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High-dimensional chaotic dynamical systems can exhibit strongly transient features. These are

often associated with instabilities that have a finite-time duration. Because of the finite-time charac-

ter of these transient events, their detection through infinite-time methods, e.g., long term averages,

Lyapunov exponents or information about the statistical steady-state, is not possible. Here, we uti-

lize a recently developed framework, the Optimally Time-Dependent (OTD) modes, to extract a

time-dependent subspace that spans the modes associated with transient features associated with

finite-time instabilities. As the main result, we prove that the OTD modes, under appropriate condi-

tions, converge exponentially fast to the eigendirections of the Cauchy–Green tensor associated

with the most intense finite-time instabilities. Based on this observation, we develop a reduced-

order method for the computation of finite-time Lyapunov exponents (FTLE) and vectors. In high-

dimensional systems, the computational cost of the reduced-order method is orders of magnitude

lower than the full FTLE computation. We demonstrate the validity of the theoretical findings on

two numerical examples. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984627]

For a plethora of dynamical systems transient phenom-

ena—usually associated with finite-time instabilities—

define the most important aspects of the response.

Examples include rare chaotic bursts in turbulent sys-

tems, extreme events in nonlinear waves, and strong tran-

sients in complex networks. In such systems, the rare

transient responses coexist with a high dimensional cha-

otic attractor where the system spends most of its lifetime.

Because of the rare character of the transient dynamics, it

is particularly challenging to extract modes that capture

them using traditional methods for order reduction and

base selection. Here, we prove that a recently developed

method, the optimally time-dependent (OTD) modes, pro-

vides a time-dependent basis that spans the directions

associated with the most intense instabilities, even if these

have short-time character. Therefore, the derived modes

encode the strongly time-dependent features of the associ-

ated instabilities. We demonstrate the developed frame-

work through the computation of finite-time Lyapunov

exponents (FTLE) utilizing only the projected dynamics

along the derived modes.

I. INTRODUCTION

For a plethora of dynamical systems transient phenom-

ena—usually associated with finite-time instabilities—define

the most important aspects of the response. Examples include

chaotic fluid systems,4,16,17 nonlinear waves,8,9 and net-

works.7,38 For the analysis of such systems and the formulation

of prediction and control algorithms, it is critical to identify

modes associated with these strongly transient features. A first

important challenge towards identifying these modes is the

high-dimensionality of the response. This high-dimensionality

does not necessarily imply that the transient features are also

high-dimensional. In fact, it is often the case that the modes

associated with transient features are very few. However,

because of the broad spectrum of the response it is hard to

identify them using energy-based criteria. An additional chal-

lenge is associated with the intrinsically time-dependent char-

acter of these features which is, in general, non-periodic and

makes it essential to consider arbitrary time-dependence for

these modes as well.

In the context of dynamical systems, numerous

approaches have been developed to characterize the transient

features associated with non-periodic behavior. The notion of

Lagrangian Coherent Structures (LCS) emerged from the

fluid dynamics problem of mixing as a general method to

characterize dynamical systems with arbitrary time-depen-

dence.20,22,26 The method quantifies finite-time instabilities

through the explicit computation of the maximum eigenvalue

of the Cauchy–Green tensor on every location of the phase

space. For low-dimensional systems, it provides a complete

and unambiguous description of the finite-time instabilities

by identifying parts of the phase space associated with such

responses. However, given the fast growth of the computa-

tional cost with respect to the phase space dimensionality it is

not possible to apply it for very high- or infinite-dimensional

systems in order to characterize finite-time instabilities.

For such problems, other approaches focusing more on

the description of the system attractor rather than the whole

phase space have also been developed in the context of
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uncertainty quantification and model order reduction.

Specifically, the notion of dynamical orthogonality5,6,33,34

allows for the computation of time-dependent, dynamically

orthogonal (DO) modes that lead to reduced-order descrip-

tion of chaotic attractors with low-intrinsic dimensionality

but with strong time-dependence.31,32 The same notion can

be combined with stochastic closures35,37 in order to quantify

statistics in time-dependent subspaces for turbulent dynamics

systems with very broad spectra (or high intrinsic dimension-

ality) and strongly transient features.27,36 In all of these stud-

ies, the effectiveness of the derived DO modes in capturing

transient responses was demonstrated numerically and very

few theoretical studies related to this problem were con-

strained in very specific setups. One such case is the study of

linear parabolic (stable) equations in Ref. 28 where it was

shown that the DO modes tend to capture the most energetic

directions. However, there is no general result indicating

where the DO modes converge for an arbitrary (nonlinear)

dynamical system.

To circumvent this limitation, a minimization principle

was introduced in Ref. 2 that allows for the derivation of

equations that evolve a time-dependent set of modes, the

Optimally Time Dependent (OTD) modes, along a given tra-

jectory of the system. These modes are identical to those

obtained from the DO equations in the deterministic limit,

i.e., for the case where the stochastic energy goes to zero. To

this end, the OTD modes can be seen as the deterministic

analog of DO modes. For sufficiently long times where the

system reaches an equilibrium, it was proven in Ref. 2 that

the OTD modes converge to the most unstable directions of

the system in the asymptotic limit. Moreover, the same

modes were utilized in Ref. 16 to formulate predictors of

extreme events for Navier-Stokes equations and nonlinear

wave problems.

Despite their success in numerically capturing transient

phenomena associated with finite-time instabilities, the exact

relation between OTD modes (or DO modes) and finite-time

instabilities remains an open problem. In this work, we pro-

vide a rigorous link between the OTD modes and finite-time

instabilities, by showing that under general conditions the

OTD modes converge exponentially fast to the eigendirec-

tions of the Cauchy–Green tensor associated with the largest

eigenvalues, i.e., with the largest finite-time Lyapunov expo-

nents. Thus, we prove that the OTD modes are able to extract

over a finite-time interval the modes associated with the

most intense finite-time instabilities or the most pronounced

transient phenomena. Note, that such convergence does not

depend on the dimensionality of the system or the intrinsic

dimensionality of the attractor.

Apart from the fundamental implications of this result on

the formulation of reduced-order algorithms for the predic-

tion and control of transient phenomena, there is a direct

application on the computation of the maximum finite-time

Lyapunov exponents for high- or infinite-dimensional sys-

tems. Specifically, using the OTD modes we formulate a

reduced-order framework that allows, under mild conditions,

the computation of finite-time Lyapunov Exponents for gen-

eral dynamical systems without having to compute the full

Cauchy–Green tensor. We demonstrate the derived algorithm

in two systems, the Arnold-Beltrami-Childress (ABC) flow

and the Six-dimensional Charney-DeVore (CDV) model with

regime transitions. In both cases, we examine the effective-

ness of the reduced-order method and study limitations and

applicability.

II. PRELIMINARIES AND NOTATION

We consider the system of differential equations

_z ¼ f ðz; tÞ; z 2 Rn; t 2 I ¼ t0; t0 þ T½ �; (1)

where f : U � I ! Rn is a sufficiently smooth vector field.

Let Ft
t0

with t 2 I denote the associated flow map,

Ft
t0

: U ! U

z0 7! zðt; t0; z0Þ; (2)

where zðt; t0; z0Þ is a trajectory of system (1) with the initial

condition z0. The linearized system around the trajectory

zðtÞ � zðt; t0; z0Þ satisfies the equation of variations,

_v ¼ LðzðtÞ; tÞv; vðtÞ 2 Rn; t 2 I ¼ t0; t0 þ T½ �; (3)

where Lðz; tÞ :¼ rzf ðz; tÞ. The deformation gradient rFt
t0

is

the fundamental solution matrix for the linearized dynamics

such that the solutions vðtÞ � vðt; t0; v0Þ of the equation of

variations satisfy

vðt; t0; z0Þ ¼ rFt
t0
ðz0Þv0; with t 2 I ¼ t0; t0 þ T½ �: (4)

A. Finite-time Lyapunov exponents

To measure the growth of infinitesimal perturbations in

the phase space, we use the right Cauchy–Green strain
tensor

Ct
t0
¼ ðrFt

t0
ÞTrFt

t0
;

and the left Cauchy–Green strain tensor

Bt
t0
¼ rFt

t0
ðrFt

t0
ÞT ; (5)

where T denotes matrix transposition. Let nðt; t0; z0Þ 2 Rn

denote the eigenvectors of the right Cauchy–Green strain

tensor, so that

Ct
t0
ðz0Þniðt; t0; z0Þ ¼ kiðt; t0; z0Þniðt; t0; z0Þ; i ¼ 1;…; n;

where kiðt; t0; z0Þ are the corresponding eigenvalues.

Similarly, denote the eigenvectors of the left Cauchy–Green

strain tensor by giðt; t0; z0Þ 2 Rn and their corresponding

eigenvalues by liðt; t0; z0Þ, so that

Bt
t0
ðz0Þgiðt; t0; z0Þ ¼ liðt; t0; z0Þgiðt; t0; z0Þ; i ¼ 1;…; n:

When no confusion may arise, we omit the dependence of

the eigenvalues and eigenvectors on ðt; t0; z0Þ for notational

simplicity. Since the Cauchy–Green strain tensors are sym-

metric and positive definite, their eigenvalues are real and
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positive, ki; li 2 Rþ. Furthermore, the eigenvectors are

orthogonal, i.e.,

hni; nji ¼ hgi; gji ¼ dij; i; j ¼ 1;…; n;

where h�; �i denotes the Euclidean inner product.

It is straightforward to show that the right and left ten-

sors have the same eigenvalues, ki ¼ li. Specifically, consid-

ering the definition of the right Cauchy–Green tensor

eigenvalues, ðrFt
t0
ÞTrFt

t0
ni ¼ kini, we multiply the equation

with rFt
t0

from the left to obtain

Bt
t0
ðrFt

t0
niÞ ¼ kiðrFt

t0
niÞ: (6)

Thus, the left and right Cauchy–Green strain tensors have

the same set of eigenvalues. Finally, using the singular value

decomposition of the deformation gradient, one can show

the well-known relation that

rFt
t0
ni ¼

ffiffiffiffi
ki

p
gi; i ¼ 1;…; n; (7)

(see, e.g., Ref. 23). In the following, we order the

Cauchy–Green eigenvalues in a descending order,

k1 > k2 > � � � > kn > 0: (8)

The finite-time Lyapunov exponents (FTLEs) of system (1)

corresponding to the trajectory zðt; t0; z0Þ and the time inter-

val ½t0; t0 þ T� are defined as

Ki t0 þ T; t0; z0ð Þ ¼ 1

T
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki t0 þ T; t0; z0ð Þ

p
;

i ¼ 1; 2;…; n:

(9)

Note that FTLEs are well-defined for any finite integra-

tion time T. Under certain assumptions, the limit T !1
also exists.30

B. Optimally time-dependent (OTD) modes

We give an overview of the OTD modes2 for general

dynamical systems. The OTD modes represent a reduced-

order set of r time-dependent orthonormal modes, UðtÞ
¼ ½u1ðtÞ; u2ðtÞ;…; urðtÞ�, that minimize the difference

between the action of the infinitesimal propagator rFtþdt
t on

uiðtÞ and its value at time tþ dt. More specifically, we seek

to minimize the functional

F ¼ 1

dtð Þ2
Xr

i¼1

jjui tþ dtð Þ � rFtþdt
t ui tð Þjj2; dt! 0; (10)

with the constraint that the time-dependent basis satisfies the

orthonormality conditions

huiðtÞ; ujðtÞi ¼ dij; i; j ¼ 1;…; r: (11)

Using Taylor series expansions, we have

uiðtþ dtÞ ¼ uiðtÞ þ dt _ui þOðdt2Þ; (12)

rFtþdt
t ¼ I þ dt LðzðtÞ; tÞ þ Oðdt2Þ; (13)

where I is the identity matrix. Replacing the above equations

into the functional (10) results in

F _u1; _u2;…; _urð Þ ¼
Xr

i¼1

���� @ui tð Þ
@t
� L z tð Þ; tð Þui tð Þ

����
2

: (14)

We emphasize that the minimization of the function

(14) is considered only with respect to the time-derivative

(rate of change) of the basis, _UðtÞ; instead of the basis U(t)
itself. This is because we do not want to optimize the sub-

space that the operator is acting on, but rather find an optimal

set of vectors, _UðtÞ; that best approximates the linearized

dynamics in the subspace U. We then solve the resulted

equations and compute U(t). We will refer to these modes as

the optimally time-dependent (OTD) modes, and the space

that these modes span as the OTD subspace. By utilizing the

minimization principle and taking into account the orthonor-

mality constraint, we obtain the following theorem (proved

in Ref. 2.)

Theorem 2.1. A one parameter family of vectors
uiðtÞ 2 Rn; i ¼ 1; 2;…; r, minimizes the functional (14) and
satisfies the orthonormality condition (11) if and only if

@U

@t
¼ LU � UUT LU; (15)

where U tð Þ ¼ u1 tð Þ; u2 tð Þ;…; ur tð Þ½ � 2 Rn�r:
Equation (15) is the evolution equation for the OTD

modes. It was proven in Ref. 2 that for the case of a time

independent operator, L, the subspace spanned by the col-

umns of U(t) converges asymptotically to the modes associ-

ated with the most unstable directions of the operator L.

The OTD modes were also used to capture the transient

non-normal growth of instabilities. In Fig. 1, we recall a sys-

tem from Ref. 2 exhibiting a non-normal growth (cf. Ref. 2

for the details). A typical trajectory of the system, shown in

the left panel, has an almost periodic behavior where each

cycle exhibits three distinct regimes: (A) an exponential

growth in the z3 direction, (B) a non-normal growth in the

z1 � z2 plane with simultaneous decay in the z3 direction, and

(C) exponential decay in the z1 � z2 plane to the origin. This

configuration allows for the repeated occurrence of exponen-

tial (regime A) and non-normal (regime B) instabilities.

Due to the exponential instability close to the origin, the

system undergoes chaotic transitions between positive and

negative values of z3. We compute the instantaneous growth

rate corresponding to the direction of a single OTD mode.

The OTD mode initially captures the severe exponential

growth and subsequently captures the non-normal growth. On

the other hand, the real part of the eigenvalues of the full line-

arized operator can only capture the exponential growth, even

in regimes where it is not relevant, while they completely

miss the non-normal growth. The maximum largest singular

value r of the matrix L exhibits a similar behavior.

The OTD modes share some fundamental characteristics

of other stability measures. In Sec. III, we show the relation

between the OTD modes and the finite-time Lyapunov

vectors. In Appendix A, we also discuss the connection

between them and the Dynamically Orthogonal (DO) modes
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introduced in Ref. 33. Their connection with covariant

Lyapunov vectors18 remains to be explored.

III. ALIGNMENT OF THE OTD MODES WITH THE
DOMINANT CAUCHY–GREEN STRAIN
EIGENVECTORS

Here, we prove that under proper assumptions, the OTD

modes not only capture the unstable directions of steady lin-

ear operators, but also the transient instabilities associated

with time-dependent operators. More specifically, we prove

that the OTD subspace converges exponentially fast to the

eigenspace associated with the dominant eigenvalues of the

Cauchy–Green strain tensor. The latter describes the finite-

time growth of infinitesimal perturbations in the phase space.

For what follows, we will need to measure the distance

between two subspaces of the same dimensionality. To this

end, we need the following definitions.

Definition 3.1. Two r-dimensional linear subspaces of
Rn spanned by the columns of U 2 Rn�r and V 2 Rn�r are
equivalent if there is an invertible matrix R 2 Rr�r such that
U¼VR.

The next definition provides a quantity for measuring

the “angle” between two subspaces.

Definition 3.2. For two r-dimensional linear subspaces
of Rn spanned by the columns of U ¼ ½u1; u2;…; ur� 2 Rn�r

and V ¼ ½v1; v2;…; vr� 2 Rn�r, we define the distance
function

cU;V ¼
jjUTVjj

r1=2
; (16)

where jj � jj denotes the Frobenius norm.
Note that the entries of UTV are the inner products

between ui’s and vj’s, i.e., ðUTVÞij ¼ hui; vji. The following

lemma shows that the equivalence of two subspaces can be

deduced from the distance cU;V .

Lemma 3.1. Given a subspace defined by the orthonor-
mal columns of U 2 Rn�r, and a subspace defined by the
unit-length (but not necessarily orthonormal) columns of
V 2 Rn�r, then we always have cU;V � 1. Moreover, the two
subspaces spanned by the columns of U and V are equivalent
if and only if cU;V ¼ 1.

Proof. By the orthogonal projection theorem, there are

hi 2 Rr and bi 2 Rn such that vi ¼ Uhi þ bi and UTbi ¼ 0

for i ¼ 1; 2;…; r. Note that since vi are unit length, we have

1 ¼ jjvijj2 ¼ jjhijj2 þ jjbijj2; i ¼ 1; 2;…; r:

Defining H ¼ ½h1j � � � jhr� and B ¼ ½b1j � � � jbr�, we have

V ¼ UH þ B. This implies UTV ¼ H and hence

jjUTVjj2 ¼ jjHjj2 ¼
Xr

i¼1

jjhijj2 ¼ r �
Xr

i¼1

jjbijj2 ¼ r � jjBjj2:

Therefore, c2
U;V ¼ 1� jjBjj2=r. Note that the subspaces colðUÞ

and colðVÞ are equal if and only if jjBjj ¼ 0. Therefore,

colðUÞ ¼ colðVÞ if and only if cU;V ¼ 1. We also note that if

the two subspaces are not equivalent cU;V < 1: �

To prove the main theorem, it is more convenient to

work with the subspace spanned by the linearized flow (3),

instead of the OTD subspace. The following result states that

the two subspaces are equivalent.

Theorem 3.1. Let VðtÞ 2 Rn�r solve the equation of
variations (3) and UðtÞ 2 Rn�r with UTU ¼ I solve the OTD
equation (15). Assume that the two subspaces spanned by the
columns of U and V are initially equivalent, i.e., there is an
invertible matrix T0 2 Rr�r such that V0 ¼ U0T0. Then,
there exists a one-parameter family of linear transformations
T(t) such that VðtÞ ¼ UðtÞTðtÞ for all t and T(t) satisfies the
differential equation

_T ¼ LrðtÞT; Tðt0Þ ¼ T0; (17)

where Lr ¼ UTLU is the orthogonal projection of L to the
linear subspace spanned by the columns of U.

Proof. See Theorem 2.4 in Ref. 2. �

Based on this equivalence, it is sufficient to study the

behavior of the subspace evolved under the time-dependent

linearized dynamics (3) in order to understand the properties

of the OTD subspace. Specifically, we use this lemma to

prove the main result of this paper, namely, that under a

spectral gap condition, the OTD subspace will converge to

the dominant directions of the Cauchy–Green strain tensor.

Theorem 3.2. Let niðt; t0; z0Þ and giðt; t0; z0Þ ði ¼ 1;
2;…; nÞ denote the eigenvectors of the right and left
Cauchy–Green strain tensors, respectively, with correspond-
ing eigenvalues k1ðt; t0; z0Þ � k2ðt; t0; z0Þ � � � � � knðt; t0; z0Þ.
Moreover, let UðtÞ 2Rn�r solve the OTD equation (15)
along the trajectory zðt; t0; z0Þ. Assume that

(i) The subspace U(t) is initiated so that each basis element
uiðt0Þ has a non-zero projection on at least one of the
eigenvectors niðt; t0; z0Þ; i ¼ 1; 2;…; r for all times t.

FIG. 1. An example of the OTD modes

on the analysis of transient instabil-

ities. Left: A trajectory of the dynami-

cal system colored according to the

state variable z3. The non-normal vec-

tor field for z3 ¼ 0 is also shown.

Right: The three eigenvalues of the lin-

earized operator are plotted with blue

dashed curves, while the growth rate of

the single OTD mode is shown with

orange color. The maximum eigen-

value of the singular value decomposi-

tion of the linearization along the

trajectory is also shown.
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(ii) The trajectory zðt; t0; z0Þ is hyperbolic in the sense that
there exist constants a1 � a2 � � � � � ar > arþ1 �
� � � � an and Ki > 0 ði ¼ 1; 2;…; nÞ such that

lim
t!1

ki t; t0; z0ð Þ
eait

¼ Ki: (18)

Then, the subspace U(t) aligns with the r most domi-
nant left Cauchy–Green strain eigenvectors, giðt; t0;
z0Þ; i ¼ 1;…; r, exponentially fast as t!1.

Proof. Based on Lemma 3.1 the subspace spanned by

the OTD modes is equivalent to the subspace that we obtain

if we evolve VðtÞ ¼ ½v1ðtÞ;…; vrðtÞ� using the linearized

dynamics (3). We represent the initial condition for the

equation of variations (3) as Vðt0Þ ¼ ½v01
; v02

;…; v0r
� and

express it in terms of the orthonormal strain eigenbasis

fniðt; t0; z0Þg as

v0j
¼
Xn

i¼1

hv0j
; niðt; t0; z0Þiniðt; t0; z0Þ; j ¼ 1;…; r: (19)

Then, Eqs. (4) and (7) applied to Eq. (19) yield

vjðt; t0; z0Þ ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðt; t0; z0Þ

p
hv0j

; niðt; t0; z0Þigiðt; t0; z0Þ;

j ¼ 1;…; r:

We then have

hvjðt; t0; z0Þ; gkðt; t0; z0Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kkðt; t0; z0Þ

p
hv0j

; nkðt; t0; z0Þi;
j; k ¼ 1;…; r:

Moreover,

hvjðt; t0; z0Þ; vjðt; t0; z0Þi ¼
Xn

i¼1

kiðt; t0; z0Þhv0j
; niðt; t0; z0Þi2;

j ¼ 1;…; r:

Based on this last equation, the cosine of the angle

avj;gk
ðt; t0; z0Þ between the vector vjðt; t0; z0Þ and the eigen-

vector gkðt; t0; z0Þ of Bt
t0
ðz0Þ obeys the relation

cos avj;gk
¼ hvj t; t0; z0ð Þ; gki
jjvj t; t0; z0ð Þjj

¼
ffiffiffiffiffi
kk

p
hv0j

; nkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 kihv0j

; nii2
q : (20)

Identity (20) and Definition 3.2 yield

rc2
v;g ¼

Xr

j¼1

Xr

k¼1

kkhv0j
; nki2Pn

i¼1 kihv0j
; nii2

¼
Xr

j¼1

Pr
k¼1 kkhv0j

; nki2Pn
i¼1 kihv0j

; nii2
¼
Xr

j¼1

Aj

Aj þ Bj
: (21)

where

Aj ¼
Xr

k¼1

kkhv0j
; nki2 � kr

Xr

k¼1

hv0j
; nki2;

Bj ¼
Xn

i¼1

kihv0j
; nii2 � krþ1

Xn

i¼rþ1

:hv0j
; nii2

Note that assumption (ii) implies limt!1 krþ1ðt; t0; z0Þ=
krðt; t0; z0Þ ¼ 0 since

lim
t!1

krþ1 t; t0; z0ð Þ
kr t; t0; z0ð Þ

¼ lim
t!1

krþ1 t; t0; z0ð Þ=earþ1t

kr t; t0; z0ð Þ=eart

earþ1t

eart
;

¼ Krþ1

Kr
lim
t!1

e arþ1�arð Þt:

As a consequence, we obtain from the last inequality the

estimate

rc2
v;g ¼

Xr

j¼1

1

1þ Bj

Aj

�
Xr

j¼1

1

1þ krþ1

kr

Pn
i¼rþ1 hv0j

; nii2Pr
k¼1 hv0j

; nki2
:

(22)

Note that
Pr

k¼1 hv0j
; nki2 > 0 from the first assumption.

Therefore, for the asymptotic limit t!1, we have

c2
v;g � 1:

Note that the way we have defined the two subspaces satisfy

the assumptions of Lemma 3.1 and therefore we always have

c2
v;g � 1. Thus, c2

v;g ¼ 1 which implies that the two subspaces

are equivalent. This completes the proof. �

We point out that the hyperbolicity condition (ii) is not a

necessary condition. In fact, as long as the ratio krþ1ðtÞ=krðtÞ
tends to zero asymptotically, the alignment takes place [see

Eq. (22)].

IV. EIGENVALUE CROSSING AND OTD MODES

Theorem 3.2 shows that under appropriate assumptions

the OTD modes converge exponentially fast to the eigen-

space of the left Cauchy–Green strain tensor associated with

the largest Lyapunov exponents. This convergence, however,

may be interrupted when the smallest eigenvalue spanned by

the OTD modes crosses with the one that is not being

spanned. In Fig. 2, we illustrate this situation. The green

FIG. 2. Evolution of the principal eigenvector (red) of the Cauchy–Green

tensor. When eigenvalue crossing occurs, the rate of change becomes

unbounded. This is not a problem if all the eigenvectors are resolved but it is

important if we evolve only the dominant eigenvectors as it is the case with

the OTD modes.
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curve denotes the trajectory of the system, while the ellipses

indicate the principal axes of the left Cauchy–Green strain

tensor. Assuming that we are resolving only one OTD mode,

after sufficient time this must have converged to the correct

principal direction (red arrow). As we go through the critical

time instant where the ellipsoid becomes a circle due to

eigenvalue crossing, we observe that the principal directions

are instantaneously ill-defined. Immediately after the eigen-

value crossing, the dominant principal direction undergoes

a 90	 internal rotation compared to immediately before

the crossing. The OTD modes, on the other hand, evolve

smoothly and are unable to capture such an instantaneously

unbounded transition.

In the context of shearless Lagrangian coherent struc-

tures, these eigenvalue crossings are referred to as the

Cauchy–Green singularities and play an important role in

the computation of jet cores.12 In a more general application,

the significance of these singularities is pointed out by

Lancaster24 who derived the rate of change of the eigenvec-

tors of an arbitrary symmetric matrix, proving the following

theorem.

Theorem 4.1. The rate of change of the eigenvectors
RðtÞ 2 Rn�n of a symmetric matrix GðtÞ 2 Rn�n is described
by the equation

_R ¼ RK; (23)

where K(t) is a skew-symmetric matrix given by

Kij tð Þ ¼
~Gij tð Þ þ ~Gji tð Þ

2 kj tð Þ � ki tð Þ
� � ; i 6¼ j; (24)

with ~GðtÞ ¼ RTðtÞ _GðtÞRðtÞ and kiðtÞ being the eigenvalues of
G(t).

Proof. See Appendix B or Ref. 24. �

As ki approaches kj, _R becomes unbounded, consistent

with the description given previously. This is not a problem

if both of the eigen-directions corresponding to ki and kj are

being spanned/resolved by the OTD subspace. The corre-

sponding OTD subspace will just evolve smoothly in this

case. However, if the eigenvalue crossing occurs with an

eigendirection that is not being spanned by the OTD sub-

space, the latter will have to instantaneously “steer” towards

a direction that is orthogonal to it.

This is not possible since it can be easily seen that for

any bounded operator L, the rate of change of the corre-

sponding OTD modes [Eq. (15)] is bounded

_U ¼ QLU ) jj _U jj � jjQjjjjLjjjjUjj; (25)

where Q is a projection operator (therefore bounded) and U
is also bounded. If the eigenvalue crossing involves modes

already contained in U, then there is no need for infinite

rate of change of the modes, because existing modes just

exchange roles (or indices). However, if there is eigen-

value crossing between a mode that is contained in U
and another one that is not contained then it is essential to

have an evolution of the direction in U to an orthogonal

direction (not contained in U) and this cannot happen

instantaneously.

Therefore, we see that the convergence of the OTD

modes can be compromised if there are eigenvalue crossings

involving directions not spanned by the OTD subspace. Note

however that such eigenvalue crossing will only influence

the convergence of the OTD mode associated with the small-

est finite-time Lyapunov exponent captured within the OTD

subspace. Assuming that there are no subsequent eigenvalue

crossings with larger eigenvalues, one expects that the OTD

subspace would capture the directions associated with the

largest finite-time Lyapunov exponents.

Thus, for systems where eigenvalue crossing occurs, a

larger OTD subspace guarantees that the principal axes asso-

ciated with the largest Lyapunov exponents will be captured

by the OTD modes. Note that such convergence does not
depend on the physical dimension of the system or the intrin-
sic dimension of the underlying attractor. This is particularly

important for systems where instabilities of isolated modes

emerge out of high-dimensional stochastic backgrounds, such

as intermittent dissipation bursts in turbulence16 or focusing

instabilities occurring in nonlinear stochastic waves.9,16

As we demonstrate in Sec. V, for many practical appli-

cations, it is sufficient to compute just the maximum finite-

time Lyapunov exponent so what is important is to have the

most dominant direction of the Cauchy–Green tensor cap-

tured by the OTD subspace. The benefits of such an approach

are, of course, more important as the dimension n of the

underlying system increases.

V. REDUCED-ORDER COMPUTATION OF FINITE-TIME
LYAPUNOV EXPONENTS

As shown above, the OTD modes are able to extract the

transiently most unstable directions independent of the

attractor dimensionality. Consequently, the OTD basis can

be used for the reduced-order approximation of finite-time

Lyapunov exponents (FLTE) of high-dimensional systems.

Specifically, we apply the following approximation scheme

for the computation of a FTLE corresponding to a time inter-

val of length T.

(1) Advect the trajectory zðt; t0; z0Þ for an interval t 2
½t0; t0 þ T� where z0 is the initial point.

(2) Compute the r-dimensional OTD subspace U(t) corre-

sponding to this trajectory.

(3) Compute the low-dimensional fundamental solution

matrix Ut
t0
2 Rr�r using the reduced linear dynamical

system

d

dt
Ut

t0
¼ Lr z tð Þ; tð ÞUt

t0
; Ut0

t0
¼ I; t 2 t0; t0 þ T½ �; (26)

where Lrðz; tÞ ¼ UðtÞTLðz; tÞUðtÞ is the projection of the

full linearized operator L onto the OTD subspace, which

contains the most unstable directions.

(4) Compute the reduced-order finite-time Lyapunov

exponents,

Ci t0 þ T; t0; z0ð Þ ¼ 1

T
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci t0 þ T; t0; z0ð Þ

p
; i ¼ 1;…; r;

(27)
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where ci denotes the eigenvalues of the reduced-order

right Cauchy–Green strain tensor ðUt0þT
t0
Þ>Ut0þT

t0
, ordered

such that c1 � c2 � � � � � cn.

The described algorithm allows for the computation of

FTLE by solving for each initial point, z0, one n-dimensional

equation, as well as additional r equations which are

n-dimensional for the OTD subspace. This cost has to be

summed together with the solution of the reduced-order lin-

ear system. To this end, we have the total cost for the

reduced-order and full algorithms:

• Full-order calculation cost: ðnþ 1Þ � n consisting of n þ 1

equations of dimension n as follows:

_z ¼ f ðz; tÞ ðn equationsÞ; (28a)

d

dt
rFt

t0
z0ð Þ ¼ L z tð Þ; tð ÞrFt

t0
z0ð Þ n� n equationsð Þ: (28b)

• Reduced-order calculation cost: n� ðr þ 1Þ þ r2 consist-

ing of r þ 1 equations of dimension n and r equations of

dimension r as follows:

_z ¼ f ðz; tÞ ðn equationsÞ; (29a)

_U ¼ LðzðtÞ; tÞU � UðUTLðzðtÞ; tÞUÞ ðn� r equationsÞ;
(29b)

d

dt
Ut

t0
¼ Lr z tð Þ; tð ÞUt

t0
r � r equationsð Þ: (29c)

We observe that the cost of computing FTLE using the

full system is Oðn2Þ. The computational cost of the reduced-

order FTLE, however, is OðnÞ for fixed r. In principle, the

dimension r of the reduced system can be as low as 1. But,

as we will see in what follows, a one-dimensional OTD sub-

space may lead to false troughs in the FTLE field. A higher

dimensional OTD subspace returns more accurate estimation

of the FTLE field and often circumvents the false troughs.

Figure 3 shows the computational cost of the full FTLE

calculation versus the reduced-order FTLE calculation. Note

that for low-dimensional systems (small n) the reduction in

the computational cost is not significant. However, as the

system dimension increases (n
 r), the computational cost

of the reduced-order FTLE can be orders of magnitude lower

than the full FTLE computations.

A. The ABC flow

As the first example, we consider the ABC

(Arnold–Beltrami–Childress) flow with three dimensional

velocity field

_z1 ¼ A sin ðz3Þ þ C cos ðz2Þ;
_z2 ¼ B sin ðz1Þ þ A cos ðz3Þ;
_z3 ¼ C sin ðz2Þ þ B cos ðz1Þ;

(30)

which is an exact solution of the Euler equation for the ideal

incompressible fluids.1 The ABC flow has served as a proto-

type example for testing numerical methods for computing

Lagrangian coherent structures.14,15,19 Here, we set A ¼
ffiffiffi
3
p

;

B ¼
ffiffiffi
2
p

, and C¼ 1 which allows for the existence of chaotic

Lagrangian trajectories.19

We compute the FTLE on a 251� 251 grid of initial con-

ditions on each face of the cube ½0; 2p�3 with an integration

time of length T¼ 8. We use finite differences to approximate

the deformation gradientrFt0þT
t0 . To increase the finite differ-

ence accuracy, we use six auxiliary grids ðz0;16h; z0;26h; z0;3

6hÞ around each grid point z0 ¼ ðz0;1; z0;2; z0;3Þ. The parame-

ter h controls the accuracy of the finite differences and is set

to h ¼ 10�8 in the following. We refer to Refs. 13 and 25 for

further details on the approximation of the deformation gradi-

ent. Once the deformation gradient is approximated, comput-

ing the Cauchy–Green strain tensor and consequently the

FTLE is straightforward. Note that the deformation gradient

can also be obtained by numerically integrating the equation

of variations (3).

To compute the reduced-order FTLE, we numerically

integrate system (29) from the initial grid points z0 with an

integration time of length T. The initial condition U(0) for

the OTD equation (29b) is the r most dominant eigenvectors

of the symmetric linear operator at t¼ 0, i.e., Ls ¼ ðLðz0; 0Þ
þLðz0; 0ÞTÞ=2. This choice of the OTD initial condition is

made since these eigenvectors are the instantaneously most

unstable directions.21

Figure 4 shows the reduced-order FTLE fields using

OTD reduction of sizes r¼ 1 (left column) and r¼ 2 (middle

column). The true FTLE field (right column) is also shown

for comparison. Each row of the figure shows a different

cross section of the field. For r¼ 2, the reduced-order FTLE

is close to the true FTLE field. This is also true qualitatively

for r¼ 1. However, for r¼ 1, the reduced FTLE exhibits

additional troughs that do not exist in the true FTLE field.

We demonstrate in Fig. 5 that these false troughs occur

when there is a crossing (or near crossing) between the first and

second most dominant eigenvalues of the right Cauchy–Green

tensor, i.e., k1 and k2. Recall that this eigenvalue crossing vio-

lates condition (ii) of Theorem 3.2 and hence, the discrepancy

FIG. 3. The computational cost of the FTLE using the full system (28) (red

circles), and the reduced system (29) with r¼ 1 (black diamonds), r¼ 2

(blue crosses), and r¼ 3 (green squares). The integer n is the system dimen-

sion. The computational cost is measured as the number of scalar ODEs that

need to be solved for each case.
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between the reduced-order FTLE and the true FTLE is

expected. The false troughs are eliminated as we increase the

dimension of the OTD reduction from r¼ 1 to r¼ 2. This is

due to the fact that there is no eigenvalue crossing between k2

and k3.

The above observation is demonstrated in Fig. 5 where

the reduced-order FTLEs at two select points are compared

against the true FTLE as the integration time T varies. In Fig.

5(a), the initial point z0 ¼ ð2:0; 0:6; 0:0Þ is chosen to be at

one of the false troughs. An eigenvalue crossing occurs at

approximately T¼ 0.2. For advection times before T¼ 0.2,

both one- and two-dimensional reductions follow the largest

FTLE very closely. However, near the eigenvalue crossing

the most dominant eigenvector of the Cauchy–Green strain

tensor undergoes rotation with an unbounded rate. As demon-

strated in inequality 25, the one-dimensional OTD reduction

cannot follow such rapid rotation. This is confirmed in Fig.

5(a) where it can be seen that the FTLE obtained from the

one-dimensional OTD reduction, after T¼ 0.2, follows the

second most dominant FTLE instead of undergoing a rapid

change that is required to follow the most dominant FTLE.

Near T¼ 1, the FTLE of the one-dimensional reduction

departs from non-dominant FTLEs and starts increasing. This

behavior is to be expected since in the remaining advection

time no eignevalue crossing occurs and as a result the one-

dimensional reduction continues to recover to converge to the

most dominant eigenvector—however slowly.

The two-dimensional OTD reduction, however, recovers

much faster compared to the one-dimensional OTD reduction

after T¼ 0.2. We observe that the two eigenvalues of OTD

(r¼ 2) approach each other nearly at T¼ 0.5 causing in a rela-

tively rapid repulsion of these two eigen-directions. This repul-

sion results in a rapid rotation of the dominant OTD vector

towards the dominant eigen-direction of the Cauchy–Green

tensor. This mechanism of rapid correction of the OTD vectors

is entirely absent in the one-dimensional OTD reduction.

Figure 5(b) shows the evolution of the same quantities

along a different ABC trajectory. Here, eigenvalue crossings

are absent. As a result, both one-dimensional and two-

dimensional OTD reductions closely follow the most

dominant FTLE and in the case of r¼ 2 both most and second

most dominant FTLEs. This demonstrates that, in the absence

of eigenvalue crossing, one-dimensional OTD reduction accu-

rately approximates the most dominant FTLE (Fig. 6).

FIG. 4. ABC flow: comparison of the

true FTLE (right column) with OTD

reduction of size r¼ 1 (left column)

and r¼ 2 (middle column).
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FIG. 6. Six-dimensional Charney–

DeVore model: comparison of the true

FTLE (rightmost column) with OTD

reduction of size r¼ 1 (leftmost col-

umn) and r¼ 2 middle column. Each

row shows results of a section of the

phase space.

FIG. 5. ABC flow: FTLE versus advection time calculated with full dynamics (solid blue), one-dimensional OTD reduction (dashed gray line with triangle

symbols) and two-dimensional OTD reduction (red line with circle symbols) with initial points of: (a) z0 ¼ ð2:0; 0:6; 0:0Þ, and (b) z0 ¼ ð4:0; 0:6; 0:0Þ. The ini-

tial points are shown with a cross symbol in the z1 � z2 plane.
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B. Charney–DeVore model with regime transitions

In this section, we apply the OTD reduction to the six-

dimensional truncation of the equations for barotropic flow

in a plane channel with orography that are known as the

Charney–DeVore (CDV) model. The truncated system is

given by

_z1 ¼ c�1z3 � Cðz1 � z�1Þ;
_z2 ¼ �ða1z1 � b1Þz3 � Cz2 � d1z4z6;

_z3 ¼ ða1z1 � b1Þz2 � c1z1 � Cz3 þ d1z4z5;

_z4 ¼ c�2z6 � Cðc4 � z�4Þ þ �ðz2z6 � z3z5Þ;
_z5 ¼ �ða2z1 � b2Þz6 � Cz5 � d2z4z3;

_z6 ¼ ða2z1 � b2Þz2 � c2z4 � Cz6 þ d2z4z2:

(31)

The model coefficients are given by

am ¼
8
ffiffiffi
2
p

p
m2

4m2 � 1

b2 þ m2 � 1

b2 þ m2
; bm ¼

bb2

b2 þ m2
;

dm ¼
64

ffiffiffi
2
p

15p
b2 � m2 þ 1

b2 þ m2
; c�m ¼ c

4m

4m2 � 1

ffiffiffi
2
p

b

p
;

� ¼ 16
ffiffiffi
2
p

5p
; cm ¼ c

4m3

4m2 � 1

ffiffiffi
2
p

b

p b2 þ m2ð Þ :

(32)

Following Ref. 11, we set ðz�1; z�4;C; b; c; bÞ ¼ ð0:95;
�0:76095; 0:1; 1:25; 0:2; 0:5Þ. For these parameters, the

CDV model generates regime transitions due to the interac-

tion of barotropic and topographic instabilities. It was shown

in Ref. 10 that a Proper Orthogonal Decomposition (POD)

reduction of this model to three leading POD modes resolves

97% of cumulative variance but cannot capture the chaotic

regime transitions present in the six-dimensional model.

These highly transient instabilities render this model an

appropriate test case for evaluating the performance of the

OTD reduction in computing the FTLE. Moreover, using

this model we assess the performance of the OTD reduction

for a higher dimensional problem.

We compute the true FTLE using the finite difference

method analogous to the ABC flow problem. Similarly, the

initial condition U(0) for the OTD equation (29b) is the r most

dominant eigenvectors of the symmetric linearized operator.

The fourth-order Runge-Kutta scheme with time step size

Dt ¼ 0:4 (days) is used for the numerical integration of Eqs.

(28) and (29). Using the smaller time step Dt ¼ 0:2 (days) did

not change the numerical results.

Figure 6 shows the reduced FTLE fields obtained from

the one-dimensional reduction (left column) and two-

dimensional reduction (middle column) as well as the full

FTLE (right column). Each row shows a two-dimensional

cross section of the phase space. As in the ABC flow, the

reduced FTLE fields agree qualitatively with the full FTLE

field. However, for r¼ 1 reduction, some false troughs are

observed. Away from the false troughs, the one-dimensional

reduction estimates the FTLE accurately. For r¼ 2 reduc-

tion, there are no false troughs.

In Fig. 7, the FTLE values are plotted as a function of

the integration time. These correspond to the point

z0 ¼ ð1:14; 0; 0;�0:91; 0; 0Þ, marked by a cross symbol in

the inset, which lies on a false trough in the z1 � z4 section.

An eigenvalue crossing occurs at approximately T¼ 9.

Analogous to the ABC flow, we observe that before T¼ 9

both one- and two-dimensional OTD reductions capture the

most dominant eigenvalues of the Cauchy–Green strain ten-

sor. After T¼ 9, the one-dimensional OTD reduction contin-

uously follows the second most dominant eigen-direction of

the Cauchy–Green strain tensor. The inability of a single

OTD vector to undergo a dramatic rotation to follow the

most dominant eigen-direction of the Cauchy–Green tensor

leads to the false trough that is observed in Fig. 6(a). The

two-dimensional OTD subspace, however, converges to the

subspace spanned by the two most dominant eigenvectors of

the Cauchy–Green strain tensor. This convergence is guaran-

teed by Theorem 3.2 since the second and the third

Cauchy–Green eigenvalues ðk2; k3Þ do not cross (see Fig. 7).

As a result, the two-dimensional (r¼ 2) OTD reduction

closely approximates the two large FTLEs for all times.

The above results demonstrate that, as long as k2 and k3

do not coincide, a reduced FTLE with two OTD modes reli-

ably approximates the dominant FTLEs of the full system

regardless of the system’s dimension n. This amounts to a

significant reduction in the computational cost of the FTLE

evaluations, and the gain in the computational speed is larger

as the dimension of the dynamical system increases.

Investigating the numerical performance of the OTD reduc-

tion for infinite-dimensional systems is the subject of future

study.

VI. CONCLUSIONS

We have examined the properties of the optimally time-

dependent (OTD) modes for general time-dependent dynam-

ical systems. Specifically, we have shown that under mild

conditions, related to the spectrum of the Cauchy–Green ten-

sor, the OTD modes converge exponentially fast to the eigen-
directions of the Cauchy–Green tensor associated with the
dominant eigenvalues (largest finite-time Lyapunov expo-
nents). Therefore, the OTD modes can be employed to

FIG. 7. Six-dimensional Charney–DeVore model: FTLE versus advection

time calculated with full dynamics (solid blue), one-dimensional OTD

reduction (dashed gray line with triangle symbols), and two-dimensional

OTD reduction (red line with circle symbols) with initial points of z0;1 ¼
1:14; z0;4 ¼ �0:91 and other coordinates being zero. The initial point is

shown with a cross symbol in the z1 � z4 plane.
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extract time-dependent subspaces that encode information
associated with the transient dynamics and accurately char-
acterize the associated finite-time instabilities. This is an

important development relative to known shortcomings of

proper orthogonal decomposition models, which may change

or even invert stability characteristics.3,29

We have applied the derived result on the formulation of

a reduced order algorithm for the computation of the maxi-

mum finite-time Lyapunov exponent, a measure that has

been used for the quantification of Lagrangian Coherent

Structures. We demonstrated the derived results through two

specific examples, the three-dimensional ABC flow and the

six-dimensional Charney-DeVore model. In both cases, we

thoroughly analyzed the limitations due to dimensionality

reduction in combination with eigenvalue crossing. Apart

from its value as a computational method for finite-time

Lyapunov exponents, the presented result paves the way for

the development of efficient control and prediction strategies

for chaotic dynamical systems exhibiting transient features,

such as extreme events and off-equilibrium dynamics.
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APPENDIX A: THE OTD MODES AND THE
DYNAMICALLY ORTHOGONAL MODES

The set of OTD equations have the same form as the

Dynamically Orthogonal (DO) field equations.31,33 In fact,

because the minimization of the function F is performed only

over the rate of change of the basis elements, _uiðtÞ, [and not the

basis elements uiðtÞ] one can follow exactly the same steps as

in Theorem 2.1 in Ref. 2 to show that the evolution equations

(15) can be derived for the general case of a nonlinear operator

NðUÞ. More specifically, by minimization of the functional

F _u1; _u2;…; _urð Þ ¼
Xr

i¼1

���� @ui tð Þ
@t
�N z tð Þ;U tð Þ; tð Þ

����
2

; (A1)

we can obtain the evolution equations.

@U

@t
¼ N Uð Þ � UUTN Uð Þ: (A2)

For the case of the DO equations, the nonlinear operator

takes the form

NðUÞ ¼ Ex Lð�u þ
Xr

i¼1

uiYiÞYj

" #
C�1

YiYj
; (A3)

where we have used the notation in Ref. 31, i.e., L is the

right hand side of the stochastic partial differential equation

(PDE), �u is the trajectory of the mean, YiðtÞ are the stochastic

coefficients and CYiYj
ðtÞ is their covariance matrix. The

operation Ex denotes the average with respect to an appro-

priate probability measure. Conversely, one can obtain the

OTD mode equations from the DO equations simply by con-

sidering their deterministic limit, i.e., by taking the limit

CYiYj
ðtÞ ! 0.

APPENDIX B: PROOF OF THEOREM 4.1

We consider the rate of change of the eigenvectors of a

general one-parameter family of symmetric matrices, GðtÞ
2 Rn�n. For such a matrix, we have the eigenvalue problem

GðtÞRðtÞ ¼ RðtÞKðtÞ; (B1)

where the columns of RðtÞ 2 Rn�n are the eigenvectors

of G(t) and KðtÞ 2 Rn�n is the diagonal matrix of corre-

sponding eigenvalues. Note that, since G is symmetric, its

eigenvectors are orthogonal and therefore, RRT ¼ I.
Differentiating with respect to time, we obtain

_GRþ G _R ¼ _RKþ R _K:

Multiplying the above equation by RT from the left yields

_K ¼ RT _GRþ K RT _R � RT _RK:

Since RTR ¼ I, we have:

_R
T
Rþ RT _R ¼ 0:

Let K ¼ RT _R. From the above relation, we observe that K is

a skew-symmetric matrix. Denoting ~G ¼ RT _GR, we have

_K ¼ ~G þ KK � KK:

For off-diagonal terms i 6¼ j, we have _Kij ¼ 0. Therefore,

~Gij ¼ kjKij � kiKij; i 6¼ j:

Transposing the above relation

~Gji ¼ kiKji � kjKji; i 6¼ j:

Using the skew-symmetric property of K, i.e., Kij ¼ �Kji,

and summing up the above two equations yields

Kij ¼
~Gij þ ~Gji

2 kj � ki

� � ; i 6¼ j: (B2)

This results in the following closed-form evolution equations

for K and R,

_K ¼ diagð ~GÞ; (B3)

_R ¼ RK: (B4)
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