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a b s t r a c t

Wepropose rotation inferred from the polar decomposition of the flow gradient as a diagnostic for elliptic
(or vortex-type) invariant regions in non-autonomous dynamical systems. We consider here two- and
three-dimensional systems, in which polar rotation can be characterized by a single angle. For this polar
rotation angle (PRA),wederive explicit formulas using the singular values and vectors of the flowgradient.
We find that closed level sets of the PRA reveal elliptic islands in great detail, and singular level sets
of the PRA uncover centers of such islands. Both features turn out to be objective (frame-invariant) for
two-dimensional systems. We illustrate the diagnostic power of PRA for elliptic structures on several
examples.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Complex dynamical systems exhibit a mixture of chaotic and
coherent behavior in their phase space. The lattermanifests itself in
coherent islands of regular behavior surrounded by a chaotic back-
ground flow. The best known classic examples of such islands are
formed by Kolmogorov–Arnold–Moser (KAM) tori, composed of
quasi-periodic trajectories in Hamiltonian systems (see, e.g., [1,2]).
Outside elliptic regions filled by such tori, chaotic trajectories dom-
inate the dynamics. For steady, time-periodic and quasi-periodic
flows, the techniques of KAM theory help in visualizing elliptic re-
gions (see, e.g., [3,4] for recent examples).

Even more intriguing is the existence of similar elliptic islands
in turbulent fluid flow, as broadly confirmed by experiments
and numerical simulations (see, e.g., [5,6]). Just as KAM islands,
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coherent vortices capture trajectories and keep themout of chaotic
mixing zones. Unlike KAM tori, however, coherent vortices are
composed of trajectories that are generally not recurrent in any
frame. During their finite time of existence, these coherent vortices
traverse without filamentation but also without displaying any
particular periodic or quasiperiodic pattern. Still, we generally
refer to such regions here as elliptic, as they mimic the dynamic
role of elliptic islands occupied by classic KAM tori.

Eulerian approaches to describing elliptic islands seek domains
where rotation dominates the instantaneous velocity field. At the
simplest level, this involves locating regions of closed streamlines,
high enough vorticity or low enough pressure (cf. [7,8] for
reviews). Suchdomains reveal instantaneous velocity field features
at a low cost, but are unable to frame long-term material
coherence exhibited by trajectories. In addition, the results from
these instantaneous approaches depend on the choice of scalar
thresholds and on the frame of reference.

More sophisticated Eulerian principles for elliptic regions
seek sets of points where rotation dominates strain (see, e.g.,
[9–12,7,13], and also Jeong and Hussain [7] and Haller [8] for
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reviews). These principles infer both rotation and strain from
the instantaneous velocity gradient, thereby rendering the results
Galilean invariant. The elliptic regions they provide, however, still
change under rotations of the frame. Since truly unsteady flows
have no distinguished frame of reference [14], frame-dependence
in the detection of vortical structures is an impediment. Indeed,
the available measurement velocity data of geophysical flows is
often given in a rotating frame to begin with, and no optimal frame
is known a priori for structure detection. More importantly, no
mathematical relationship is known (or likely to exist) between
instantaneous rotation–strain principles and material coherence
over extended time intervals.

In contrast, Lagrangian approaches to elliptic islands seek to
identify regions where trajectories stay close for longer periods.
These approaches can roughly be divided into three categories:
geometric, set-based and diagnostic methods. The geometric
methods identify elliptic domain boundaries as spacial closed
material lines showing no filamentation [15–17] or curvature
change [18]. Set-based methods partition the phase space into
almost invariant subsets (see [19,20] and references therein).
While the boundaries of such sets may undergo filamentation,
the overall subsets remain largely coherent. Finally, diagnostic ap-
proaches propose Lagrangian scalar fields whose features are ex-
pected to distinguish mixing regions from coherent ones [21–26].
These Lagrangian methods do not return identical results and are
not backed by specific mathematical results on the features they
highlight. In fact, the material invariance of the extracted vortical
boundaries is only guaranteed in the case of the geodesic approach
of Haller and Beron-Vera [15] and Haller [17].

The Lagrangian methods listed above focus on stretching or
lack thereof. In contrast, very few Lagrangian diagnostics target
rotation, even though sustained and coherent rotation is perhaps
the most striking feature of trajectories forming elliptic islands.
One of the few exceptions targeting material rotation is the finite-
time rotation number (FTRN), developed to detect hyperbolic
(i.e., repelling or attracting as opposed to vortical) structures
through its ridges [27]. The FTRN assumes that the dynamical
system is defined via an iteratedmapwith an annular phase space.
For dynamical systems with general time dependence and non-
annular phase space, however, this approach is not applicable.
This also means that the approach is frame-dependent, given
that translations and rotations will generally destroy the time-
periodicity of a dynamical system.

Another Lagrangian diagnostic involving a consideration of
rotation is the mesocronic analysis of Mezić et al. [25]. This
approach offers a formal extension of the Okubo–Weiss principle
from the velocity gradient to the flowgradient, classifying an initial
condition as elliptic if the flow gradient has complex eigenvalues
at that point. The mesoelliptic diagnostic is efficient to compute
and has been shown to mark vortical regions in several cases.
The complex eigenvalues of a finite-time flowmap, however, have
no known mathematical relationship with elliptic islands in flows
with general time dependence. Accordingly, some annular subsets
of classic elliptic domains fail the test of meso-ellipticity even in
steady flows (cf. [25], Fig. 1).

Here we propose a mathematically precise assessment of
material rotation, the polar rotation angle (PRA), as a new
diagnostic for elliptic islands in two- and three-dimensional flows.
The PRA is the angle of the rigid-body rotation component obtained
from the classic polar decomposition of the flow gradient into
a rotational and a stretching factor. We show how the PRA can
readily be computed from invariants of the flow gradient and the
Cauchy–Green strain tensor. Level sets of the PRA turn out to be
objective (frame-invariant) in planar flows. We find that these
level sets reveal the internal structure of elliptic islands in great
detail at a relatively low computational cost. We also find that
local extrema of the PRA mark elliptic island centers suitable for
automated vortex tracking in Lagrangian fluid dynamics.
2. Preliminaries

2.1. Set-up

Consider the dynamical system

ẋ = u(x, t), x ∈ D ⊂ R3, t ∈ I ⊂ R, (1)

with the corresponding flow map

Ftt0 : D → D

x0 → x(t; t0, x0), (2)

the diffeomorphism that takes the initial condition x0 to its time-t
position x(t; t0, x0) under system (1). Here, D denotes the phase
space and I is a finite time interval of interest.

The deformation gradient ∇Ftt0 governs the infinitesimal defor-
mations of the phase space D . In particular, an initial perturba-
tion ξ at point x0 and time t0 is mapped, under the system (1), to
∇Ftt0(x0)ξ at time t . We also define the right Cauchy–Green strain
tensor,

Ct
t0 :=


∇Ftt0

⊤
∇Ftt0 : x0 → Ct

t0(x0), (3)

where the symbol ⊤ denotes matrix transposition. The tensor
Ct
t0(x0) is symmetric and positive definite. Therefore, it has an or-

thonormal set of eigenvectors {ξ1(x0), ξ2(x0), ξ3(x0)}. The corre-
sponding eigenvalues 0 < λ1(x0) ≤ λ2(x0) ≤ λ3(x0) therefore
satisfy

Ct
t0(x0)ξi(x0) = λi(x0)ξi(x0), i ∈ {1, 2, 3}, (4)

⟨ξj(x0), ξk(x0)⟩ = 0, j, k ∈ {1, 2, 3}, j ≠ k, (5)

with ⟨·, ·⟩ denoting the Euclidean inner product. For notational
simplicity, we omit the dependence of the eigenvalues and eigen-
vectors on t0 and t .

2.2. Polar decomposition

Any square matrix admits a factorization into the product of a
unitarymatrixwith a symmetric positive-semidefinitematrix [28].
When the square matrix is nonsingular, such as ∇Ftt0 , then the
symmetric factor in the decomposition is positive definite.

Specifically, the deformation gradient ∇Ftt0 admits a unique
decomposition of the form

∇Ftt0 = Rt
t0U

t
t0 , (6)

where the 3 × 3 matrices Rt
t0 and Ut

t0 have the following
properties [28–30]:

1. The rotation tensor Rt
t0 is proper orthogonal, i.e.,

Rt
t0

⊤Rt
t0 = Rt

t0


Rt
t0

⊤
= I, detRt

t0 = 1.

2. The right stretch tensor Ut
t0 is symmetric and positive-definite,

satisfying
Ut

t0

2
= Ct

t0 . (7)

3. The eigenvalues of Ut
t0 are

√
λk with corresponding eigenvec-

tors ξk:

Ut
t0(x0)ξk(x0) =


λk(x0)ξk(x0), k = 1, 2, 3. (8)

4. The time derivative of the rotation tensor satisfies

Ṙt
t0 =


W (x(t), t)−

1
2
Rt
t0


U̇t

t0


Ut

t0

−1

−

Ut

t0

−1 U̇t
t0

 
Rt
t0

⊤Rt
t0 , (9)
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Fig. 1. The action of the deformation gradient ∇Ftt0 is uniquely decomposable into positive definite stretch by Ut
t0 followed by rotation by Rt

t0 . This results in the polar
decomposition ∇Ftt0 = Rt

t0U
t
t0 .
where W =
1
2


∇u − (∇u)⊤


is the vorticity (or spin) tensor

and x(t) is a shorthand notation for the trajectory x(t; t0, x0). A
derivation of (9) can be found, e.g., in [31, Section 23].

The geometric interpretation of the polar decomposition is
the following [29,32]. At any point x0 of the phase space, the
orthogonal basis {ξk}1≤k≤3 ismapped into {∇Ftt0(x0)ξk}1≤k≤3 under
the linearized flow map ∇Ftt0 . Any stretching and compression in
the deformation is encoded into the stretch tensor Ut

t0 , while the
overall rigid-body rotation ofmaterial elements is encoded into the
rotation tensor Rt

t0 . Fig. 1 illustrates the action of these tensors on
area elements in two dimensions.

When mapped forward under the deformation gradient ∇Ftt0 ,
a general unit vector a experiences two stages of rotation. First,
a is rotated (and simultaneously stretched) by the stretch tensor
Ut

t0 into the vector Ut
t0a. This first stage of rotation is entirely due

to shear, with the magnitude and axis of rotation depending on a.
The second stage of rotation experienced by a is due to the rotation
tensor Rt

t0 , which rotates a into its final position Rt
t0U

t
t0a at time t .

This second rotation acts in the sameway on allUt
t0a vectors by the

proper orthogonal nature of Rt
t0 .

Formed by the eigenvectors of Ct
t0 , the principle rectangle

illustrated in Fig. 2 has a special feature: it is the unique rectangle
on which the first stage of rotation under Ut

t0 is inactive. This
is because the edges of the principal rectangle align with the
eigenvectors of Ut

t0 (cf. eq. (8) and Fig. 1), and hence remain
unrotated by Ut

t0 . The total rotation experienced by the edges of
the principal rectangle is, therefore, just the rigid-body rotation
exerted by the rotation tensor Rt

t0 .
Formula (9) shows the difference between instantaneous

Eulerian rotation measured by the vorticity tensor W and finite-
time material rotation measured by Rt

t0 . In particular, at an initial
time t0, we have

Ṙt
t0


t=t0

= W(x0, t0),

but Ṙt
t0 differs from the vorticity tensorW(x(t), t) for times t ≠ t0.

3. Polar rotation angle (PRA)

The classic procedure for computing the polar decomposition in
continuum mechanics starts with determining Ut

t0as the principal
square root of the Cauchy–Green strain tensor (cf. formula (7)). This
is the simplest to do by diagonalizing Ct

t0 , taking the positive square
root of its diagonal elements, and transforming back the resulting
matrix from the strain eigenbasis to the original basis. Next, one
obtains the rotation tensor directly from (6) as Rt

t0 = ∇Ftt0

Ut

t0

−1.
More efficient numerical procedures are also available (see [33]
and the references cited therein).
These computational approaches, however, offer little insight
into the geometry of the rotation generated by Rt

t0 . Taking a more
geometric approach, one may recall that any three-dimensional
rotation Rt

t0 has a Rodrigues representation [34] of the form

Rt
t0 = I + sin θ tt0P

t
t0 + (1 − cos θ tt0)


Pt
t0

2
, (10)

where I is the 3 × 3 identity matrix and Pt
t0 is a 3 × 3 skew-

symmetric matrix such that

Pt
t0a = rtt0 × a, ∀a ∈ R3.

The unit vector rtt0 is the eigenvector ofR
t
t0 corresponding to its unit

eigenvalue, i.e.,

Rt
t0(x0)r

t
t0(x0) = rtt0(x0). (11)

For planar flows, the eigenvector rtt0 is the unit normal to the plane
of motion, and hence is independent of x0. In three-dimensions, rtt0
depends on the location x0 in a way discussed in the next section
(cf. Proposition 1).

Once an orientation for the unit vector rtt0(x0) is selected,
the angle θ tt0(x0) ∈ [0, 2π) is uniquely determined. This angle
measures the amount of local solid-body rotation experienced by
material elements along the trajectory x(t; t0, x0).

Definition 1. We refer to the scalar function

θ tt0(x0) ∈ [0, 2π)

determined by (10) as the polar rotation angle (PRA) at the initial
condition x0 with respect to the time interval [t0, t].

4. Computing the PRA

Taking the trace of both sides in (10), then taking the skew-
symmetric part of both sides of (10) yields the formulas

cos θ tt0 =
1
2


trRt

t0 − 1

, (12a)

sin θ tt0 =

Rt
t0


ij

Pt
t0


ij

(i ≠ j), Rt
t0 :=

1
2


Rt
t0 −


Rt
t0

T
. (12b)

To evaluate the expression for cos θ tt0 in (12a), Guan-Suo [35]
expressed trRt

t0 as a somewhat cryptic function of the scalar

invariants of the matrices ∇Ftt0 ,
1
2


∇Ftt0 +


∇Ftt0

⊤ and Ut
t0 . Here

we derive a simply computable and intuitive alternative that only
involves quantities arising in typical Lagrangian coherent structure
calculations [17]: the deformation gradient, and the eigenvalues
and eigenvectors of the Cauchy–Green strain tensor.
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Fig. 2. Finite-timedeformation of an area element of a two-dimensional phase space under the flowmap Ftt0 . The orthonormal basis {ξ1, ξ2} ismapped to the orthogonal basis
{∇Ftt0 ξ1,∇Ftt0 ξ2}. Other initially orthogonal material elements, such as the diagonals shown in blue, are mapped to non-orthogonal material elements. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Proposition 1. (1) In three-dimensional flows, the PRA satisfies the
relations

cos θ tt0 =
1
2


3

i=1


ξi,∇Ftt0ξi


√
λi

− 1


, (13a)

sin θ tt0 =


ξi,∇Ftt0ξj


−

ξj,∇Ftt0ξi


2ϵijkek

, i ≠ j ∈ {1, 2, 3}, (13b)

where e = (e1, e2, e3)⊤ is the normalized eigenvector corre-
sponding to the unit eigenvalue of the matrix
Kt

t0


jk

=


ξj,∇Ftt0ξk


√
λk

, j, k ∈ {1, 2, 3},

and ϵijk is the Levi-Civita symbol. Furthermore, we have e = rtt0
where rtt0 is the axis of rotation defined by (11).

(2) In two-dimensional flows, we have

cos θ tt0 =


ξi,∇Ftt0ξi


√
λi

, i = 1 or 2, (14a)

sin θ tt0 = (−1)j

ξi,∇Ftt0ξj


λj

, (i, j) = (1, 2) or (2, 1) ,

(14b)

where λ1 ≤ λ2 are the eigenvalues of the two-dimensional
Cauchy–Green strain tensor with corresponding eigenvectors ξ1
and ξ2.

Proof. See Appendix A.

Using both expressions in the formulas (13) (or formulas (14), in
the two-dimensional case), the four-quadrant polar rotation angle
θ tt0 ∈ [0, 2π) can be reconstructed as

θ tt0 =

1 − sign


sin θ tt0


π + sign


sin θ tt0


cos−1 cos θ tt0 , (15)

where

sign(α) =


1 if α ≥ 0
−1 if α < 0.
For completeness, in Appendix B, we also derive a formula
for the total rotation of an arbitrary material element, not just
for the strain eigenvectors. Evaluating this general formula is
computationally more costly, as it involves advecting initial
directions by the flow map through all intermediate times within
the interval [t0, t]. In addition, due to the non-rigid-body nature of
deformation along a trajectory, the total material rotation will be
different for differentmaterial elements.When evaluated on initial
directions aligned with ξ1 and ξ2, however, this total Lagrangian
rotation agrees with the PRA modulo multiples of 2π .

5. Polar LCS

A recent approach to the systematic detection of elliptic
Lagrangian coherent structures (LCS) targets closed material lines
that exhibit no filamentation over the finite time interval [t0, t]
[15,17]. These elliptic LCSs turn out to be uniformly stretching
closedmaterial lines, i.e., all their subsets exhibit the same relative
stretching. Outermostmembers of nested elliptic LCS families then
serve as the ideal boundaries of perfectly coherent elliptic islands.

Here we propose a dual approach to elliptic LCSs by requiring
uniformity in the polar rotation of material elements forming the
LCS, as opposed to uniformity in their stretching.

Definition 2. A polar Lagrangian coherent structure (polar LCS) over
the time interval [t0, t] is a closed (i.e., tubular in 3D and circular in
2D) and connected codimension-one material surface whose time
t0 position is a level set of θ tt0(x0).

As any material surface, a polar LCS is invariant under the flow.
It is formed by trajectories starting from a closed and connected
level set of θ tt0(x0) at time t0. The following simple observation
shows that polar LCSs can be detected as connected and closed
level sets of trigonometric functions of θ tt0(x0), and hence are
directly computable from the formulas (13)–(14).

Proposition 2. Connected components of the level sets of cos θ tt0 and
sin θ tt0 coincidewith connected components of the level sets of θ tt0(x0).
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Proof. Assume the contrary, i.e., the existence of two points x0 and
x̂0 that are in the same connected component of a level set L of
cos θ tt0(x0) but on different connected level sets of θ tt0(x0). Then on
any continuous path connecting x0 and x̂0, the polar rotation angle
θ tt0 should change continuously from θ tt0(x0) to θ

t
t0(x̂0) ≠ θ tt0(x0),

and hence cos θ tt0 cannot be constant along this path. Since x0 and
x̂0 are in the connected set L, there is therefore a continuous path
connecting x0 and x̂0 within L along which cos θ tt0(x0) cannot be
constant. But this contradicts the assumption that L is a level set
of cos θ tt0(x0). The argument for sin θ tt0 is identical. �

A practical consequence of Proposition 2 is that connected level
sets of θ tt0(x0) can be constructed as those of cos θ tt0 and sin θ tt0 ,
without verifying the orientability of rtt0(x0) on U . This renders the
computation of the tensorKt

t0 and the rotation axis rtt0 unnecessary,
as one can compute the two-quadrant angle θ tt0 ∈ [0, π] from
Eq. (13a) as

θ tt0 = cos−1


1
2


3

i=1


ξi,∇Ftt0ξi


√
λi

− 1


. (16)

Proposition 2 ensures that the level sets of θ tt0 computed from (16)
coincidewith those of the four-quadrant PRA angle computed from
(15).

All quantities derived from the deformation gradient ∇Ftt0
are invariant with respect to time-dependent translations of the
coordinate frame. Therefore, polar LCSs are Galilean invariant
objects. For two-dimensional flows, polar LCSs also turn out to
be invariant under time-dependent rotations of the frame. In
the language of continuum mechanics [31], polar LCSs in two
dimensions are objective.

Proposition 3. In two-dimensional flows, a polar LCS over the time
interval [t0, t] is objective, i.e., invariant under coordinate changes of
the form

x = Q(t)y + b(t), (17)

where Q(t) ∈ SO(2) and b(t) ∈ R2 are smooth functions of time t.

Proof. See Appendix C.

An elliptic island marked by the PRA has a natural center point:
the PRA extremum point surrounded by closed PRA contours. This
leads to the following definition of a Lagrangian vortex center:

Definition 3. A Lagrangian vortex center over the time inter-
val [t0, t] is a set of trajectories evolving from a connected,
codimension-two level set of θ tt0(x0).

A Lagrangian vortex center identified from the PRA is, therefore,
composed of a single trajectory in two dimensions and of a one-
parameter family of trajectories (i.e., a material line) in three
dimensions. Despite recent progress in the accurate detection
of coherent Lagrangian vortex boundaries [17], approaches to
Lagrangian vortex center definition and detection have notably
beenmissing. Aswe illustrate in Section 6.2, vortex centers defined
as PRA extrema indeed show distinguished behavior: they capture
the translationalmotion of an elliptic islandwithout being affected
by the rotational motion of trajectories inside the island. As
connected level sets of the PRA, the Lagrangian vortex centers
defined in Definition 3 are also objective in two-dimensional flows
(cf. Proposition 3).

6. Examples

In this section, we compute the PRA on several examples
to illustrate how its closed level curves (i.e., initial positions of
polar LCSs) highlight the internal structure of elliptic islands in
detail. The first three examples, presented in Sections 6.1–6.3, are
planar flows. These two-dimensional flows are a special case of (1)
satisfying ∂x3ui(x, t) ≡ 0, i = 1, 2, 3. A fully three-dimensional
flow is considered in Section 6.4.

6.1. Standard map

We first consider the standard map

In+1 = In + ϵ sinφn,

φn+1 = φn + In+1, (18)

which is a Poincaré map P of a rotor excited by a periodic
impulsive force [36]. In the absence of the impulse, i.e., for ϵ = 0,
the angular momentum In is constant and the angular position φn
increases linearly as an integermultiple of the angularmomentum.

For ϵ ≠ 0, however, the system can exhibit complicated dy-
namics. Depending on the initial condition (I0, φ0), the trajectories
may be periodic, quasi-periodic or chaotic. The quasi-periodic tra-
jectories lie on KAM tori, the classic examples of vortical structures
that we wish to visualize through the PRA.

The left plot in Fig. 3a shows1000 iterations of the standardmap
for 400 uniformly distributed initial conditions and ϵ = 1. This
reveals invariant KAM tori, resonance islands and chaotic regions.
The right panel of the same figure shows the PRA, computed from
formula (15) with i = 2, with the flow map being equal to 200
iterations of the map (18), i.e. Ftt0(x0) = P 200(x0), where x0 =

(φ0, I0) and (φn+1, In+1) = P (φn, In). To ensure the accuracy
of the finite differences for the computation of the deformation
gradient ∇Ftt0 , we use a dense grid of initial conditions consisting
of 1000 × 1000 uniformly distributed points over the phase space
T2

= [0, 2π ] × [0, 2π ].
Fig. 3b shows a close-up of a region of the phase space

containing chaotic trajectories, KAM tori and a period-5 resonance
island. For this close-up view, the Poincaré map is recomputed
from 1000 iterations of 2500 initial conditions. The corresponding
PRA plot on the right is computed only from 500 iterations,
i.e., from Ftt0 = P 500.

We conclude that the KAM tori and resonance islands are
sharply enhanced by the PRA relative to a simple iteration of the
map, even though the number of iterations used in constructing
the PRA plot is only half the number used for the Poincaré map.
The chaotic region is marked by small-scale rapid variations in the
PRA, in line with the sensitive dependence of the rotation angle on
initial conditions in these regions.

Fig. 3 also shows that the center-type fixed points in the
elliptic islands are clearly marked with local extrema of the PRA,
supporting the idea of defining Lagrangian elliptic centers as stated
in Definition 3.

6.2. Two-dimensional turbulence

Consider the Navier–Stokes equation

∂tu + u · ∇u = −∇p + ν1u + f, ∇ · u = 0, (19)

where ν is the kinematic viscosity and f denotes the forcing. For an
ideal two-dimensional fluid flow (ν = 0 and f = 0), the vorticity
ω, given by∇×u = (0, 0, ω), is preserved along fluid trajectories,
i.e.,

Dω
Dt

= 0, (20)

where D
Dt := ∂t +u ·∇ is the material derivative. Therefore, closed

level curves of vorticity arematerial curves, acting as barriers to the
transport of fluid particles. In the presence of molecular diffusion
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Fig. 3. Standard map. (a) Left: 1000 iterations of the standard map for 400 uniformly distributed initial conditions over the torus [0, 2π ] × [0, 2π ]. Right: The PRA θ tt0 for
200 iterations of the standard map, clearly marking polar LCSs (closed contours) and Lagrangian vortex centers (local extrema) (b) The close-up view of the region marked
by a rectangle in (a).
and external forcing, however, vorticity is not a material invariant
and hence its closed contours no longer signal elliptic islands for
fluid trajectories.

To illustrate the use of PRA in detecting elliptic islands in a
turbulent flow, we solve the Navier–Stokes equation (19) with
ν = 10−5 on the domain D = [0, 2π ] × [0, 2π ] with periodic
boundary conditions. We use a pseudo-spectral method with 5122

modes to evaluate the spatial partial derivatives and the nonlinear
term. The external forcing is random in phase and only active over
the wave-numbers 3.5 < k < 4.5. The forcing amplitude is time-
dependent and chosen to balance the instantaneous enstrophy
dissipation −ν


U |∇ω(x, t)|2dx. The time integration is carried

out by a variable step-size, fourth-order Runge–Kuttamethod [37].
We solve the equation up to time t = 100. We observe that the
turbulent flow is fully developed after 50 time units. Therefore, we
choose times t0 = 50 and t = 100 as the initial and final times for
the computation of the PRA θ tt0 .

Such two-dimensional turbulent flows tend to generate long-
lasting coherent vortices [38], which are also prevalent in
geophysical flows [39]. Highly coherent Lagrangian signatures of
such vortices have been recently identified as regions bounded by
uniformly stretching material lines [15,17].

Here, we take an alternative approach and identify coherent
Lagrangian vortices as regions filled with polar LCSs. In other
words, we seek the elliptic islands of turbulence as regions of
closed material lines that pointwise have the same rigid-body
rotation component in their deformation over the time interval of
interest.

Fig. 4 (right panel) shows the PRA computed from formula
(15) for 512 × 512 uniformly distributed initial conditions. The
polar LCSs are clearly visible as concentric closed contours of
θ tt0(x0). Fig. 5 shows a closeup view of a coherent Lagrangian
vortex identified from the PRA plot. Note how the PRA shows a
sharp distinction between the vortical region and the surrounding
chaotic background. As in the case of the standard map (see Fig. 3),
the chaotic region is marked by small-scale, sharp variations of
the Lagrangian rotation due to sensitive dependence of material
rotation angle on initial conditions.

While the velocity field is well-resolved, resolving small-
scale Lagrangian structures requires significantly higher resolution
[40–42]. At the present resolution, the Lagrangian structures in the
chaotic region are not well-resolved. Nonetheless, the boundary of
the vortex can be approximated by the contour across which the
PRA transitions from concentric large-scale contours to small-scale
sharp variations (see the red-colored contour in Fig. 5).

We now illustrate that the large-scale polar LCSs, defined
by closed contours of the PRA (cf. Definition 2) indeed remain
coherent under advection.We advect two such contours under the
flow, with their advected positions shown in the right panel in
Fig. 5 at time t = 100.

As a measure of coherence we define relative stretching of
material lines as [ℓ(t)− ℓ(t0)] /ℓ(t0), where ℓ denotes the length
of the material line as a function of time. The relative stretching
of the blue and red contours are 2.65% and −1.38%, respectively.
These relative stretching values remain in the order of stretching
exhibited by perfectly coherent elliptic LCSs obtained from the
geodesic LCS theory [15].

The cross in Fig. 5marks a local extremumof the PRA, which is a
Lagrangian vortex center by our Definition 3. This local extremum
indeed turns out to behave as the vortex center over the time
interval of interest, i.e., t ∈ [50, 100]. Fig. 6 shows the trajectory
starting from this PRA extremum, whose initial coordinates are
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Fig. 4. Left: Vorticity ω at the initial time t = 50. Right: The PRA θ tt0 computed from formula (15) over the time interval [50, 100].
Fig. 5. Left: Contours of the PRA signaling coherent and chaotic regions. Right: Advected image of select contours to the final time t = 100. The local extremum of the PRA
(marked by a cross) defining the Lagrangian vortex center by Definition 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 6. Left panel: Trajectories of the Lagrangian vortex center (red) and nearby passive tracers (blue and black). Middle and Right panels: The coordinates of the vortex
center and nearby tracers as a function of time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(1.690, 5.380). For reference, two other trajectories are also shown
with initial positions at 0.05 and 0.1 distance from the vortex
center. Due to the complexity of the flow, the trajectory patterns
are not illuminating. However, their x- and y-coordinates as a
function of time reveal the oscillatorymotion of nearby trajectories
around the vortex center, while the vortex center itself has
minimal oscillations (cf. middle and right panels of Fig. 6). The
oscillations of the vortex center are due to the motion of the
vortex as a whole. The nearby trajectories, however, exhibit higher
frequency oscillations which are due to their swirling motion
around the vortex center.
6.3. Stratified geophysical fluid flow

We consider a simplified model for stratified geophysical fluid
flow, the barotropic equation. This equation, in the vorticity-
stream form, reads [43]

∂tω + J(ψ, ω)+ ∂xψ = 0, ω = ∆ψ, (21)

where w(x, y, t) and ψ(x, y, t) are non-dimensional vorticity
and stream function, respectively. In deriving this equation, the
viscous dissipation is neglected and the Coriolis frequency is
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Fig. 7. Contours of the stream function ψ (left), vorticity ω (middle) and potential vorticity q (right) of the modon solution (22).
Fig. 8. The PRA for the modon solution (22). The initial time is t0 = 0 and the final times are t = 100 (left), t = 250 (middle) and t = 500 (right). All figures are computed
from a grid of roughly 35 thousand uniformly distributed initial conditions in the unit disk. The points marked by crosses are the Lagrangian vortex centers obtained from
Definition 3 over the corresponding time intervals.
assumed to be linear in the meridional coordinate y (i.e., the β-
plane approximation is used [43]). The Jacobian operator reads
J(ψ, ω) = ∂xψ∂yω − ∂yψ∂xω. The fluid velocity field u is given
in terms of the stream function by u = (∂yψ,−∂xψ).

Vorticity is not preserved along fluid trajectories when the flow
satisfies (21). Instead, one can show that the potential vorticity
q = ω + y is conserved along these trajectories (see, e.g., [43]).

We consider a steady exact solution of the barotropic equation
(21) called a modon: a uniformly propagating vortex dipole. For
this modon solution, the stream function and vorticity are given
respectively by

ψ(r, ϕ) =


J1(r)
J1(1)

− r

sinϕ, 0 ≤ r ≤ 1

ω(r, ϕ) = −
J1(r)
J1(1)

sinϕ, 0 ≤ r ≤ 1 (22)

in polar coordinates (r, ϕ)where r =

x2 + y2, tanϕ = y/x and J1

is the Bessel function of the first kind [44]. This solution is written
in a frame co-moving with the modon at a constant speed c = 1.

The stream function ψ defines a flow on the invariant domain
r ≤ 1. While this solution can, in principle, be extended to the
entire plane [44,45], here we only consider the motion inside the
unit disk.

Fig. 7 shows the stream function, the vorticity and the potential
vorticity for the modon solution (22). Since the flow is integrable,
its stream function completely describes the flow structure,
showing two counter-rotating vortices.

The vorticity ω is negative in the upper half-disk y > 0 and
positive in the lower half-disk y < 0. Its contours, however, do not
reveal the two vortices present in the flow. This is because unlike
the two-dimensional Euler flows, vorticity is not conserved along
the trajectories of the solutions of the barotropic equation (21).

The potential vorticity q, as a conserved quantity, reveals the
eddies. Its level curves (Fig. 7, right panel) resemble those of the
streamlines. In fact, the particular solution (22) of the barotropic
equation satisfies q = −ψ .

Fig. 8 shows the PRA for integration times t = 100, 250 and
500. The integration time t = 100 is chosen such that almost all
periodic orbits of ẋ = u(x) complete at least one period. Even
with this relatively short integration time, PRA contours already
reveal the vortices. Obtained from a finite-time assessment of
the flow, the PRA contours deviate from the trajectories. As the
integration time increases, however, the PRA contours converge to
the streamlines and Lagrangian vortex centers obtained from the
PRA converge to the elliptic fixed points of the flow.

6.4. ABC flow

Asour last example,we consider theArnold–Beltrami–Childress
(ABC) flow ẋ = u(x)where

u(x) =

A sin(z)+ C cos(y)
B sin(x)+ A cos(z)
C sin(y)+ B cos(x)


, (23)

with x = (x, y, z) and A, B, C ∈ R are constant parameters [2]. The
velocity field u is an exact steady solution of Euler’s equation for
inviscid Newtonian fluids with periodic boundary conditions. The
ABC velocity field is a Beltrami vector field satisfying ω(x) = u(x)
with ω = ∇ × u being the vorticity field.
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Fig. 9. Left: The helicity ⟨u,ω⟩ = |ω|
2 for the ABC flow. Right: The two-quadrant PRA θ tt0 with the integration time t − t0 = 50, computed from formula (16).
In the following, we set A = 1, B =
√
2/3 and C =

√
1/3.

The Lagrangian computations are carried out on a uniform grid of
200 × 200 × 200 initial conditions distributed over the domain
T3

∈ [0, 2π ] × [0, 2π ] × [0, 2π ].
Fig. 9 (left panel) shows the helicity density ⟨u,ω⟩ (=|ω|

2).
While such Eulerian featuresmay suggest coherent vorticalmotion
throughout thedomain, theABC flow is known tohave chaotic fluid
trajectories in addition to coherent swirling trajectories lying on
invariant tori [46].

These invariant tori form vortical regions that we seek to cap-
ture from finite-time flow samples as elliptic regions. Using a lo-
cal variational principle extremizing Lagrangian shear, elliptic LCSs
approximating the tori from finite-time flow samples have been
constructed by Blazevski and Haller [16]. Here we illustrate that
polar LCSs obtained from the PRA also give a close approximation
at a reduced computational cost.

Indeed, the PRA admits tubular level surfaces that closely
approximate the invariant tori (Fig. 9, right panel). Codimension-
two level sets of the PRA are periodicmaterial curves at the cores of
the elliptic regions. Thesematerial lines serve as Lagrangian vortex
centers by Definition 3. As in earlier examples, outside the elliptic
islands formed by these closed level surfaces, PRA levels exhibit
small-scale variations due to sensitive dependence of the rotation
angle on the initial conditions.

To examine how accurately the PRA field θ tt0 captures the tori
and the chaotic regionboundaries,we release two trajectories from
the initial conditions x0 = (3.085, 0, 3.820) (red square in the
bottom panel of Fig. 10) and x0 = (3.505, 0, 3.568) (blue square
in the bottom panel of Fig. 10). The initial conditions are chosen
such that they are nearby, yet one belongs to the chaotic region
(red square) and the other (blue square) belongs to a smooth level-
surface of the PRA signaling an invariant torus.

These initial conditions are then advected under the ABC flow
from time t = 0 to t = 500. The resulting trajectories are shown in
the top panel of Fig. 10. As expected, the blue trajectory remains on
a toruswhile the red trajectory exhibits chaotic behavior. Note that
all curves correspond to a single trajectory and only appear as line
segments because they are plottedmodulo 2π . The intersections of
the coherent trajectory with the Poincaré section y = 0 show that
the PRA captures the invariant torus accurately (Fig. 10, bottom
panel).

We stress that both initial conditions studied here belong to
topologically equivalent regions of the local helicity ⟨u,ω⟩ =

|ω|
2. The vorticitymagnitude, therefore, fails to distinguish vortical

regions from chaotic regions. This is because vorticitymagnitude is
not amaterial invariant of the Euler’s equation in three dimensions
and therefore does not generally capture material behavior.
7. Conclusions

Most approaches to coherent structures seek their signature in
material separation or stretching. By contrast, we have developed
here an approach to locate coherent structures based on their
signature in material rotation. To quantify finite material rotation
in a mathematically precise fashion, we have used the polar
rotation tensor from the unique rotation-stretch factorization of
the deformation gradient.

For two- and three-dimensional dynamical systems, we have
derived explicit formulas for the polar rotation angle (PRA)
generated by the rotation tensor around its axis of rotation. While
polar rotation has broadly been studied and used in continuum
mechanics, the simple formulas we have derived here for the PRA
in terms of the flow gradient, its singular values and singular
vectors have not been available. These formulas enable the efficient
computation of the PRA from basic quantities provided by existing
numerical algorithms for Lagrangian coherent structure detection.

Building on the PRA,we have also introduced the notion of polar
Lagrangian coherent structures (polar LCSs). These are tubular
material surfaces along which trajectories admit the same PRA
value over a finite time interval of interest. We have proposed
regions filled by polar LCSs as rotation-based generalizations of the
classic elliptic islands filled by KAM tori in Hamiltonian systems.

As we demonstrated on a direct numerical simulation of two-
dimensional turbulence, the PRA identifies Lagrangian vortex
boundarieswith high accuracy.While geodesic LCS theory ofHaller
and Beron-Vera [15] offers an exact detection of such vortex
boundaries as solutions of differential equations, the present
diagnostic detection of these boundaries as outermost closed
PRA level curves is substantially less computational, and hence
preferable for an approximate identification of these boundaries.

Outside the Lagrangian vortex boundaries, the PRA is domi-
nated by small-scale noise due to its sensitive dependence on ini-
tial conditions. In these regions, therefore, the PRA displays no
clear signature for hyperbolic LCSs governing chaotic tracer mix-
ing. These latter types of LCSs, by contrast, are efficiently revealed
by another objective diagnostic, the finite-time Lyapunov expo-
nent (FTLE) [17]. The PRA and FTLE have a well-defined duality:
the former is a scalar field characterizing the rotational factor Rt

t0 ,
while the latter characterizes the stretch factor Ut

t0 in the polar de-
composition ∇Ftt0 = Rt

t0U
t
t0 of the deformation gradient.

We have found that local extrema of the PRA mark initial
positions of trajectories that serve as well-defined centers for
elliptic islands. Oscillations in these center trajectories areminimal
and arise solely due to the material translation of the underlying
island. Nearby trajectories inside the elliptic island, on the other
hand, oscillate rapidly due to their swirling motion around the
center trajectory (cf. Fig. 6). The ability of the PRA to identify
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Fig. 10. Top: Two trajectories of the ABC flow. The blue trajectory starts in an elliptic island and traces the surface of an invariant torus. The red trajectory is chaotic. Note
that the trajectories are plotted modulo 2π . The material line marking the Lagrangian vortex core (cf. Definition 3) is plotted in magenta color. Bottom: The initial condition
(squares) of each trajectory is superimposed on the y = 0 slice of the helicity ⟨u,ω⟩ = |ω|

2 (left) and the PRA θ tt0 obtained from formula (16) (right). The right panel also
shows the intersections of the blue trajectory with the plane y = 0 (blue dots), as well as the vortex core (magenta cross). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
a unique vortex center should be helpful in Lagrangian versions
of the Eulerian eddy censuses carried out by Dong et al. [47]
and Chelton et al. [48].

The elliptic island boundariesmarked by PRA do not necessarily
remain unfilamented under advection. If the goal is to find
perfectly coherent Lagrangian vortices (see, e.g., [49]), then the
geodesic theory of Haller and Beron-Vera [15] should be applied.
This theory identifies material vortex boundaries as closed null
geodesics of the generalized Green–Lagrange strain tensor. The
related computations require the a priori identification of phase
space regions where such closed geodesics may exist [50]. Vortex
regions identified from the PRA provide a quickly computable
starting point for the detection of closed Green–Lagrange null
geodesics. Incorporating the vortex centers obtained from the PRA
in the geodesic LCS analysis is, therefore, expected to lead to a
notable computational speed-up.

Finally, the polar LCSs obtained as level curves of the
PRA are frame-invariant for planar flows (see Proposition 3).
Such objectivity is desirable for coherent structure identification
methods in order to exclude false positives and negatives specific
to the coordinate system used in the analysis [17]. In three
dimensions, however, the PRAdoes depend on the reference frame.
The objective detection of higher-dimensional elliptic islands from
their rotational coherence, therefore, requires further work (cf.
Refs. [51,52]).
Appendix A. Proof of Proposition 1

Part (1): The trace of a tensor is independent of the choice of ba-
sis. If we represent the rotation tensor Rt

t0 in the orthonormal basis
{ξk}1≤k≤3, then its entries satisfy


Rt
t0


ij

=

ξi,Rt

t0ξj

. Therefore, us-

ing formula (8), we can write

trRt
t0 =

3
i=1


ξi,R

t
t0ξi

=

3
i=1


ξi,∇Ftt0


Ut

t0

−1
ξi


=

3
i=1


ξi,∇Ftt0

1
√
λi

ξi


=

3
i=1


ξi,∇Ftt0ξi


√
λi

, (24)

which, together with (12a), proves formula (13a).
To prove formula (13b), we first note the coordinate form of

Eq. (12b):
1
2


Rt
t0


ij
−

Rt
t0


ji


= sin θ tt0ϵijk


rtt0

k
.

Applying the same argument used in (24) in the strain eigenbasis,
we obtain

sin θ tt0 =


ξi,∇Ftt0

1√
λj

ξj


−


ξj,∇Ftt0

1
√
λi

ξi


2ϵijk


rtt0

k

, i ≠ j. (25)
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Next we write the eigenvector rtt0 in strain basis as rtt0 =


k ekξk
to obtain
k

ekξk = Rt
t0


k

ekξk = ∇Ftt0

Ut

t0

−1
k

ekξk

=


k

ek
√
λk

∇Ftt0ξk,

which implies

ej =


k


ξj,∇Ftt0ξk


√
λk

ek,

or, equivalently, Kt
t0e = e, with Kt

t0 and e defined in the statement
of Proposition 1. Since


rtt0

k
= ek, formula (25) proves (13b).

Part (2): Two-dimensional flows are parallel to a distinguished
plane and exhibit no stretching or shrinking along the normal of
this plane. In this case, we have

λ1 ≤ λ2 = 1 ≤ λ3,

with the strain eigenvector ξ2 pointing in the normal of the plane
in question. Formula (13) then gives

cos θ tt0 =
1
2


ξ1,∇Ftt0ξ1


√
λ1

+


ξ3,∇Ftt0ξ3


√
λ3


. (26)

Restricting our consideration to the two-dimensional plane of the
flow, we reindex the quantities in formula (26) as λ3 → λ2 and
ξ3 → ξ2, given that the original λ3 strain eigenvalue of the flow
is the second largest principal strain in the plane of the flow. After
this re-indexing, Eq. (26) gives

cos θ tt0 =
1
2

2
i=1


ξi,∇Ftt0ξi


√
λi

. (27)

The summands in this last expression are just the diagonal
elements of the two-dimensional rotation tensor Rt

t0 represented
in the


ξ1, ξ2


basis (cf. our discussion leading to Eq. (24)). Since

the diagonal elements of any two-dimensional rotation matrix are
equal, formula (14a) follows from (27).

In two dimensions, the rotation tensor is of the form

Rt
t0(x0) =


cos θ tt0(x0) sin θ tt0(x0)

− sin θ tt0(x0) cos θ tt0(x0)


. (28)

Thus, using the argument in (24), we obtain that

sin θ tt0 =

ξ1,R

t
t0ξ2


=


ξ1,∇Ftt0ξ2


√
λ2

= −

ξ2,R

t
t0ξ1


= −


ξ2,∇Ftt0ξ1


√
λ1

,

which is the PRA formula (14b).

Appendix B. Total Lagrangian rotation in planar flows

The polar rotation θ tt0 defined in Definition 1 is the net rotation
of the {ξ1, ξ2} eigenbasis over the time interval [t0, t]. This
quantity, however, measures the rotation modulo 2π and does
not differentiate between rotation by θ0 and θ0 + 2kπ . Here, we
also derive an expression for the total Lagrangian rotation of the
eigenbasis that distinguishes between rotations differing by an
integer multiple of 2π .

Consider the equations of variations for a given infinitesimal
displacement ξ,

ξ̇(t) = ∇u(x(t), t)ξ(t). (29)
Write ξ(t) = reφ where eφ = (cosφ, sinφ)⊤ and (r, φ) are
functions of time. Substituting this in the equations of variations
(29) we get

ṙeφ + rφ̇e⊥

φ = r∇u(x(t), t)eφ, (30)

with e⊥

φ = (− sinφ, cosφ)⊤. Since eφ and e⊥

φ are perpendicular,
we have
ṙ
r

= ⟨eφ,∇u(x(t), t)eφ⟩, (31a)

φ̇ = ⟨e⊥

φ ,∇u(x(t), t)eφ⟩. (31b)
Therefore, solving Eq. (31b), the total rotation of an arbitrary
displacement vector ξ0 = (cosφ0, sinφ0)

⊤ is given by

θtot := φ(t)− φ0 =

 t

t0
⟨e⊥

φ(τ),∇u(x(τ ), τ )eφ(τ)⟩dτ . (32)

If the initial vector ξ0 is chosen to be ξ1 (or ξ2), θtot measures the
total rotation of the eigenbasis {ξ1, ξ2}. We refer to θtot as the total
Lagrangian rotation.

In practice, for evaluating the total Lagrangian rotation (32),
one needs to first compute the deformation gradient ∇Ftt0 from
which the strain directions {ξ1, ξ2} are computed. The orientation
of ξ1 (or alternatively ξ2) determines the appropriate initial
condition eφ0 = (cosφ0, sinφ0)

⊤ with which Eq. (31b) should
be solved. Note that Eq. (31b) must be solved simultaneous with
the dynamical system ẋ = u(x, t) since ∇u is evaluated along
trajectories x(t; t0, x0).

Therefore, evaluating the total Lagrangian rotation is more
expensive than computing the PRA. The connected components of
the level sets of θtot and θ tt0 are identical by an argument similar
to the one used in the proof of Proposition 2. Thus the polar LCSs
revealed by these two scalars are also identical.

Appendix C. Proof of Proposition 3

Differentiating both sides of the formula (17) with respect to
the initial condition x0 gives

∇Ftt0 = Q(t)∇F̃tt0Q
⊤(t0), (33)

where ∇F̃tt0 denotes the deformation gradient in the y = F̃tt0(y0)
coordinate system. From (33), we obtain

∇F̃tt0 = Q⊤(t)∇Ftt0Q(t0)

= Q⊤(t)Rt
t0U

t
t0Q(t0)

= Q⊤(t)Rt
t0Q(t0)Q

⊤(t0)Ut
t0Q(t0)

= R̃t
t0 Ũ

t
t0 ,

where the rotation tensor R̃t
t0 = Q⊤(t)Rt

t0Q(t0) and the positive
definite, symmetric tensor Ũt

t0 = Q⊤(t0)Ut
t0Q(t0) represent the

unique polar decomposition of ∇F̃tt0 . Then

tr R̃t
t0(y0) = tr


Q⊤(t)Rt

t0(x0)Q(t0)


= tr

cos


θ tt0(x0)+ q(t0)− q(t)


− sin


θ tt0(x0)+ q(t0)− q(t)


sin

θ tt0(x0)+ q(t0)− q(t)


cos


θ tt0(x0)+ q(t0)− q(t)

 
= 2 cos


θ tt0(x0)+ q(t0)− q(t)


,

where q(t) represents the angle of rotation associated with Q(t).
Therefore, if the polar rotation angle generated by transformed
rotation tensor R̃t

t0 is θ̃ tt0(y0), then

cos

θ̃ tt0(y0)


=

1
2
tr R̃t

t0(y0)

= cos

θ tt0(x0)+ q(t0)− q(t)


. (34)
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Consequently, if two points x0 and x̂0 lie on the same connected
level set of θ tt0(x0), then the corresponding points also lie on a
connected level set of θ̃ tt0(y0), even though we generally have
θ tt0(x0) ≠ θ̃ tt0(y0).

We note that the level sets of PRA in three dimensions are
generally not objective. An essential part of the above argument,
leading to Eq. (34), is that the rotation matrices Q(t), Rt

t0(x0) and
Q(t0) share the same axis of rotation (i.e., the normal to the plane of
motion). In three dimensions, such a uniform axis of rotation does
not generally exist, and hence a relation similar to (34) does not
hold.
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