Chaos

An Interdisciplinary Journal of Nonlinear Science

Detecting invariant manifolds as stationary Lagrangian coherent structures in
autonomous dynamical systems
Hiroshi Teramoto, George Haller, and Tamiki Komatsuzaki

Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 23, 043107 (2013); doi: 10.1063/1.4824314
View online: http://dx.doi.org/10.1063/1.4824314

View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/23/4?ver=pdfcov

Published by the AIP Publishing

AIP - Re-register for Table of Content Alerts

Publishing

Create a profile. Sign up today! /


http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/237690899/x01/AIP-PT/Chaos_CoverPg_101613/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Hiroshi+Teramoto&option1=author
http://scitation.aip.org/search?value1=George+Haller&option1=author
http://scitation.aip.org/search?value1=Tamiki+Komatsuzaki&option1=author
http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://dx.doi.org/10.1063/1.4824314
http://scitation.aip.org/content/aip/journal/chaos/23/4?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov

CHAOS 23, 043107 (2013)

@ CrossMark
Eehck for updets

Detecting invariant manifolds as stationary Lagrangian coherent structures

in autonomous dynamical systems

Hiroshi Teramoto,"® George Haller,? and Tamiki Komatsuzaki'

"Molecule & Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science,
Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan

2Institute for Mechanical Systems, ETH Ziirich, CLA J.27, Tannenstrasse 3, 8092 Ziirich, Switzerland

(Received 8 April 2013; accepted 23 September 2013; published online 16 October 2013)

Normally hyperbolic invariant manifolds (NHIMs) are well-known organizing centers of the
dynamics in the phase space of a nonlinear system. Locating such manifolds in systems far from
symmetric or integrable, however, has been an outstanding challenge. Here, we develop an
automated detection method for codimension-one NHIMs in autonomous dynamical systems. Our
method utilizes Stationary Lagrangian Coherent Structures (SLCSs), which are hypersurfaces
satisfying one of the necessary conditions of a hyperbolic LCS, and are also quasi-invariant in a
well-defined sense. Computing SLCSs provides a quick way to uncover NHIMs with high
accuracy. As an illustration, we use SLCSs to locate two-dimensional stable and unstable
manifolds of hyperbolic periodic orbits in the classic ABC flow, a three-dimensional solution of the
steady Euler equations. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824314]

Invariant manifolds play an important role in transport
phenomena that range from chemical reactions through
fluid mixing to celestial mechanics. Such manifolds, how-
ever, are often challenging to locate in multi-dimensional
systems that are far from integrable and possess no spe-
cial symmetries. Among these invariant manifolds, nor-
mally hyperbolic invariant manifolds are particularly
important due to their persistence under small perturba-
tions. This renders them robust with respect to modeling
errors and numerical inaccuracies. Here, we develop a
method to detect codimension-one, normally hyperbolic
invariant manifolds in general autonomous systems. We
approximate such manifolds as zero level sets of a scalar
function derived from the recent variational theory of
hyperbolic Lagrangian Coherent Structures (LCSs). This
approximation converges exponentially fast to a true
invariant manifold as longer and longer flow-map sam-
ples are used in its construction. We illustrate this
method on the classic steady ABC flow, revealing some of
its two-dimensional invariant manifolds at a previously
unseen level of detail.

. INTRODUCTION

Normally hyperbolic invariant manifolds (NHIMs) are
surfaces that act as organizing centers in the phase space of a
dynamical system. Such manifolds have normal attraction and
repulsion rates that dominate their tangential contraction and
stretching rates, respectively. This property renders compact
NHIMs both smooth and persistent under small perturbations
(Hirsch et al.,l’2 and Fenichel3), which in turn makes them im-
portant in a number of applications (see, e.g., Refs. 4-06).

Despite their significance, neither the theoretical frame-
work of Hirsch et al." nor that of Fenichel® provide a way
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to actually locate NHIMs, which therefore have remained
notoriously difficult to detect in multi-dimensional dynami-
cal systems. Unless the dynamical system is close to an inte-
grable system with an explicitly known NHIMs (Haller®),
has two vastly different time scales (Jones®), or suggests a
first guess for the rough location of a NHIM (Broer et al.,’
Capinski and Simég), one has little chance to locate NHIMs
without extensive numerical experimentation.

The most important NHIMs are codimension-one mani-
folds (hypersurfaces), which locally partition the phase
space into two non-interacting regions. Examples include
normally hyperbolic subsets of stable and unstable mani-
folds of codimension-two hyperbolic invariant sets, such as
codimension-two tori. Codimension-one NHIMs have a de-
cisive impact on trajectories through the exponential attrac-
tion or repulsion that they exhibit in their single normal
direction. As a result, codimension-one NHIMs act as
observed attractors for all nearby tracer trajectories in for-
ward and backward time. This is a property they share with
Lagrangian Coherent Structures (LCSs), which are locally
most attracting or repelling material surfaces over a fixed fi-
nite time interval (Haller and Yuan,9 Hallerm).

A material surface is a time-dependent, codimension-
one manifold of initial conditions that evolves under the flow
map. Accordingly, an LCS is an invariant manifold in the
extended phase space of the phase space variables and time.
However, an LCS is generally not an invariant manifold in
the phase space itself, even if the underlying dynamical sys-
tem is autonomous. Accordingly, an LCS is generally a
time-dependent hypersurface, observed as the de facto attrac-
tor for all nearby initial conditions in forward or backward
time over the finite time-interval involved in its definition.
Therefore, an LCS is only guaranteed to be invariant in the
extended phase space, even if the underlying dynamical sys-
tem is autonomous.

The theory of LCSs has only recently reached a level of
maturity comparable to that of NHIMs. Specifically, the

© 2013 AIP Publishing LLC
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variational theory of hyperbolic LCSs developed in Haller'®
and Farazmand and Haller'' now offers a rigorous set of
computable criteria for detecting LCSs globally in the phase
space in an automated fashion. Early ideas on constraining
such variationally constructed LCSs to be nearly invariant
manifolds appear in Haller.'"® The constrained approach pre-
sented there, however, only applies to two-dimensional au-
tonomous systems, or to LCSs that are codimension-one level
sets of an conserved quantity. In particular, no related results
have been available for systems without conserved quantities,
or for codimension-one LCSs within the energy surface of an
autonomous Hamiltonian system. Clearly, locating NHIMs
with the help of LCSs in the latter two classes of flows is of
great importance in applications, including steady three-
dimensional fluid flows and multi-dimensional autonomous
Hamiltonian systems of classical mechanics.

Here, we develop a new approach that detects NHIMs as
constrained LCSs in dynamical systems of arbitrary dimen-
sion. Our approach requires no assumption on near-
integrability, time-scale separation, or a rough knowledge of
the location of the NHIM. As a result, the method developed
here is suitable for the automated exploration of
codimension-one NHIMs in any finite-dimensional, autono-
mous dynamical system.

We approximate such NHIMs via Stationary LCSs
(SLCSs), which are hypersurfaces satisfying a necessary
condition for a hyperbolic LCS, while also showing a high
degree of invariance (quasi-invariance) in the phase space.
The necessary LCS condition simply requires orthogonality
between the vector field generating the dynamical system
and the dominant eigenvector field of the Cauchy-Green
strain tensor computed from the flow map. This orthogonal-
ity generically holds along a union of codimension-one
surfaces, computed as the zero set of the inner product of the
two vector fields involved. The quasi-invariance condition
then identifies subsets of this zero surface that are nearly
invariant. If quasi-invariance is enforced at a high enough
level, the SLCSs obtained in this fashion are numerically
indistinguishable from actual NHIMs.

This paper is organized as follows. In Sec. II, we de-
velop the necessary notation and terminology, and in Sec.
III, we review the relevant mathematical concepts from the
variational theory of hyperbolic LCSs. In Sec. IV, we de-
velop the concept of SLCSs, and relate it to codimension-
one NHIMs in Sec. V. In Sec. VI, we present a simple algo-
rithm for the global construction of SLCSs in autonomous
dynamical systems, with an application to the three-
dimensional ABC flow shown in Sec. VII. We give a sum-
mary and outlook in Sec. VIIIL.

Il. SET-UP AND NOTATION

Let X be a C"-vector flow (r>2) defined on R" and ¢’
be the corresponding flow, i.e.,¢'(z) is the position at
time ¢(—T <t<T) starting from z at time 0, where
z=(z, - ,z,) and ¢'(z) = (¢} (2), ..., ¢' (z)). If the vector
field does not depend on the time explicitly, the position
does not depend on the starting time. Let X(z) be the vector
fields at the position z, X(z) = (X,(z), ..., X,(z)). In terms of
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the vector fields, the time evolution equation of the system
can be written as

- x(¢f(z>). (1)

The dynamics in the vicinity of the trajectory can be under-
stood in terms of the differential of the flow (linearized flow
map),

opi(z)  04i(z)
821 82,1
b= . | @)
osLm)  odL)
19)4] 0z,

This differential obeys the following time evolutional equation:

d ., . 0X(z)
d_tD¢ (z) = o7

D'(z), 3

where z' = ¢'(z) and
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Using the differential of the flow (Eq. (2)), the Cauchy-
Green strain tensor can be calculated as C7(z)
= (D¢"(2))' D" (z) where (D¢’ (z))* is the transpose of
Dq’)T(z). These eigenvalues and eigenvectors are denoted by
cf(@(1<i<n) and & (2)=(\(2),.... ¢, (2) (1 <i<n),
respectively, and satisfies C7 (z)&! (z) = ¢! (z)¢] (z) (1 <i<n).
Here, the eigenvalues are indexed in ascending order such that
cl(z)<cd(z)<---<cl |(z) <cT(z) and the eigenvectors are
normalized such that éf(z)-if(z) =0;(1<i,j<n) where 0
denotes the Kronecker delta (note that the eigenvectors are or-
thogonal to each other because the Cauchy-Green strain tensor
is symmetric). Each eigenvector spans a linear 1-dimensional
vector space Eii (1 <i<n). In terms of the vector spaces, the
ambient vector space T,R" can be decomposed as
T,R" =@} |E],. The physical meaning of ¢/ (z)(i=1,...,n)
and ¢/ (z) (i=1,...,n) is as follows: If the initial condition z is
infinitesimally displaced in the ¢! (z) direction, the displace-
ment results in D¢’ (z)¢! (z) after time T. In terms of the
Euclidean metric, the length of the vector is

D¢ @ @) = (04" W)l () - DY () ),
¢ &) (Do’ (2)) DY (1) (2),
=

=1/& (2)°CT(2)E] (2),

=1/ (2). &)
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Therefore, the displacement along ¢ (z) is magnified
\/¢!(z) times in the Euclidean metric. Specifically, the larg-
est eigenvectors can be characterized in a variational manner
such that

ID$T (z)]| = ma [ID" (z)v|

veT, R el

=ID¢" ()&, @), (©)

i.e., £ (z) is a direction of maximal stretching.

lll. A BRIEF REVIEW OF HYPERBOLIC LCS

A Lagrangian Coherent Structure (LCS), as defined
originally by Haller and Yuan,” is a codimension-one mate-
rial surface that is locally the most repelling or attracting
among C'-close material surfaces over a given finite time
interval [0, T]. Here, the definition of the material surface is
the following.

Definition 111.1 (Material Surface). A material surface
M(t) € R" over the time interval [0, T] is a surface that
satisfies ¢'(M(0)) = M(z) for all t € [0,T).

As shown in Haller,1 such a material surface can be
identified based on the following theorem:

Theorem III.1 (LCS). An (n — I)-dimensional surface
Muics(t) € R" is a repelling LCS over the time interval [0,
T] if and only if:

L M cs() is a material surface over the time interval
[0, T1.
II.  Each point of Mycs(f) admits a unique direction of

maximal stretching: ¢! |(z) < c!(z) and ! (z) > 1
hold for every z € M cs(0).

II.  This maximal stretching direction, &’ (z), is normal to
Mics(0).

IV.  The normal repulsion rate of M, cs(7) is maximal rel-
ative to those of nearby material surfaces (cf. Haller'’
and Farazmand and Haller'! for details).

As argued in Farazmand and Haller,!! condition IV of
Theorem III.1 turns out to be somewhat restrictive in that it
requires the LCS to be the most repelling among all nearby
material surfaces. Apart from a few idealized examples, such
a strong extremum property will not be achieved by material
surfaces over finite time intervals (see, e.g., Appendix B for
a simple example of a stable manifold that is not a locally
most repelling material surface).

For this reason, Farazmand and Haller'' give a relaxed
formulation for two-dimensional flows. In this formulation,
condition IV is replaced with a weaker requirement that the
average stretching on the LCS is maximal relative to all
nearby material surfaces that satisfy condition III, i.e., are
pointwise normal to the dominant eigenvector of the
Cauchy-Green strain tensor.

IV. DEFINITION AND PROPERTIES OF AN SLCS

To detect NHIMs as LCSs, a weaker form of condition
IIT of Theorem III.1 turns out to be useful. Accordingly, in
our definition of a Stationary LCS (SLCS) below, we keep
conditions I-II of Theorem III.1, and require trajectories in
the SLCS (as opposed to the whole tangent space of the
SLCS) to be orthogonal to the direction of largest stretching,
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and also require this largest stretching direction to be close
to the normal of the SLCS.

Definition 1V.1 (SLCS). M is a repelling SLCS of a finite
time duration T>0 and tolerances ¢ € [0,1) and o €
[0, /2] if M satisfies the following three properties. For ev-
eryz € M,

A. LT(z) = é(z) - X(z) = 0.
B. ¢! | (z) < €cl(z) and ¢! (z) > 1.
C. |cos™!(|¢;(z) - n(2)])| < o,

where n(z) is a unit normal vector to M atz € M.

The schematic geometry of an SLCS is shown in Fig. 1.
An attracting SLCS can be defined analogously as a repelling
SLCS in backward time (T < 0).

Remark IV.1.1: The parameter € in Definition IV.1 con-
trols the required spectral gap between the two largest eigen-
values of the Cauchy-Green strain tensor. The smaller e, the
more the rate of repulsion normal to the SLCS dominates the
largest stretching rate within the SLCS. The parameter o
controls the degree to what extent the SLCS is required to be
invariant (note that o = 0 corresponds to full invariance).

Remark IV.1.2: Condition A is a necessary condition for
the SLCS to be an LCS, requiring that the trajectory through
any point of the SLCS be normal to the direction of largest
strain ég(z) at that point. Note that this condition is neces-
sary but not sufficient for the SLCS to be normal to the direc-
tion of largest strain.

Remark IV.1.3: Condition B for SLCS is stronger than
condition II for LCS. Selecting e small enough for an SLCS
will ensure small variation of the SLCS under changes in the
detection interval length 7. Specifically, note that (see
Appendix A for a proof),

T —
dé, (z) < vn 1Ge’ )
dTr 1 —¢2
where
ox(z) ox(7)
G = . 8
Z,SSE oz’ or ®
Therefore,
vn—1Ge

dLT
o 2 <Y1 k@) o)

1=

FIG. 1. A schematic figure of SLCS.
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This means that fluctuations in the value of L'(z) is of
order e.

Under conditions B and C, the flux across the LCS (and
hence the degree of invariance of the LCS) can be estimated
as follows.

Theorem IV.1 (Flux across SLCS). Let z be a point on
SLCS and j' (z) = X(z) - n(z)(amount of flux across SLCS at
the point z), and, then, ||j* (z)|| < ||X(z)||sinc.

Proof. The normal vector n(z) can be expanded in terms
of ¢(z) such as n(z) =" ¢ (z). Then, |a,
= [El(z) -n(z)| > coszand 1 = n(z) -n(z) = 31, a? imply

\/ Z;’;ll a? < sino.. Under the condition A,

X()n(2)| = [X@) - (n(2) - @ @)],  @10)
< X@In@) - ad @], an

12)

< ||X(z)||sinc. (13)

|

Theorem IV.1 guarantees that the flux across an SLCS is
as small as needed, provided that « is chosen small enough
in the detection of the SLCS. In Sec. V, we investigate the
relationship between SLCS and normally hyperbolic invari-
ant hypersurfaces.

V. A CODIMENSION-ONE NHIM IS AN SLCS OVER
LONG-ENOUGH TIME INTERVALS

Here, we show that a normally repelling inflowing-
invariant manifold of codimension-one satisfies all condi-
tions in the definition of a repelling SLCS for large enough
times 7 > 0. We start by recalling the definition of an inflow-
ing invariant manifold from Fenichel,3 formulated for the
specific case of codimension-one manifolds. We note that a
similar relationship holds between codimension-one over-
flowing invariant manifolds and attracting SLCSs.

Let M be a C" compact, codimension-one manifold with
boundary OM, properly embedded in R". Assume that M is
inflowing invariant, i.e., X is tangent to M and X points
strictly inwards on the boundary OM. Let us also assume that
the manifold M is normally repelling, i.e., its normal repel-
ling rate is larger than the largest rate of repulsion measured
along M. This property can be expressed in terms of
Lyapunov-type numbers introduced by Fenichel.®> For the
definition of Lyapunov-type numbers, along with more pre-
cise settings, see Appendix C. Our main result on the rela-
tionship between such NHIMs and SLCSs can be stated as
follows.

Theorem V.1. For large enough T>0, any
codimension-one normally repelling inflowing invariant
manifold is a repelling SLCS in the sense of Definition IV.1.
More precisely, the followings hold (for the explanation of
the positive constants ¢y, c2,a(<1),5(<1), see Appendix C).
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cI(z) > EfT(l - 0217‘6)62d<17‘§>T) /c1. (14)

If T is chosen sufficiently large, the right hand side of
Eq. (14) is greater than 1.

2. N N
. v/ 26‘2(:(1173>CA1(17S>T
IL"(2)] < [[X(z)] X

czc(ll_f)d(l_ﬁ)T '

— O(a“ﬂ‘”). (15)

3. The tolerance € can be chosen as

_ 2626%’5&(1_§)T
(1 + \/1 - 44“%“*3‘”) (1 - c?*”cza(lff”)“_f)
—o(at=r), (16)
and the tolerance «
_ —1(1 _ (1=8) ~(1-§)T
o = Ccos (1 ey a ) (17)
= 0@ =912, (18)
Proof. See Appendix C. (]

VI. NUMERICAL DETECTION OF SLCSS

Based on Theorem V.1, we can closely approximate
NHIMs using SLCSs through the following two simple
steps:

1. Construct the zero level set of the function L'(z) defined
in condition A of Definition IV.1.

2. Exclude parts of this zero level set that violate conditions
B and C of Definition I'V.1.

In carrying out the second step, we have to set values for
the two parameters involved in B and C of Definition IV.1.
Recall that the parameter e controls the convergence of the
eigenvector field &’ (z) in the function L7 (z), whereas the pa-
rameter o controls how close the normal direction of the
SLCS is to fz(z). If these parameters are set to small values,
the resulting SLCS is well-converged, almost normally
repelling and almost invariant, but it is also likely to be a
smaller set. This smaller set will typically increase in size if
a longer detection interval T is used, as larger portions of the
NHIM to be detected will qualify as SLCSs.

Note that evaluating conditions A—C of Definition IV.1
only requires computations that are local in the phase space
variable z. This makes the present algorithm highly paralle-
lizable. The surface normal featured in condition C can be
computed as the normalized gradient of L’(z) obtained from
finite differencing. Once extracted, a repelling SLCS can be
further refined by advection under the flow map in backward
time. This is because a nearby codimension-one repelling
NHIM will act as an attractor in backward time, and hence
attract the SLCS at an exponential rate.
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Vil. APPLICATION
A. ABC flow

In this section, we demonstrate how codimension-one
NHIMs can be detected as SLCSs in the classic ABC flow
(cf. Arnold'>'?). This flow, a solution of the steady Euler
equation, has received attention for its non-integrability,'*
invariant tori and chaos.'” Even though the ABC velocity
field is laminar, it generates particle motions, whose com-
plexity is often referred to as Lagrangian turbulence (for
details, see Ref. 16).

Fluid particle motion under the ABC flow satisfies the
differential equations

d
—x:Asinz—i—Ccosy7 (19)
dt
d
D _ Bsinx + Acos z, (20)
dt
d
d_j:CSiny + Bcosx, (2D

where the parameters are set as A= \/§, B =172,
and C =1, following Henon.'? In this section, the position
(x, y, z) is denoted by z.

The system represented by Egs. (19)—(21) is known to
admit hyperbolic fixed points and hyperbolic periodic orbits.
Subsets of the stable and unstable manifolds of hyperbolic
periodic orbits are expected to be codimension-one (i.e.,
two-dimensional) NHIMs. In Fig. 2(a), we show periodic
orbits revealed by less than 10 iterations of a Poincaré map.
The largest absolute value of the corresponding Floquet
exponent is indicated in color. A side view of the plot is
shown in Fig. 2(b).

In Fig. 2(b), we show a few dominant hyperbolic periodic
orbits with larger Floquet exponents in yellow color, which
are indicated by blue squares in Fig. 2(a). The ABC flow is a
volume-preserving three-dimensional system, and hence each
unstable periodic orbit has three Floquet exponents, 4, 0, —4,
where 4 > 0 is the largest Floquet exponent. Accordingly, the
Floquet exponent 4 gives the ratio between normally repelling
(contracting) rates and tangential repelling (contracting) rates
of the stable (unstable) manifolds emanating from the periodic
orbits. Therefore, the stable and unstable manifolds emanating

@ T
|Fd05

the largest Froquet exponent 0.6
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from the periodic orbits indicated by blue squares have stron-
ger normal hyperbolicity and hence are expected to dominate
transport in phase space.

We now compute SLCSs to obtain a close approxima-
tion of the stable and unstable manifolds of the dominant
periodic orbits of the ABC flow. We set the tolerance param-
eter € to be 0.005. In terms of the Floquet exponent, this
value corresponds to —In(0.005)/10.0 ~ 0.5298 and it is in
between those of periodic orbits indicated by blue squares
and those of the others (see Fig. 2). Contrastingly, the param-
eter o should be chosen in the same order as /e ~ 0.0707. It
is because from Egs. (16) and (18),

w = 0(ar(1-vI7E) ). (22)
~0 (@ (1-1+38) ) (23)
—olahs), (24)
— 0(v/o). (25)

In what follows, « is set to 0.05 for simplicity.

In Fig. 3, SLCS is plotted in the whole phase space
[0,27] x [0,27] x [0,2x]. This SLCS is calculated as fol-
lows. First, we prepare 1200 x 1200 x 1200 grids on the
phase space [0, 27] x [0,27] x [0,2n] and calculate L7 (z) for
each grid. Here, T is set to T= 10 (or T = —10), which corre-
sponds to roughly the quadruple of the rotational period of
the vortexes running through the phase space. The trajecto-
ries and their differentials are calculated by numerical inte-
gration of Egs. (1) and (3). The numerical integration is done
by using Stepper Dropper853,'” which is 8-th order Runge-
Kutta method with step size control. Double and quadruple
precision were both tested in our numerical integration, pro-
ducing almost identical results. Therefore, we conclude that
double precision is sufficient for our purposes. To calculate
&T(z), Singular Value Decomposition (SVD)'” of D¢’ (z) is
used. To identify the zero level set of L (z), Marching Cube
algorithm'® is used. Specifically, one of the simplest variants
of Marching Cube algorithms'® that was originally devel-
oped by Doi.® The two tolerances o and e are chosen as
2=0.05 and €=0.005. The results are plotted using
ParaView,21 version 3.14.

FIG. 2. (a) periodic orbits whose peri-
ods less than 10 iterations of the
Poincaré map are plotted on the
Poincaré surface z=0. The largest
absolute value of the Floquet exponent
of each periodic orbit is indicated by
color (the periodic orbits that have the
absolute value larger than 0.5 are indi-
cated by blue squares). (b) A side view
of (a). In (b), the value of the Floquet
exponent 0.5298 that corresponds to
€ =0.005 is indicated by the arrows.
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(b)

To take a closer look at them, in Fig. 4, SLCS is plotted on
the Poincaré surface, where z =0 (it is equivalent to z =27 sur-
face due to the periodic boundary condition) and x, y € [0, 27],
in the same manner as before but by using 38400 x 38 400
grids on the plane [0,27] x [0, 27]. The periodic orbits are plot-
ted in the same surface and they are located at intersections
between the two SLCSs indicated by red and green. If the
SLCSs capture the stable/unstable manifolds of the periodic
orbits, the periodic orbits should be located at the intersection
between the two SLCSs. To investigate the relation the SLCSs
and the stable and unstable manifolds, in Figs. 4(b) and 4(c),
the local stable and unstable manifolds of two unstable period-3
periodic orbits are superposed on Fig. 4(a). In Figs. 4(b) and
4(c), the unstable periodic orbits are indicated by blue squares
and the local stable manifolds by cyan bold line and the local
unstable manifolds by pink bold line.

Chaos 23, 043107 (2013)

FIG. 3. (a), (b) SLCS M plotted in
the whole phase space (T'=10.0 in red
(@) and T=-10.0 in green (b),
€=0.005, « =0.05).

These lines coincide with some lines of the SLCSs. To
investigate the relation between the SLCSs and the stable and
unstable manifolds more clearly, in Fig. 4(d), the magnified
figure in the vicinity of one of the periodic points, located at
(5.15972, 4.71239), are shown, along with the local stable and
unstable manifolds are superposed on it, where the local stable
and unstable manifolds are indicated by cyan and pink, respec-
tively. In Fig. 4, the deviation between SLCSs and the local
stable and unstable manifolds are of order 1.0 x 10~3, which
is of the same order as € (Note that € corresponds to the con-
vergence tolerance of LT (z) with respect to T, see Eq. (9)).

VIll. SUMMARY

We have introduced a new technique for the global
detection of codimension-one normally hyperbolic invariant

@[ ' '

FIG. 4. (a) SLCS Mzi plotted on the
Poincaré surface z=0 (T'=10.0 in red
and T=-10.0 in green, €=0.005,
o =0.05). The periodic orbits indicated

by blue squares in Fig. 2 are plotted on
the surface. (b), (c) the local stable and
unstable manifolds of the two period-3
periodic orbits (indicated by blue

squares) are superposed on (a). The
local stable and unstable manifolds are
indicated by cyan and pink, respec-
tively. (d) a magnified figure of (c).

L
5.12

L L
5.16 5.18 52
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manifolds in finite-dimensional autonomous dynamical sys-
tems. The detection is achieved through the identification of
Stationary Lagrangian Coherent Structures (SLCSs), which
are codimension-one quasi-invariant surfaces satisfying sim-
ple necessary conditions for being an LCS over a finite time
interval of length 7.

As a first step, we locate zero level set of the inner product
of the vector field defining the dynamical system with the dom-
inant eigenvector of the Cauchy-Green strain tensor, with the
latter tensor computed from the time 7 flow map. As a second
step, parts of this zero level set are eliminated either because
they are not normally repelling (or attracting) enough, or
because they are too far from being invariant. These two elimi-
nation steps are precisely controlled through the choice of two
small parameters involved in the definition of the SLCS. The
approximation of NHIMs through SLCSs can be further refined
by advecting the extracted SLCSs in the time direction in
which they are attracting. This zero set necessarily contains all
LCSs by the variational theory of Haller'® and, Farazmand and
Haller,'" as well as by the recent geodesic theory of transport
barriers developed by Haller and Beron-Vera.?

Using the classic ABC flow as an example, we have
shown how this SLCS detection reveals the stable and unsta-
ble manifolds of periodic orbits with high accuracy.
Remarkably, our technique requires no a priori information
on the location of the underlying periodic orbits, their stability
types, or their Floquet multipliers. This feature distinguishes
our technique from available numerical NHIM detection
methods that invariably assume some a priori knowledge® or
a first guess about the invariant manifold to be detected.”®

Several powerful methods exist for computing stable
and unstable manifolds of specifically known invariant sets,
such as fixed pints and periodic orbits.>> The present paper
provides a general approach that identifies influential mani-
folds all over the phase space, without the need to know the
asymptotic behavior of the trajectories in the manifold. Even
if periodic orbits are known to exist, their accurate numerical
detection can pose a challenge.>*?* Errors in locating peri-
odic orbits in turn translate to even larger errors in comput-
ing their stable and unstable manifolds. Thus our approach
offers an advantage in this case as well, as it does not need
the precise location of a periodic orbit in order to compute
its stable or unstable manifolds.

To apply our approach to discretized data sets, inter-
polations are needed to approximate the underlying smooth vec-
tor field. The quality of the interpolation depends on the degree
of smoothness of this vector field, as well as the type and den-
sity of the grid on which the data set is given. All these factors
make it difficult to provide a general assessment of the numeri-
cal errors arising in the automated detection of NHIMs as sta-
tionary LCSs. By the persistence theorem of NHIMs,? however,
as long as we manage to keep the errors of our numerical proce-
dures small, the manifold we construct is C" close to the corre-
sponding NHIM in the underlying smooth vector field.

While the present approach is generally applicable to ar-
bitrary finite-dimensional autonomous dynamical systems,
its direct extension to non-autonomous dynamical systems is
not straightforward. This is because instantaneous snapshots
of a time-dependent NHIM are generally far from being
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invariant, and hence the underlying non-autonomous vector
field defining the dynamical system is generally not tangent
to the NHIM. For this reason, an extension of our approach
to detecting non-autonomous invariant manifolds (i.e., invar-
iant manifolds in an extended phase space) requires further
ideas and will be pursued elsewhere.
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APPENDIX A: EVALUATION OF THE T DERIVATIVE
OF &7 (2)

Here, we provide a proof of Eq. (7). First, note that the
matrix D¢’ (z)(D¢” (z))" has the same eigenvalues as the
Cauchy-Green strain tensor. Let #!(z) (i =1,...,n) be an
eigenvector corresponding to ¢! (z) (i =1,...,n) such that
n(2)-nf(2) =65 (i,j=1,...,n)  and  D¢'(2) (2)
= /cl(z)n!(z) (i=1,...,n). In terms of these eigenvalues

dé] (2)
dTr

déiT(Z)_ 1 7,1+ dC(2) 1 T
ar _;C?(Z)—CJ‘T(Z) [é" (@) =7 & (@& @),

and eigenvectors, can be evaluated as

(A

where

dc’ (z)

g 0 e
= &y (D9 () DI () ()

5 DY ()& (2)

+ 8@ (06" @) 2 pyr )l ),

— JF ey () D),

(A2)

(z = ¢' (2)). Equation (A1) can be derived by differen-
tiating C*(2)¢1 (z) = I (2)& (z) (i = 1,...,n) (I (z) < ] (z)
< -+ < cI'(z)), with respect to T as follows:
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dCT(Z) T T di?@) dCiT(Z) T
deET
+ ciT(z)i’T(Z). (A3)

By calculating the innerproduct between this vector and éjr(z),

dC"(z) o

T YA
O g )+ e

dar

& (2)

=220+ ] (2)¢] (2) "(z), (A4)

_dci(z)
dT

T sl
(A5)

Note that fT( 2% —0(i=1,...,n) because
47 d (E1(2)" ¢l (z)) = ” =0. The COl’l]llnCthIl of this relation
and Eq. (A5) results 1n Eq. (AD).

Using Eqgs. (A1) and (A2), the magnitude of dg“( can be
evaluated as follows:

deT v
Jj#n C’Tl(z) jT(z)
T
X [5, (z)" dCd T( )5’1(1)} ng(z) , (A6)
! T *dCT(Z) T T
@)~ () ;{@ @ =% <z>} g, A
1

2

OX_(Z/) (A11)

oz oz
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/ T /
T n r;ﬂlz \/_H X(f) 7 (Al2)
cn L1 (z) 0z
/T
Cn— 1 /CT ) / G (A13)

1_(’11 1( )/(’n(z)

where G is defined in Eq. (8) and 7' = ¢'(z). If
T (2)/cI(z) < &, we have || 42) || < Vi=IGe

APPENDIX B: A SIMPLE EXAMPLE OF A STABLE
MANIFOLD THAT IS NOT LCS

Let
dx
—=— B1
r X, (B1)
dy 2
- = B2
5=yt (B2)

be an ordinary differential equation defined on R?. This Sys-
tem admits a solution
T
e > ‘ (B3)

¢'(xy) = <X€T’ I+ y(1—e)

Its differential and the other variables are

e T 0

T
DP'(xy)=| 0 —F |, BY

(1 +y(1 - eT))
f(xy)=e™, (BS)
62T
Axy)=—---, (B6)
(14501 =en)
and

&l (x,y) = (1,0), (B7)
&(x,y) =(0,1). (B8)

Y =0 is a stable manifold of this system and it is tangent to
&} (x,y) but

E(x,0) - Vel (x,0) = 4e* (1 — ) £ 0 (B9)

for all T. Therefore, this stable manifold satisfies the condition
III, whereas it does not satisfy the condition I'V. This example
indicates that stable manifolds are not necessarily LCSs.

APPENDIX C: PROOF OF THEOREM V.1

1. Precise setting of Theorem V.1

Let M = MUOM be a C", n — 1 dimensional, compact,
connected manifold that is properly embedded in R" and
inflowing invariant under X. In terms of the Euclidean metric
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in R", TR"|,, (D TM) splits into TR"|,; = TM®N where N
is the bundle of vectors normal to TM. Let n : TR"|,, — N
be the orthogonal projection to N along TM. Note that
dim(Im ) = dim(N,) = 1 for all z € M. In terms of the nor-
mal vector to M, n(z) (||n(z)|| = 1), the orthogonal projec-
tion of veT,R"|,, to N, can be written as =mv
= (n(z) -v)n(z). Let A'(z) =D¢'(z)|;,, and B'(z)
= 1D (¢'(z)). A schematic figure to explain the two oper-
ators is shown in Fig. 5.

In terms of A’(z) and B'(z), Lyapunov types number »/(z)
and o(z) can be defined as v(z) = inf{a||B'(z)|/d'
— 0,ast — oo} and o(z) = inf{s|||A’(Z)||||B’( )| — 0,as¢
— oo}, where [|B'(z)| = SUPyer,;(, R HBH ol ‘- and A" (z)|

= SUP,er, i |‘A‘[‘(UZH>”H. Suppose v(z) <1 and o(z) <1 for all

z € M. The condition v(z) < 1 corresponds to the situation
that, at the point z, maximum stretching rate normal to M
grows exponentially fast as + — co. The second condition
a(z) < 1 corresponds to the situation that the stretching rate
normal to M dominates over that tangential to M. Note that
the condition v(z) < 1 does not depend on the choice of the
metric. In addition, if v(z) < 1 holds, then the condition
a(z) < 1 does not depend on the choice of the metric, ei-
ther.? Let M be a manifold that satisfies the above properties.

2. Proof of Theorem V.1

By using the uniformity lemma,® the Lyapunov types
numbers v(z) and o(z) attain their suprema on M, thus,
sup,ey v(2) < 1 and sup,cy, o(z) < 1. Then, there are real
constants ¢1,¢2 > 0, @ < sup,¢y, ¥(z) and § < sup,.y 0(z)
such that

|B'(z)]| < c1a', (C1)
and
A (2)|||B'(z)|° < ca, (C2)

forall>0andz € M.

Proof of Eq. (14): Note that the matrix D¢ (z)(D¢” (z))*
has the same eigenvalues as CT(z), which are ¢! (z), ..., cT(z).
Let 5! (z ) be an eigenvector that corresponds to ¢! (z) such

that \/c! (z)n! (z @)l (z) (i =1,...,n) and y!(z)-
n; T(z) = 5,, (For the relatlonshlp between the two sets of eigen-
vectors ¢! (z) and i (z), see Ref. 17). Since D¢~ (¢" (z)) =

D' (2)"', DO~ (¢ ()] (2)=E] (2)/ /T () (i=1,....n).
By using this fact,

DY@ @)w
Az
')

FIG. 5. A schematic figure to explain the two operators A’(z) and B'(z).
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B (2)|| > & (2)]|/1/ T (2). (C3)
It is because

T

IB"(z)|| = sup M7 (C4)
om0l
|B (z)n (z)|

> — C5

= (@) ©

= |B" (z)n} (2)], (C6)

= =0T (¢" (@)@}, ()
s ACIRVERC) ()

Next,

Jea@(1-l= @) <@l ©

is shown as follows. This inequality follows from the follow-
ing two inequalities:
ID¢" (2)(1 — 1), (2)]| < [IAT ()], (C10)

and

Ver@ (1= =g @ll) < D¢ ()1

Equation (C10) follows immediately from the fact (1 — =)
éT(z) € T,M because
ID¢" (2)(1 = M) (2)l| = ]AT(2) (1 = m)&, (2)]],
< [IAT @1 = m)& @),
<[IA" @),

mép(z)|. (Cl1)

(C12)

where the last inequality comes from the fact that 1 — & is
the orthogonal prOJection to TM along N,

(1 =m)& @) + |1 (2)| = 1€} (2)|* = 1. resulting in
10 -mel @ < @) =1.
Equatlon (C11) can be proved as follows:
ID" (2)(1 — n)&, (2)[| = IDY" (2)&, (2) — DY (2)n & (2)]],
(C13)
= ll/ch (@), (z "(2)n &, (2)]), (C14)
> |ly/ch (@, (@) — D" (2)n &, ()], (C15)

> \Jd @@ - 1D’ @Il @), (Cl6)
> \Jd@) (1= =g @]). c17)

Using Egs. (C3) and (C9),
(1= JI@IB"@I) /@) < 14T@). c19)
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Combining this inequality with Eq. (C2),

(1= T @IE @)L @B @] < 287 a)'~

(C19)
Note that,
1= x|, (C20)
= I=(04" @) D" ). (1)
= |70~ (¢7(2) ) D (@)l (&)
= [IB"(2)D¢" (2) (€23)
< B @) 1D¢" ()], (C24)
= |B"@)ly/c} ). (C25)
Here, the last equality holds due to Egs. (5) and (6).
Equation (C19) conjunction with Eq. (C25) results in
(1= JI@IB" @) < I8 @) 6

Using Egs. (C1) and (C26), c,{(z) can be evaluated from
below, such as

o (z) > d‘T(l - cﬁ“”cz&“—w) Jer. (€27)
Proof of Eq. (18): Noting that ||né!(z)|| = |n(z) -

El(@)], ||nél(z)|| can be evaluated as follows. Starting from

Eq. (C9) and using Eq. (C2), Eq. (C3) and ||n§£(z)\| <1,

A" ()]
(1-Im @) < s (C28)
< AT (@)|[[|1B" (2)]I, (C29)
<c|[BT(z)| 7. (C30)
Using Eq. (CI). Eq. (C30) results in (1—||ngf(z)||)
< ey $a1=9T and therefore
1o Va0 < g (a)] (©31)

holds. Since ||n&!(z)| =
implies Eq. (18).
Proof of Eq. (16). If

In(z) - £7(z)| = cosa, Eq. (C31)

cf(z)

ey (2 ( \/1 g0 >T)

forj=1,...,n—11s shown Eq. (16) immediately follows
by multiplylng |BT (z )|| (-9 o both sides of Eq. (C32)

; (C32)
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¢ ()

—5 (&)
BT ()" <
cl(z)’ 1 4 (1=8) ~(1=§)T
n 2 (1 + \/1 4c1 a )
x ||B (z)]| ", (C33)
@) |lng @) &
@ /eI@" (11— e 0atm)
% c(ll—f)d(l—gr7 (C34)
cf () - )
cp(z) 1 (1), (1-§)7
5(1+\/174c1 A )
x '@ |nel(2)| 0, (€35)
CJT(Z) (&)

_ 4c§1"€’a<lff”)

(1=8) ~(1-$)T
x a4 > (C36)
(1 - chﬁl")d“*S)T)

from Egs. (C1),(C8) and (C31).

Letj € {1,...,n — 1}. To show Eq. (C32),
|A” (2)|
T(z) < , C37
T STy (- E ) (@7
and
& () - & (2)] < \/ ] (2)||B" (2) (C38)

are used (the proofs will be given later). Combining Egs.
(C37) and (C38) with Egs. (C1), (C2),and 0 < § < 1,

& (2) - n & (2)]|E (2) - (1 = 1)& (2)] < [|A" (2)|[[|B" (2)]],
(C39)

and

@) nE @11 @) 7] @)]) < eac! a1,

(C40)

The right hand side of Eq. (C40) goes to 0 as T — oo, and,
therefore, either |£ (z) m ( ) —0 or |£ (z) - né (z)]
— 1. The latter case contradicts with the fact that f (z ) and
¢l(z) are mutually orthogonal with each other. Since
||§T( JI=1(=1,...,n), there are subsequences T,
< T2 < --- such that the limits &,(z) = lim;_ ﬁ:"(z) and
5/( 7) = 11mHOC g/ '(z) exist. Since Eq. (C31) ensures
|, ()] = 1, n(z) and &, (z) are parallel, i.e., n(z) || &,(z).
On the other hand, the latter case |£ (z) - né i(z)] = 1 results
in ||n<;/ L_ 1, which means 1 = ||n&;(z)|| = |n(z) - £;(z)]

=1[¢,(z) - &;(z)|. This contradicts the fact that ;(z) and
,(z) are orthogonal Therefore, |§ (z) - nfT( )] — 0 as
T —oo. Using Eq. (C40), the convergence rate can be
evaluated as
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1" (2) - n&l (z) ( \/1 4c) ) (C41)
Using this inequality, Egs. (C2), (C25) and (C37),
!z AT BT ()|
@ _ W@ @r o
(z)" 7§ (2) - (1 = m)&; (2)]
&)
< , (C43)
1 =1 (2) - 7& (2)]
e (C44)

1 (1-s§ —§ '
§(1+\/1 4c{t9q0- ”)

Finally let us prove Egs. (C37) and (C38) as follows.

I‘;:hja Vee {1,---,n}. Because D (z)¢" (z) = \/%nj(z),
I} (z) - D¢’ (z)(1 —n)éT(

=€) (1 - |F ()

Contrastingly,

] (z) - D" (2)(1 = m)¢] (2)| (C46)

< |D¢" (2)(1 = m)& (2)], (C47)

= AT () (1 = n)&f (2)]), (C48)

< [IAT@)|lI(1 = n)& ()], (C49)

where the second equality follows because A’ (z)

= D¢T(z)|TzM and 1 — 7 is the orthogonal projection to T,M
along N,. The above two equations end up with Eq. (C37)

& (2) - B (2)1] (2)] (C50)
=15 @)- ¢ (¢" @) (2). (€5
=& () 7 ()] /)] @) (€52)
Moreover,
& (2) - B (2)] (2)| < |B" ()] ()]l (C53)
= [B"(2)]| (C54)

These two equations result in Eq. (C38).

Proof of Eq. (C15): X(z) can be expanded with respect
to &(z)(i=1,...,n) as X(z) =31 (] (z) - X(2))¢] (2).
Note that 7X(z) = 0. Then,

0=r3" (40 X)) =D (d0) X))l o).
i ) (C55)

Using this,
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(&) -x@)rl () = =Y (2 X)) (),

(C56)
holds and its norm can be evaluated as
&0 (2) - X(2)|||mE] ()] (C57)
~1

Z (d@ x@)rd @I, (©s8)

n—1 n—1
< D1 @ - X@)P D Il (@))%, (C59)

j=1 j=1
< X(@)] Z =] (2 (C60)

If T is taken sufﬁc1ently large, the left hand side of

1- czc(ll 909 T <||né"(z)|| becomes nonzero. Therefore,

1X(z)]], ZIIné‘
(z)] <

T
X ’
60 (z) - X(o T

(Co6l)

—1
Z 1] (z)

1— 6'26‘(117§>6A1(17‘6)T ’

< IX(@) (C62)

If Z;’;ll ||7rg“jT(z)||2 can be evaluated from above, this
proof is done. Note that ||7I’T( )| = In(z) - ET( ) (L <j

2 L.
<n) and 1 =n(z) n(z)| *Z, | In(z) - fJT( )|°. This is
because ij(z) (1 <j < n) is an orthonormal basis and n(z)

can be expanded as n(z) :Z;:l(ij(z) ~n(z))«ij(z). By

these identities, 1 — |\nf£(z)||2 = Z}’;ll ||néjr(z)||2. Using
Eq. (C31), we obtain
O 2 2
DG @I =1 =& (2)] (C63)
=
= (1= = @) (1 + I @) (o)
<2(1- =& (=) (C65)
<2y a1 (C66)
By combining Egs. (C60) and (C66), we obtain
, [2¢ C<11 )d(l $)T
| (2) - X(2)] < ||X(2 )|| (C67)

( §) ~(1-5)T °
O

a
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