of solutions decays
no faster than e�k2t . Note that Eu

k2
is a nine-dimensional subspace of the form
Eu
k2
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The subspace Eu
k2

is often called a pseudo-unstable subspace, because it is only unstable relative to the strong stable subspace
Es

1. The geometry of the pseudo-unstable subspace Eu
k2

is shown in Fig. 4.
Similarly, define the k2-stable subspace, Es

k2
, as the maximal invariant subspace in which the norm of solutions grows at no

faster than ek2t . Note that Es
k2

is also a nine-dimensional subspace of the form
Es
k2
¼ Ec � Es � Eu

2;
often called a pseudo-stable subspace. The corresponding geometry is also shown in Fig. 4. Unlike classic stable and unstable
subspaces, the pseudo-stable and pseudo-unstable subspaces, Es

k2
and Eu

k2
, are not disjoint: their intersection is the eight-

dimensional subspace
C ¼ Es
k2
\ Eu

k2
¼ Ec � Es
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2

that contains all center directions as well as the weaker stable and unstable directions.
Consider now the intersections of C with the quadratic energy surface
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Fig. 3. Phase space geometry of the Hamiltonian (4).
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is the analogue of the normally hyperbolic invariant sphere that forms the cornerstone of transition state theory near rank-
one saddles [13–15]. The surface Ch is called the normally hyperbolic invariant manifold (NHIM). Geometrically, Ch is diffeo-
morphic to near-critical energy surfaces of a Hamiltonian with a rank-one saddle. Such a near-critical energy surface con-
tains a normally hyperbolic invariant sphere as well as its stable and unstable manifolds.

The surface Ch is a seven-dimensional manifold. It is normally hyperbolic within the energy surface Ch by condition (5).
This means that growth and decay rates in directions normal to Ch, but still tangent to the energy surface, dominate growth
and decay rates in directions tangent to Ch. Also, Ch has codimension-one (i.e., eight-dimensional) stable and unstable man-
ifolds within the energy surface Eh, given by
Ws Chð Þ ¼ p; qð Þ 2 R10 : H2ðp; qÞ ¼ h > 0; p1 ¼ �k1q1

� �
;

Wu Chð Þ ¼ p; qð Þ 2 R10 : H2ðp; qÞ ¼ h > 0; p1 ¼ k1q1

� �
:

ð8Þ
These manifolds can be partitioned into two parts; a forward part and a backward part,
Ws
f Chð Þ ¼ p; qð Þ 2 R10 : H2ðp; qÞ ¼ h > 0; p1 ¼ �k1q1 P 0

� �
;

Wu
f Chð Þ ¼ p; qð Þ 2 R10 : H2ðp; qÞ ¼ h > 0; p1 ¼ k1q1 P 0

� �
;

Ws
b Chð Þ ¼ p; qð Þ 2 R10 : H2ðp; qÞ ¼ h > 0; p1 ¼ �k1q1 6 0

� �
;

Wu
b Chð Þ ¼ p; qð Þ 2 R10 : H2ðp; qÞ ¼ h > 0; p1 ¼ k1q1 6 0

� �
:

ð9Þ
The forward and backward parts of these two manifolds join smoothly
Wf ðChÞ ¼Ws
f ðChÞ [Wu

f ðChÞ;
WbðChÞ ¼Ws

bðChÞ [Wu
bðChÞ;
to yield two eight-dimensional invariant tubes that, respectively, correspond to the forward and backward reactive tubes.
They are embedded in the nine-dimensional energy shell and hence are codimension-one. Consequently, the states within
these tubes remain confined to the tubes and flow from the interior of Ws

j into the interior of Wu
j (where j ¼ f or b). It should

be noted that the intersection of the forward (backward) tubes is just the NHIM
Ch ¼Ws
f ðChÞ \Wu

f ðChÞ;
Ch ¼Ws

bðChÞ \Wu
bðChÞ:
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Two transition states can now be defined as cross-section surfaces in each of the forward and backward reactive tubes,
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1
2

p2
1 þ

1
2

p2
2 � k2

2q2
2

� �
þ 1

2

X5

i¼3

p2
i þx2

i q2
i

� �
¼ h > 0; q1 ¼ 0;p1 P 0

( )
;

TSbðChÞ ¼ p; qð Þ 2 R10 :
1
2

p2
1 þ

1
2

p2
2 � k2

2q2
2

� �
þ 1

2

X5

i¼3

p2
i þx2

i q2
i

� �
¼ h > 0; q1 ¼ 0; p1 6 0

( )
:

These are, respectively, the forward and backward transition states. Their union is an eight-dimensional unbounded surface
and their intersection is simply the NHIM, Ch. And finally, we observe that all states exterior to the two reactive tubes do not
react, that is, they are confined to either reactant or product regions of phase space for all time.

3.2. Full phase space geometry

The next goal is to extend the geometry described above for the linearized Hamiltonian flow to the full nonlinear system.
Unlike in the rank-one saddle case, this extension cannot be accomplished through classic normally hyperbolic invariant
manifold theory [18]. The reason for this is the unboundedness of the set Ch.

The classic theory of normally hyperbolic invariant manifolds only applies to compact manifolds such as spheres. This is
not just a technicality: unbounded invariant manifolds will, in general, not persist under the addition of the nonlinear terms.
Hence, there is no immediately applicable result that would guarantee the nonlinear continuation of the noncompact set Ch

or of its stable and unstable manifolds.
To circumvent this problem, we focus on the nonlinear continuation of the pseudo-stable and pseudo-unstable subspaces,

Es
k2

and Eu
k2

. The continuation turns out to exist under condition (5): we refer to a nonlinear continuation of Es
k2

as a pseudo-
stable manifold Wpsð0Þ of the origin; a nonlinear continuation of Eu

k2
is called a pseudo-unstable manifold Wpuð0Þ of the origin.

We sketch the geometry of the pseudo-unstable manifold in Fig. 5.
The manifolds Wpsð0Þ and Wpuð0Þ are invariant, but they do not have the properties of classical stable and unstable man-

ifolds. They are not unique and they are not as smooth as the Hamiltonian flow map
F t : R10 ! R10;

p0; q0ð Þ# pðtÞ; qðtÞð Þ:
Furthermore, most solutions in Wpsð0Þ do not tend to the origin in forward time, and most solutions in Wpuð0Þ do not tend
to the origin in backward time. Solutions in Wpsð0Þ, however, can only grow at speeds slightly above ek2t while they are close
to the origin. Likewise, solutions in Wpuð0Þ can only grow in backward time at speeds slightly above ek2t while they are in the
vicinity of the origin. Finally, both manifolds are nine-dimensional invariant surfaces and hence locally divide the full 10-
dimensional phase space (cf. [19,20]). The following theorem summarizes these properties of the pseudo-stable and pseu-
do-unstable manifolds.

Theorem 1. Assume that condition (5) holds, and define the constant
�r ¼min Int k1=k2½ �; rð Þ; ð10Þ
with Int½�� referring to the integer part of a number; recall that r P 1 is the degree of smoothness for the Hamiltonian H defined in
(3). Then the q ¼ p ¼ 0 fixed point of the full Hamiltonian H admits a (nonunique) nine-dimensional class C�r pseudo-stable man-
ifold Wpsð0Þ and a (nonunique) nine-dimensional class C�r pseudo-unstable manifold Wpuð0Þ; these manifolds are tangent to the
subspaces Es

k2
and Eu

k2
, respectively, at the origin.

If the function f ðp; qÞ is small enough globally in the C�rþ1 norm (which can always be achieved by smoothly deforming the
Hamiltonian outside a small enough neighborhood of the origin), then for the constant
a ¼ exp k2 þ k1=Int k1=k2½ �ð Þ=2½ �;
Fig. 5. The geometry of the pseudo-unstable manifold Wpuð0Þ.
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we have
Wpsð0Þ ¼ p; qð Þ 2 R10 : sup
tP0

F t p; qð Þ
		 		a�t <1


 �
; ð11Þ
i.e., Wpsð0Þ consists of solutions that grow at most at the rate at. Similarly,
Wpuð0Þ ¼ p; qð Þ 2 R10 : sup
t60

F t p; qð Þ
		 		a�t <1


 �
: ð12Þ
Proof. The theorem can be proved by applying Irwin’s theorem [19,20] on pseudo-stable manifolds in the current context.
We spell out the details for Wpsð0Þ; the proof being identical for Wpuð0Þ in backward time.

First, note that Es
k2
� Eu

1 is an invariant splitting for the linearized time-one map DF tð0Þ. The estimates
DF tð0Þ
�� ��

Es
k2

¼ ek2 < a; ð13Þ
and
DF tð0Þ
�� ���1

Eu
1
¼ e�k1 < a�q ð14Þ
hold simultaneously for some constant a > 0 and integer q P 1, whenever
ek2 < a < ek1=q: ð15Þ
Such a constant a > 0 always exists if we select
q ¼ Int k1=k2½ �: ð16Þ
In that case, the choice of
a ¼ exp k2 þ k1=Int k1=k2½ �ð Þ=2½ � ð17Þ
ensures that (15) holds.
Conditions (13) and (14) are precisely the two main conditions of Irwin’s theorem in [19]. As a result, whenever (16)

holds, Irwin’s theorem guarantees the existence of a (non-unique) class-Cq pseudo-stable invariant manifold Wpsð0Þ that is
tangent to the subspace Es

k2
at the origin. To be precise, the degree �r of smoothness of Wpsð0Þ is the minimum of r, the

smoothness of the time-one map, and of q, which gives the expression (10). The characterization (11) of the pseudo-stable
manifold follows from general expressions in [19,20] after we set a as in (17). h

Based on the above result, under conditions (5) and (10), codimension-one pseudo-stable and pseudo-unstable invariant
manifolds exist at the origin of the phase space. They intersect any nearby energy surface Eh transversely in the isoenergetic
surfaces
Wps
h ¼Wpsð0Þ \ Eh; Wpu

h ¼Wpuð0Þ \ Eh;
that are codimension-one within Eh.
For any h > 0 small enough, the intersection
eCh ¼Wps

h \Wpu
h

is a smooth continuation of the surface Ch defined in (7). This is the case because Wps
h and Wpu

h are smooth perturbations of
Es

k2
and Eu

k2
near the origin, and the latter two surfaces intersect transversely; hence their intersection smoothly perturbs un-

der small enough perturbations. We conclude that eCh is diffeomorphic to near-critical energy surfaces of a nine-degree-of-
freedom Hamiltonian with a rank-one saddle.

It should also be noted that eCh is a �r times continuously differentiable manifold, as it is the transverse intersection of two
manifolds of the same degree of smoothness. Since the Hamiltonian is of class Cr for any positive r, the real limitation on �r is
the ratio of the two Lyapunov exponents, k1 and k2. A Taylor expansion for eCh near the origin is only guaranteed to exist up
to order �r. In the application considered here, �r ¼ 1, since Int½k1=k2� ¼ 1 (cf. Table 1).

The stable manifold of eCh is given by
Ws eCh

� �
¼Wps

h ;
a codimension-one surface within the energy surface Eh. Similarly, the unstable manifold of eCh,
Wu eCh

� �
¼Wpu

h ;
is a codimension-one surface within Eh.
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The manifolds Ws eCh

� �
and Wu eCh

� �
will be small deformations of their linearized counterparts, WsðChÞ and WuðChÞ (see

Eq. (9)).
These manifolds can be partitioned into two parts; a forward part and a backward part,
Ws
f
eC h

� �
¼ p; qð Þ 2 R10 : Hðp; qÞ ¼ h > 0; p1 ¼ �k1q1 P 0
� �

;

Wu
f
eC h

� �
¼ p; qð Þ 2 R10 : Hðp; qÞ ¼ h > 0; p1 ¼ k1q1 P 0
� �

;

Ws
b
eC h

� �
¼ p; qð Þ 2 R10 : Hðp; qÞ ¼ h > 0; p1 ¼ �k1q1 6 0
� �

;

Wu
b
eC h

� �
¼ p; qð Þ 2 R10 : Hðp; qÞ ¼ h > 0; p1 ¼ k1q1 6 0
� �

:

ð18Þ
The forward and backward parts of these two manifolds join smoothly
Wf
eC h

� �
¼Ws

f
eCh

� �
[Wu

f
eCh

� �
;

Wb
eC h

� �
¼Ws

b
eCh

� �
[Wu

b
eCh

� �
;

to yield two eight-dimensional invariant tubes that, respectively, correspond to the forward and backward reactive tubes.
They are embedded in the nine-dimensional energy shell and hence are codimension-one. Consequently, the states within
these tubes remain confined to the tubes and flow from the interior of Ws

j into the interior of Wu
j (where j ¼ f or b). It should

be noted that the intersection of the forward (backward) tubes is just the NHIM
eCh ¼Ws
f
eCh

� �
\Wu

f
eCh

� �
;

eCh ¼Ws
b
eCh

� �
\Wu

b
eCh

� �
:

Two transition states can now be defined as cross-section surfaces in each of the forward and backward reactive tubes,
TSf
eC h

� �
¼ p;qð Þ2R10 :

1
2

p2
1þ

1
2

p2
2�k2

2q2
2

� �
þ1

2

X5

i¼3

p2
i þx2

i q2
i

� �
þ f ðI1;I2;p3;p4;p5;q3;q4;q5Þ¼h>0;q1¼0;p1 P0

( )
;

TSb
eC h

� �
¼ p;qð Þ2R10 :

1
2

p2
1þ

1
2

p2
2�k2

2q2
2

� �
þ1

2

X5

i¼3

p2
i þx2

i q2
i

� �
þ f ðI1;I2;p3;p4;p5;q3;q4;q5Þ¼h>0;q1¼0;p160

( )
:

These are, respectively, the forward and backward transition states. Their union is an eight-dimensional unbounded surface
and their intersection is simply the NHIM, eCh. And finally, we observe that all states exterior to the two reactive tubes do not
react, that is, they are confined to either reactant or product regions of phase space for all time.

The main differences between Ws eCh

� �
and the stable manifold of a NHIM in the rank-one-saddle case are:

� The manifold Ws eCh

� �
is constructed as a pseudo-stable manifold, and hence it is non-unique. However, it is tangent to the

unique pseudo-stable subspace, Es
k2

, and hence its Taylor expansion is unique up to order �r.
� The manifold Ws eCh

� �
is only of class C�r .

� Typical solutions in Ws eCh

� �
do not tend to eCh in forward time, but cannot leave eCh at rates faster than

exp½tðk2 þ k1=Int½k1=k2�Þ=2� while near eCh.

Similar comments can be made for Wu eCh

� �
.

4. Numerical results

The trajectory study presented in the following discussion is intended to illustrate the nature of the competition between
the two unstable modes. This is not merely of mathematical interest as the results have significant implications for systems
of physical interest. They also provide a clear explanation of the well known generic behavior, long observed, in classical tra-
jectory studies of the simplest planetary model of helium, where one of the electrons escapes to infinity while the second
electron dives into the Coulomb singularity.

Consider the classical trajectories shown in Fig. 2. The figure labeled (a) shows the pure symmetric A1 hyperbolic mode
and while that labeled (e) shows the pure antisymmetric B2 hyperbolic mode. In each of these figures the trajectories of both
of the electrons are shown. The initial conditions were chosen as follows: First, each trajectory was started above the sta-
tionary point. This leaves only the momenta to be specified. All of the momenta, with the exception of the momentum asso-
ciated with the mode of interest, are set to zero. This last momentum is chosen so that energy of the system is 0.025 hartrees
above the Stark saddle. The sign of this momentum is taken to be positive and the trajectory on either side of the stationary
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point is found by integrating Hamilton’s equations of motion both forward and backward in time. It should be noted that
since the equations of motion are symmetric with respect to time-reversal, each of these figures corresponds one of a pair
of trajectories, the second trajectory being obtained by changing the directional arrows on each of the trajectories.

Each of these figures show the trajectories of the electrons in the physical space. The initial conditions were chosen so
that the dynamics are confined to the yz-plane. This can be done without disrupting the generality of the results. In both
cases the electron trajectories pass through the solid dots at the same time. As they pass through these dots they are crossing
the Stark saddle. It should be noted that for both the A1 and the B2 hyperbolic modes each of the two electron trajectories are
mirror images of each other. The difference being that for the A1 hyperbolic mode the two electrons traverse the trajectory in
the same direction, while in the other, that is, the B2 hyperbolic mode, the two electrons traverse their respective paths in the
opposite direction.

Of particular interest is the observation that for the symmetric A1 mode the two electrons emerge from the classical Cou-
lomb singularity and, after crossing the Stark saddle, both escape to infinity. For the antisymmetric B2 mode one electron
escapes from the classical Coulomb singularity while the second electron approaches the He+ ion from infinity. After both
electrons cross the Stark saddle, the one that emerged from the Coulomb singularity escapes to infinity while the second
electron, which has been captured, dives into the Coulomb singularity. This second behavior is precisely the generic behavior
that has long been observed in classical trajectory studies of helium.

The Lyapunov exponents of these two modes are given in Table 1. Note that the B2 hyperbolic mode is faster than the A1

hyperbolic mode. Thus in the analysis of the last section, the first mode ðp1; q1Þ corresponds to the B2 hyperbolic mode and
the second mode ðp2; q2Þ corresponds to the A1 hyperbolic mode. This ordering of the Lyapunov exponents is of major sig-
nificance. As a direct consequence in mixed dynamics, that is when the energy is partitioned between the two hyperbolic
modes, while initially the dynamics may resemble the slower A1 hyperbolic mode, in the long term, it is guaranteed that
the dynamics will resemble those of the B2 hyperbolic mode. In other word, provided that the dynamics have a component
in the B2 hyperbolic direction, in the infinite time limit one of the electrons will escape to infinity while the second dived into
the classical Coulomb singularity.

Two additional trajectories are shown in Fig. 6. The initial conditions for these two trajectories are identical to those
above with the exception that the energy is now partitioned equally between the two hyperbolic modes, rather than placed
in either one or the other. First observe that there are two distinct ways that the energy can be partitioned equally between
the two modes. The figure labeled (c) shows one of these and the labeled (g) shows the other. These two figures are simply
mirror images of each other. Also note that both of these trajectories also have time-reversed partners. A second observation
of interest is that within either figure the two electron trajectories are no longer symmetric. The symmetry in the previous
case (see Fig. 2) was due to the fact that they were pure modes and thus mixing the modes destroyed the symmetry. And
finally the most important observation is that in the long-time limit the dynamics resembles the B2 hyperbolic mode in that
one electron escapes and the second dives into the Coulomb singularity.

Two more trajectories, labeled (h) and (f) are shown in Fig. 7. The initial conditions for these trajectories are the same as
those above with the exception that for the first the energy is partitioned 25%/75% between the A1 and B2 hyperbolic modes
while in the second the partitioning is reversed at 75%/25%. Both of these have mirror images, which are labeled (b) and (d),
and time-reversed pairs. Consider the trajectory labeled (f) first. The behavior here is similar to that seen in the previous two
Fig. 6. Two trajectories, labeled (c) and (g), exhibiting mixed hyperbolic mode dynamics. The initial conditions for these trajectories were chosen to ensure
that both electrons cross the Stark saddle (the two black dots) at the same time. Additionally, the energy is partitioned equally between the A1 and the B2

hyperbolic modes. Note that the symmetry between the two electron trajectories that was observed in Fig. 2 is not present. This symmetry is characteristic
of the pure mode dynamics. However, observe that these two examples, (c) and (g), are mirror images of each other. The mixed hyperbolic trajectories
always occur as pair of mirror images. Observe that in the long-time limit the dynamics associated with the B2 hyperbolic mode dominates.



Fig. 7. Two additional trajectories, labeled (h) and (f), exhibiting mixed hyperbolic mode dynamics. The initial conditions for these trajectories were chosen
to ensure that both electrons cross the Stark saddle (the two black dots) at the same time. Additionally, for (h) the energy was partitioned 75%/25% between
the A1 and the B2 hyperbolic modes. For (f) the partitioned of the energy between the A1 and the B2 hyperbolic modes was 25%/75%. Of particular interest is
the dynamical behavior observed in (h) in the vicinity of the Stark saddle. An expansion of the one electron trajectory on the right-hand side is shown in the
inset. Observe that the two electrons will leave the Stark saddle in the same direction, but that in the long-time limit the antisymmetric dynamics of the B2

hyperbolic mode dominates.
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examples (see Fig. 6). This is as expected. The second case, labeled (h), shows more interesting behavior. In this case, in which
the majority of the energy has been placed in the symmetric A1 hyperbolic mode, the initial behavior resembles the pure A1

mode. Initially both electrons leave the Stark saddle in the same direction (see inset in figure (h) in Fig. 7). It is only at longer
times that, after some complicated dynamics, that the dynamics takes on the expected behavior, that is, one electron escap-
ing to infinity while the second electron dives into the Coulomb singularity.

In order to compare these eight trajectories (labeled (a)–(h)) directly, they are plotted in the q1q2 coordinate plane, see
Fig. 8. Shown here are the eight trajectories discussed in the paragraphs above. They are labeled (a)–(h). The trajectories la-
beled (a) and (e) are the pure modes and are seen as the heavier lines in Fig. 8. Note that the A1 hyperbolic mode lies on the q2

axis and the B2 hyperbolic mode lies on the q1 axis. The deviation from the axis, which is most easily seen in the B2 hyperbolic
mode, is due to the breakdown of the harmonic approximation as one leaves the vicinity of the stationary point. The mixed
Fig. 8. The hyperbolic coordinate space. In order to compare the trajectories discussed above visually, they are graphed here in the coordinate space defined
by the two hyperbolic normal modes. The two dark curves, labeled (a) and (e), are the two pure mode trajectories. The horizontal trajectory, (a), is the pure
symmetric ðA1Þ hyperbolic mode and the vertical trajectory, (e), is the pure antisymmetric ðB2Þ hyperbolic mode. The curvature observable in antisymmetric
trajectory is due to the anharmonic terms in the Hamiltonian. The remaining trajectories are mixed mode trajectories. In each example it is seen that in the
long-time limit the B2 hyperbolic dynamics predominate.
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mode trajectories, which are labeled (b), (c), (d), (f), (g), and (h), are also shown. The distance between the system and the q2

axis is proportional to ek1t while the distance between the system and the q1 axis is proportional to ek2t . The observed behav-
ior, that is, that in long-time limit one electron escapes to infinity while the second dives into the Coulomb singularity, is a
direct consequence of this ordering of the Lyapunov exponents, k1 > k2.

5. Summary

In this communication we investigate the dynamical behavior in the vicinity of a rank-two saddle in a physical example of
current experimental interest. The central result is the proof of the existence of certain geometrical structures (NHIMs, reac-
tive tubes, transition states, etc.) in the vicinity of the rank-two saddle. These structures guide the dynamics across the
saddle.

The analysis begins with a simple normal mode analysis of the linearized dynamics in the vicinity of the saddle point. This
characterizes the symmetry properties of the two dynamical modes that cross the saddle. In addition it also identifies the
rate of crossing of the two modes. This is an important result as one expects the faster of the two modes to dominate the
infinite time limit.

The analysis then examines the linearized dynamics in the vicinity of the saddle to define certain geometrical objects.
These include the normally invariant manifold Ch, the forward and backward reactive tubes Wf ðChÞ, WbðChÞ, and the transi-
tion states TSf ðChÞ, TSbðChÞ. The continued existence of these structures following the introduction of the nonlinearity is the
subject of the proof in the third section. These results are then illustrated by a numerical trajectory study.
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