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We define objective Eulerian Coherent Structures (OECSs) in two-dimensional, non-autonomous

dynamical systems as the instantaneously most influential material curves. Specifically, OECSs are

stationary curves of the averaged instantaneous material stretching-rate or material shearing-rate

functionals. From these objective (frame-invariant) variational principles, we obtain explicit differ-

ential equations for hyperbolic, elliptic, and parabolic OECSs. As an illustration, we compute

OECSs in an unsteady ocean velocity data set. In comparison to structures suggested by other com-

mon Eulerian diagnostic tools, we find OECSs to be the correct short-term cores of observed trajec-

tory deformation patterns. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4951720]

Short-term variability in material structures is often seen

as significant in unsteady flows. Such variability is of prime

interest in many fields ranging from flow control to envi-

ronmental assessment, where quick operational decisions

need to be made. Existing methods for the identification of

the instantaneously most influential structures for defor-

mation patterns, however, are often frame-dependent and

lack a rigorous mathematical foundation. This, in turn,

limits the reliability of the results they provide. Here, we

develop a rigorous global variational theory of objective

Eulerian Coherent Structures (OECSs), which uncover the

correct instantaneous skeletons of the flow, in a frame-

invariant fashion.

I. INTRODUCTION

Coherent structures behind material pattern formation in

unsteady flows have received considerable attention (see,

e.g., Refs. 4, 28, and 30, for reviews). Among other mathe-

matical advances (Refs. 1, 5, 13, 26, and 29), variational

techniques have been developed to identify Lagrangian

Coherent Structures (LCSs), the most influential cores of ma-

terial deformation, in experimental and numerical velocity

data (Refs. 10–12, 16, and 18).

Specifically, initial positions of hyperbolic LCSs (gener-

alized stable and unstable manifolds), elliptic LCSs (general-

ized KAM tori) and parabolic LCSs (generalized jet cores)

are now readily computable as solutions of differential equa-

tions defined over the initial configuration of a system.17

Later positions of these LCSs are then obtained by advecting

their initial positions under the flow map. By the objectivity

(frame-invariance) of their underlying variational principles,

variational LCSs transform properly under coordinate

changes x 7!~x of the form

x ¼ QðtÞ~x þ bðtÞ; (1)

where Q(t) is an arbitrary proper orthogonal tensor family

generating time-dependent rotations, and b(t) is an arbitrary

vector family introducing time-dependent translations of the

frame.32

All LCSs, however, are intrinsically tied to a specific

finite time interval over which they exert their influence on

nearby trajectories. This influence is an integrated one, filter-

ing out short-term anomalies in the flow. Yet short-term vari-

ability in material structures is often seen as significant in

highly unsteady flows, explaining the popularity of Eulerian

(i.e., instantaneous velocity-based) diagnostic fields in fluid

dynamics (see, e.g., Refs. 15, 21, and 6 for reviews).

Eulerian diagnostics generally highlight features of the

velocity field in a given frame of reference. Most studies of

flows, nevertheless, would ideally want to understand, fore-

cast, or control the evolution and mixing of material trajec-
tories, as well as the transport of the physical properties they

carry. Indeed, the motivation for each commonly used

Eulerian diagnostic is invariably grounded in the desire to

understand particle motion over short time scales. Yet the

approximations and heuristics employed in deriving these

diagnostics, as well as the expectation for simply implement-

able results, tends to change the original focus of these

approaches from material features to the analysis of frame-

dependent velocity features.

Even short-term identifications of material coherence,

however, must be frame-invariant by definition. This is

because material coherent structures are composed of trajec-

tories, which do not depend on coordinates and hence must

transform properly under (1) from the frame of one observer

to the other’s. If a proposed coherent structure criterion

labels different material sets as coherent in different frames,

then it either lacks a proper physical foundation, or its physi-

cal foundation is implemented through erroneous mathemat-

ics. Either way, the criterion cannot be used reliably in now-

casting or real-time decision-making under unsteady flow

conditions.29

The few available objective Eulerian coherent structure

diagnostics include that of Tabor and Klapper,31 who con-

sider a point elliptic (i.e., part of a vortex) if the vorticity
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expressed on the basis of the rate-of-strain eigenvectors domi-

nates strain (see also Refs. 23 and 24). Another objective

Eulerian technique is the recent global approach19 to rotation-

ally coherent vortices. Identified as an outermost closed level

sets of the instantaneous vorticity deviation (IVD) from the

spatial mean vorticity, IVD-based vortex boundaries are

objective, short-term limits of closed curves obtained from a

global Lagrangian rotational coherence principle.

Here, we introduce a more general approach to Objective

Eulerian Coherent Structures (OECSs) in two dimensions.

We effectively seek these structures as short-term limits of

LCSs. In contrast to Ref. 19, we use the stretching-based var-

iational LCS theories in taking this limit. As a consequence,

we obtain a broader class of OECSs that includes elliptic

(vortex-type), hyperbolic (stretching or contracting), and par-

abolic (jet-type) structures.

We give an explicit parametrization of all these types of

OECSs as solutions of autonomous ordinary differential

equations (ODEs). Our approach is global, eliminating the

shortcomings of local structure identification schemes noted

in Ref. 25. All OECSs are computable without dependence

on any chosen time scale. They are also objective, depending

solely on the invariants of the rate-of-strain tensor, i.e., the

symmetric part of the velocity gradient.

As an illustration of the results we derive here, Fig. 1

compares hyperbolic OECSs and the classic frame-

dependent saddle-type stagnation points computed on an

ocean velocity data (see Section VIII for more details). The

effect of those structures on nearby particles and the instan-

taneous streamlines are also shown. In particular, Figs. 1(a)

and 1(b) show the attracting hyperbolic OECSs (red) with

their cores (red dots) and the saddle-type stagnation points

(magenta triangles) with their unstable directions (magenta)

at the initial time, and after short-term advection. In con-

trast, Figs. 1(c) and 1(d) show the same features observed

from a frame translating in the longitudinal direction

with constant speed (�0.6�/day), relative to the one used in

Figs. 1(a) and 1(b).

This example highlights two important facts. First,

frame-dependent diagnostics, such as instantaneous stagna-

tion points, are unsuitable for the self-consistent identifica-

tion of coherent structures: the three saddle-type stagnation

points detected by one observer (Figs. 1(a) and 1(b)) disap-

pear when the same phenomenon is analyzed by another ob-

server in a moving frame (Figs. 1(c) and 1(d)). In this

second frame, a single saddle-type stagnation point emerges

at an unrelated location and induces no notable material

stretching.

FIG. 1. (a) Attracting hyperbolic OECSs (red) with their cores (red dots) and classic saddle-type stagnation points (magenta triangles) with their corresponding

unstable directions (magenta), overlaid on streamlines. (b) Advected image of the hyperbolic OECSs and classic saddle-type stagnation points after 1.5 days,

and their effect on nearby particles. (c) and (d) Same phenomenon shown in (a) and (b), seen from an observer moving with constant longitudinal velocity

(–0.6�/day) relative to the one used in (a) and (b).
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Second, and more important, hyperbolic OECSs capture

an actual saddle-type material behavior in several locations

with no stagnation points in their vicinities. Similar conclu-

sions hold for elliptic and parabolic OECSs (cf. Section

VIII). Based on this example, we expect OECSs to be useful

in a number of physical situations where reliable now-

casting, or short-term forecasting, and control of material

transport are critical.

We develop a theoretical foundation for our global var-

iational OECS theory in Sections III–VI. Readers interested

mainly on a practical implementation of the automated

OECSs detection may proceed directly to Section VII, which

gives a summary of the results along with the corresponding

numerical schemes. In Section VIII, we perform the OECSs

detection in a two-dimensional ocean velocity data obtained

from satellite altimetry. We show that the variational OECSs

outperform traditional Eulerian diagnostics in locating the

skeletons of short-term material deformation.

II. SET-UP AND NOTATION

Consider the two-dimensional non-autonomous dynami-

cal system

_x ¼ vðx; tÞ; (2)

with a twice continuously differentiable velocity field v(x, t)
defined over an open flow domain U 2 R2, over a time inter-

val t 2 [a, b]. We recall the customary velocity gradient

decomposition

rvðx; tÞ ¼ Sðx; tÞ þWðx; tÞ;

with the rate-of-strain tensor S ¼ 1
2
rvþrvTÞ
�

and the spin

tensor W ¼ 1
2
rv�rvTÞ
�

. By our assumptions, S(x, t) and

W(x, t) are continuously differentiable in x and t. Under an

observer change (1), the new rate-of-strain tensor and the

new spin tensor are obtained in the form

~Sð~x; tÞ ¼ QTðtÞSðx; tÞQðtÞ;
~Wð~x; tÞ ¼ QTðtÞWðx; tÞQðtÞ � QTðtÞ _QðtÞ; (3)

as shown in classic texts on continuum mechanics (see, e.g.,

Ref. 32). Therefore, the rate-of-strain tensor is objective, as

it transforms as a linear operator, whereas the spin tensor is

not the objective.

The eigenvalues si(x, t) and eigenvectors ei(x, t) of S(x, t)
are defined, indexed, and oriented here through the relationship

Sei ¼ siei; jeij ¼ 1; i ¼ 1;2; s1 � s2; e2 ¼ Re1;

R :¼
0 �1

1 0

 !
: (4)

We also recall that the rate of length change for an infinitesi-

mal material element vector ‘ based at x is

1

2

d

dt
j‘j2 ¼ h‘; S x; tð Þ‘i: (5)

A further key relationship between the flow map Ft
t0

:
x0 7!xðt; t0; x0Þ of (2) and S(x, t) is obtained by considering

the right Cauchy–Green strain tensor,

Ct
t0
¼ ½rFt

t0
�TrFt

t0
; (6)

whose temporal Taylor expansion around the initial time can

be computed as

Ct
t0
ðx0Þ ¼ I þ 2Sðx0; t0Þðt� t0Þ þ Oðjt� t0j2Þ; (7)

(cf. eq. A1, Appendix A). In other words, for small enough

times, the leading order Lagrangian deformation is governed

by the Eulerian rate-of-strain tensor. This observation enables

us to consider the Eulerian coherent structures as short-time

limits of Lagrangian coherent structures.

Although OECSs are instantaneous limits of LCSs, these

two families of coherent structures are not interchangeable.

Specifically, OECSs are free from any time scale and reveal

the instantaneous centerpieces of deformation patterns. LCSs

computed over short times, instead, are tied to small but fi-

nite time scales which are abundant in general unsteady

flows. Furthermore, short-term LCSs have weak signatures

since the Cauchy–Green tensor is close to the identity (cf.

Eq. (7)). By contrast, OECSs are computed from the rate-of-

strain tensor which is generally far from the identity tensor,

and hence has rich features.

III. OBJECTIVE DEFORMATION RATES

At an arbitrary time t, consider a smooth curve c � U,

parametrized in the form x(s) by its arclength s 2 ½0; r�.
Then the unit vectors x0ðsÞ and nðsÞ ¼ R x0ðsÞ

jx0ðsÞj, with the rota-

tion matrix R appearing in (4), define a local tangent and a

local normal to c at the point x(s). The following definition

fixes the notions of instantaneous material shear rate and ma-

terial stretching rate along c. While these quantities are intui-

tively clear, we also give their detailed derivation in

Appendix A as first-order terms in the temporal Taylor

expansion of the analogous finite-time Lagrangian shear and

stretching measures (cf. Ref. 17).

Definition 1. Material deformation rates at time t along

a material curve c with arclength parametrization x(s):

(1) Material stretching rate:

_q x; x0; tð Þ ¼ hx
0; S x; tð Þx0i
hx0; x0i

(2) Material shear rate:

_p x; x0; tð Þ ¼ hx
0; S x; tð ÞR� RS x; tð Þ½ �x0i

hx0; x0i : (8)

Physically, _q gives the instantaneous tangential stretching

rate along c, while _p represents twice the rotation rate due to

shear of an initially normal perturbation to c. The objectivity

of these Eulerian deformation rate measures follows from (3)

together with the commutation between an arbitrary planar

rotation Q(t) and the 90� rotation R.
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IV. VARIATIONAL PRINCIPLES FOR OECSs

Using the Eulerian deformation rates introduced in

Definition 1, we now define the averaged stretch- and shear-

rate functionals over an arbitrary curve c at time t:
Definition 2. At time t along the material curve c:

(1) The averaged material stretch-rate is

_Qt cð Þ ¼
1

r

ð
c
_q x sð Þ; x0 sð Þ; t
� �

ds: (9)

(2) The averaged material shear-rate is

_Pt cð Þ ¼
1

r

ð
c
_p x sð Þ; x0 sð Þ; t
� �

ds: (10)

By smooth dependence of v(x, t) on x and t, one expects to

see Oð�Þ variability in the average material stretch- or shear-

rates across an Oð�Þ strip of material lines surrounding c.

Exceptional choices of c, however, defy this trend, display-

ing only an Oð�2Þ variability of _QtðcÞ or _PtðcÞ in Oð�Þ strips

around c. Such c curves will act as centerpieces of coherence

in the material stretch-rate or material shear-rate fields.

This lack of leading order variability in the averaged

stretch-rate or shear-rate along c is equivalent to the vanish-

ing of the first variation of the functional _Qt or _Pt on c. The

former case occurs on the instantaneous vortex boundaries

with no short-term unevenness in their tangential deforma-

tion (no short-term filamentation). Figure 2 shows a material

curve c (black) with a surrounding material belt cþ �h (red)

at the current time t and at a later time tþ s. The evolution is

shown for a typical material belt and for an atypical (coher-

ent) belt. Specifically, in the limit of s! 0, Fig. 2 illustrates

the meaning of a stationary curve of an averaged stretch rate.

The latter case arises for curves that are cores of short-

term shear-type deformation (instantaneous jets) or short-

term hyperbolic stretching (instantaneous hyperbolic struc-

tures). We formalize these definitions below, using the time

derivatives of the corresponding global variational LCS defi-

nitions reviewed in Ref. 17.

Definition 3. At time t

(1) A closed curve c is an elliptic OECS if it is a stationary
curve of the averaged stretch-rate functional _Q, i.e.,

d _QtðcÞ ¼ 0: (11)

(2) A curve c is a shearless OECS if it is a stationary curve
of the averaged shear-rate functional _Pt, i.e.,

d _PtðcÞ ¼ 0: (12)

The variational problems outlined in (11) and (12) are equiv-

alent to the weak Euler-Lagrange equations

d _Qt cð Þ ¼
1

r
h@x0 _q; hi½ �r0þ

1

r

ðr

0

@x _q � d

ds
@x0 _q

� �
h ds ¼ 0; (13)

d _Pt cð Þ ¼
1

r
h@x0 _p; hi½ �r0þ

1

r

ðr

0

@x _p � d

ds
@x0 _p

� �
h ds ¼ 0; (14)

with h(s) denoting small perturbations to the curve c. We dis-

cuss below the solutions of Equations (13) and (14), building

on similar ideas developed for LCSs (Refs. 10 and 18). This

approach will lead to explicit solutions of (11) and (12), and

enable a further partitioning of shearless OECSs into hyper-

bolic and parabolic OECSs.

V. ELLIPTIC OECS

By Definition 3, an elliptic OECS is a closed curve, and

hence its small perturbation h(s) used in calculating the first

variation of _Qt along c is also periodic with the same period

r. As a consequence, the first bracketed term in (13) van-

ishes. Then, by the fundamental lemma of the calculus of

variations, Equation (11) becomes equivalent to the classic

Euler–Lagrange equations

@x _q � d

ds
@x0 _q ¼ 0: (15)

The detailed form of this equation is similar to the

Euler–Lagrange equation derived in Ref. 18 for elliptic

LCSs (stationary curves of the averaged, finite-time tangen-

tial stretch along the material curve c). The only difference

in the present context is that the expression for _q has no

square root, and contains the rate-of-strain tensor S(x, t)
instead of the Cauchy–Green strain tensor Ct

t0
ðx0Þ defined in

(6). Therefore, following the procedure similar to the one

adopted in Ref. 18, we obtain the following full characteriza-

tion of elliptic OECSs.

Theorem 1. Elliptic OECSs at time t coincide with limit
cycles of the differential equation family

dx

ds
¼ v6

l x; tð Þ; v6
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � l
s2 � s1

r
e16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� s1

s2 � s1

r
e2; (16)

defined for any parameter value l 2 R on the set

Ul :¼ fx 2 U : s1 6¼ s2; s1 � l � s2g:

Along any elliptic OECS obtained for a given value of l, the
material stretching rate at time t is pointwise constant and
equal to _q � l.

The right-hand side of the differential equation (16) is

only locally a vector field in Ul, because the rate-of-strain

FIG. 2. A closed material curve c (black), at time t, is advected by the flow

into its later position Ftþs
t ðcÞ; 0 < s� 1. The advected curve remains

coherent in the limit of s ! 0 if an initially uniform material belt (red)

around it shows no leading-order variations in the material-line averaged

stretch rate _Qt.
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eigenvector fields ei are generally not globally orientable in

U. Local orientability of v6
l ðx; tÞ in Ul, however, is always

possible. This makes the trajectories, and specifically the

limit cycles, of the differential equation (16) well defined.

Due to the lack of a well-defined orientation for eigenvector

fields, it is a-priori unknown which one of the v6
l fields can

have limit cycles. Therefore, both vector fields should be

checked for limit cycles.

Along limit cycles obtained for l¼ 0, we have _q � 0.

Such elliptic OECSs are perfectly coherent in the Eulerian

sense, exhibiting uniformly zero pointwise material stretch-

ing rate. The direction field v6
l ceases to be well-defined at

locations of repeated rate-of-strain eigenvalues (s1¼ s2).

Following the terminology used in Ref. 18, we refer to such

locations as singularities of the tensor field Sð 	 ; tÞ. An

appropriate extension of Poincar�e’s classic index theory

implies that there are at least two singularities of S in the in-

terior of any limit cycle of v6
l . This in turn leads to an auto-

mated detection algorithm that applies equally to elliptic

OECSs. We refer to Ref. 22 for a detailed discussion of this

algorithm for elliptic LCSs.

By their hyperbolicity (i.e., strict attraction or repulsion

of nearby trajectories of the vector field v6
l ), elliptic OECSs

are robust with respect to moderate errors and uncertainties

in the underlying velocity field v(x, t). Figure 3(a) summa-

rizes the main properties of perfectly coherent elliptic

OECSs. Detailed discussions on the numerical detection of

limit cycles of directions fields can be found in Refs. 18 and

22 for LCS. These can be directly applied here after replac-

ing Ct
t0
ðx0Þ with S(x, t).

Under changes in the parameter l, limit cycles of v6
l

arise in continuous, non-intersecting families (see Appendix

B). An Eulerian vortex boundary can then be defined as the

outermost member of such an elliptic OECS family. Given

the objectivity of each member of such a limit cycle family,

Eulerian vortex boundaries defined in this fashion are also

objective.

Figure 3(b) shows such a family and its outermost mem-

ber in a flow example analyzed in more detail in Section

VIII. A nested OECS family often signals a nearby coherent

Lagrangian vortex boundary, as is the case in Fig. 3(b). Just

as in the case of elliptic LCSs,18 solutions of the variational

principle (11) can also be viewed as closed null-geodesics of

a Lorentzian metric family

glðu; uÞ ¼ hu; Slui; Slðx; tÞ ¼ ½Sðx; tÞ � lI�; (17)

which has a metric signature (–,þ).2 The tensor family Sl

denotes a generalized rate-of-strain tensor and the parameter

l denotes the instantaneous tangential stretching rate on c. In

this context, locations of repeated eigenvalues of S(x, t) are

singularities for the metric gl which becomes degenerate at

these points (cf. Fig. 3).

VI. SHEARLESS OECS

By Definition 3, a shearless OECS at time t is a station-

ary curve of the averaged shear-rate functional _Pt, and hence

satisfies the weak Euler–Lagrange equation (14). We can

pass to the strong form of these Euler–Lagrange equation if

the first bracketed term in (14) vanishes for the class of ad-

missible perturbations h(s) applied to the parametrization

x(s) of the stationary curve c we seek.

Following the procedure developed in Ref. 10 for an ellip-

tic LCS, we find the following class of admissible perturba-

tions for which the boundary term h@x0 _p; hi in (14) vanishes:

FIG. 3. (a) Perfectly coherent elliptic OECS at time t, obtained as a limit cycle c of the direction field v6
0 ðx; tÞ. The tangential stretching rate (and, in incom-

pressible flows, the normal repulsion rate) along c is pointwise zero. Furthermore, the interior of c always contains at least two singularities of the tensor field

S. (b) Nested family of elliptic OECSs for different values of l (in color). A nearby Lagrangian vortex boundary is shown in black. Black dots represent singu-

larities of the rate-of-strain tensor used for an automatic placement of the Poincar�e Section (PS) in the detection of limit cycles for the direction field family

v6
l ðx; tÞ.
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(BC1) Variable-endpoint boundary conditions: The end-

points of c coincide with singularities of the rate-of-strain

tensor field S(x, t), i.e., we have s1ðxð0Þ; tÞ ¼ s2ðxð0Þ; tÞ and

s1ðxðrÞ; tÞ ¼ s2ðxðrÞ; tÞ. In this case, the perturbations h(s)

are arbitrary, including arbitrary perturbations to the end-

points of c.

(BC2) Fixed-endpoint boundary conditions: The pertur-

bation h(s) is arbitrary for all s 2 (0, r), but must leave the

endpoints of c fixed: hð0Þ ¼ hðrÞ ¼ 0.

Under (BC1) or (BC2), the bracketed term in (14) van-

ishes. By the fundamental lemma of the calculus of varia-

tions, a solution curve c of (14) must then satisfy the

Euler–Lagrange equations

@x _p � d

ds
@x0 _p ¼ 0: (18)

Invoking the results of Ref. 10 for shearless LCSs, we obtain

that solution curves of (18) with exactly vanishing shear

rates are piecewise tangent to one of the eigenvector fields of

S(x, t).
Theorem 2. Shearless OECSs at time t coincide with

continuous trajectories of the differential equation family

dx

ds
¼ ei x; tð Þ; S x; tð Þei x; tð Þ ¼ si x; tð Þei x; tð Þ; i ¼ 1; 2:

(19)

Along any such shearless OECS, the pointwise material
shear rate at time t is zero.

We refer to the trajectories of (19) as e1-lines and e2-
lines, respectively. We will use the boundary condition

classes (BC1) and (BC2) to further distinguish parabolic and

hyperbolic OECSs within the shearless OECSs satisfying

(19).

From an argument closely following,10 we obtain that

the solutions of (18) can also be viewed as null-geodesics of

the Lorentzian metric family

m�ðu; uÞ ¼ hu; ½2Sðx; tÞR� �I�ui; � 2 R;

which again has metric signature (–,þ),2 and admits singu-

larities at locations of repeated eigenvalues of S(x, t). In par-

ticular, shearless OECSs are null geodesics of m�ðu; uÞ for

�¼ 0.

A. Parabolic OECS

Parabolic OECSs are trajectories of (19) that satisfy the

free-endpoint boundary conditions (BC1) and are as close as

possible to being neutrally stable, as detailed below. By the

nature of (BC1), such OECSs are stationary curves of the

shear-rate functional _PtðcÞ under the broadest possible set of

perturbations. This makes parabolic OECSs the most observ-

able class of shearless OECSs, creating short-term pathways
that mimic the role of the Lagrangian jet cores identified in

Ref. 10. The higher robustness of parabolic OECSs implies a

more pronounced signature in tracer patterns. This is consist-

ent with observations of tracers and scalar fields that high-

light the details of jet cores more prominently than those of

hyperbolic structures.

Parabolic OECSs are heteroclinic chains of e1–lines and

e2-lines connecting singularities of S(x, t). For observability

and uniqueness, we only consider alternating chains of e1-

and e2-line connections that are locally unique and structur-

ally stable. As shown in Ref. 8, the only structurally stable

tensorline singularities are trisectors and wedges, shown in

Fig. 4.

Furthermore, as shown in Ref. 10, a structurally stable

and unique connection between two such singularities must

necessarily be a wedge-trisector connection, as illustrated

in Fig. 5. By definition, each segment of an alternating

chain of e1- and e2-lines repels or attracts trajectories over

short enough time intervals. To ensure that neither attrac-

tion nor repulsion prevails for the whole trajectory chain,

we require the chain to be as close as possible to being neu-

trally stable. To this end, we introduce the pointwise neu-
trality functions

N e1
ðx; tÞ ¼ s2

2ðx; tÞ; N e2
ðxÞ ¼ s2

1ðx; tÞ; (20)

with the function N ei
ðx; tÞ measuring how close the squared

rate of attraction or repulsion, s2
j ðx; tÞ, along an ei line is to

zero at time t. In case of incompressible flows, we have

N e1
ðx; tÞ ¼ N e2

ðx; tÞ, given that s1ðx; tÞ þ s2ðx; tÞ ¼ 0.

All this follows closely the variational approach devel-

oped in Ref. 10 for parabolic LCSs, but with S(x, t) substi-

tuted for Ct
t0
ðx0Þ. As a next step, we introduce the convexity

sets

Cei
ðtÞ ¼ fx 2 U : hejðx; tÞ; @2

rN ei
ðx; tÞejðx; tÞi > 0; i 6¼ jg;

i ¼ 1; 2: (21)

Each such set Cei
ðtÞ is simply the set of points at which the

corresponding neutrality N ei
ðx; tÞ is a convex function of x

at time t. We say that a compact ei-line segment c is a weak
minimizer of N ei

at time t if both c and the nearest trench of

the function N ei
ð 	 ; tÞ lie in the same connected component

of CeiðtÞ. More precisely, if the arclength parametrization of

c is x(s), and the unit normal along c is given by n(s), then

we require

xðsÞ þ �nðsÞ 2 Cei
ðtÞ; s 2 ½0; r�; � 2 ½0; �0ðs; tÞ�; (22)

FIG. 4. Local topology of a tensorline field around structurally stable singu-

larities: Wedge and Trisector.
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where

�0ðs; tÞ ¼ minfj�j 2 Rþ : @�N ei
ðxðsÞ þ �nðsÞ; tÞ ¼ 0;

@2
�N ei
ðxðsÞ þ �nðsÞ; tÞ > 0g: (23)

We summarize our formal definition of parabolic

OECSs as follows (cf. Fig. 5).

Definition 4. A parabolic OECS at time t is a shearless

OECS composed of alternating chains of e1- and e2-line seg-

ments that connect wedge and trisector singularities of the the

rate-of-strain tensor S(x, t). Furthermore, each ei segment in

the chain is a weak minimizer of the neutrality function

N ei
ðx; tÞ.

B. Hyperbolic OECSs

Hyperbolic OECSs are trajectory segments of (19) that

satisfy the fixed-endpoint boundary conditions (BC2) and

contain precisely one point of maximal repulsion-rate or

maximal attraction-rate. This point will then play the role of

an instantaneous saddle point, with the OECSs acting as the

short-term stable or unstable manifold for this saddle point.

By the nature of (BC2), hyperbolic OECSs are only station-

ary curves of the shear-rate functional _PtðcÞ under variations

that leave their endpoints fixed. This makes individual hyper-

bolic OECSs less observable than the parabolic OECSs. This

is also the case for hyperbolic LCSs, which are generally re-

sponsible for the intricate filamentation of tracer patterns.

Details of these filaments are generally less observable and

robust as those of Lagrangian jet cores marked by parabolic

LCSs (cf. Ref. 10).

Within the family of hyperbolic OECSs, we distinguish

attracting OECSs as material curves that attract nearby mate-

rial curves instantaneously. Similarly, we distinguish repel-
ling OECSs as hyperbolic OECSs that instantaneously repel

all nearby material curves. We summarize these definitions

more formally as follows (cf. Fig. 6).

Definition 5. A repelling OECS at time t is an open e1-

line segment that contains a local maximum of the function

s2ð 	 ; tÞ, but contains no other local extremum point of

s2ð 	 ; tÞ. An attracting OECS at time t is an open e2-line

FIG. 5. Parabolic OECSs are alternat-

ing chains of ei-lines that connect

structurally stable singularities and are

weak minimizers of the corresponding

neutrality functionsN ei
.

FIG. 6. Attracting (repelling) hyper-

bolic OECSs as the instantaneous

attracting (repelling) material lines

launched from a minimum of s1, (max-

imum of s2). In the circular inset: the

local tangential stretching and normal

repulsion.
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segment that contains a local minimum of the function

s1ð 	 ; tÞ, but contains no other local extremum of s1ð 	 ; tÞ.
Finally, a hyperbolic OECS is a shearless OECS that is either

an attracting or a repelling OECS.

Remark 1. As indicated in Fig. 6, the cores of hyperbolic

OECSs are defined by a local maximum of s2ð 	 ; tÞ along

repelling OECSs and by a local minimum of s1ð 	 ; tÞ along

attracting OECSs. We call these cores objective saddle
points, as they represent generalizations of classic saddle-

type stagnation points from steady flows. Close to objective

saddle points, hyperbolic OECSs induce the strongest

saddle-type deformation on nearby particles along the direc-

tions shown in the circular insets of Fig. 6. Instantaneous

stagnation points of an unsteady velocity field are not

Galilean invariant, i.e., may disappear even under constant-

speed translations of the coordinate frame (cf. Fig. 1). In

contrast, the objective saddle points introduced here are

objective, and hence persist even under general observer

changes of form (1). The local value of siðx; tÞ on the objec-

tive saddle quantifies the strength of that saddle objectively.

VII. SUMMARY OF OECSs AND THEIR NUMERICAL
IDENTIFICATION

In Table I, we list the OECSs we introduced in Sec. V–VI,

together with the ODEs and boundary conditions they satisfy.

Next, we summarize the numerical steps in locating

OECSs in a planar unsteady flow. We start with the common

steps, then detail the further steps for different types of

OECSs separately.

Algorithm 1. Compute the rate-of-strain tensor S(x, t), its invariants and

singularities.

Input: A two-dimensional velocity field v(x, t)

1. Compute the rate-of-strain tensor Sðx; tÞ ¼ 1
2
rvðx; tÞ þ rvðx; tÞ½ �T
� �

at

the current time t on a rectangular grid over the (x1, x2) coordinates.

2. Detect the singularities of S as common, transverse zeros of S11ð 	 ; tÞ �
S22ð 	 ; tÞ and S12ð 	 ; tÞ, with Sij denoting the entry of S at row i

and column j.

3. Determine the type of the singularity (trisector or wedge) as described in

Ref. 10.

4. Compute the eigenvalue fields s1ðx; tÞ < s2ðx; tÞ and the associated unit

eigenvector fields eiðx; tÞ of S(x, t) for i¼ 1, 2.

Output: S(x, t) as well as siðx; tÞ and eiðx; tÞ, for i¼ 1, 2, and the position

and type (wedge or trisector) of the rate-of-strain singularities xjðtÞ satisfy-

ing s1ðxjðtÞ; tÞ ¼ s2ðxjðtÞ; tÞ; j ¼ 1;…;N.

A. Elliptic OECSs

To locate elliptic OECSs automatically as limit cycles

of the direction field (16), we rely on a version of Poincar�e’s

index theory extended to direction fields.7,22 A consequence

of this theory is that at least two wedge-type singularities of

S(x, t) must exist inside any such limit cycle.22 For robust

limit cycles, we seek nearby wedge pairs surrounded by an

annular region of no singularities. The same procedure arises

in an elliptic LCS detection, involving the location of singu-

larities of the tensor field Ct1
t0 : We refer to Ref. 22 for details

of this numerical algorithm.

Algorithm 2. Compute Elliptic OECSs.

Input: S(x, t) as well as siðx; tÞ and eiðx; tÞ, for i¼ 1, 2, and the position and

type (wedge or trisector) of the rate-of-strain singularities xjðtÞ satisfying

s1ðxjðtÞ; tÞ ¼ s2ðxjðtÞ; tÞ; j ¼ 1;…;N.

1. Locate isolated wedge-type pairs of singularities and place the Poincar�e

sections at their midpoint.

2. Compute the vector field v6
l ðxðsÞ; tÞ defined in (16) for different values of

stretching rate l, remaining in the range l
 0.

3. Use the Poincar�e sections as sets of initial conditions in the computation

of limit cycles of

x0 sð Þ ¼ sign v6
l x sð Þð Þ; dx s� Dð Þ

ds

	 

v6

l x sð Þð Þ;

where the factor multiplying v6
l ðxðsÞ; tÞ removes potential orientational

discontinuities in the direction field v6
l ðxðsÞ; tÞ away from singularities,

and D denotes the integration step in the independent variable s.

Output: Elliptic OECSs.

B. Hyperbolic OECSs

Algorithm 3. Compute Hyperbolic OECSs.

Input: S(x, t) as well as siðx; tÞ and eiðx; tÞ, for i¼ 1, 2.

1. Compute the sets SimðtÞ of isolated local maxima of jsið 	 ; tÞj for i¼ 1, 2.

2. Compute attracting OECSs (e2–lines) as solutions of the ODE

x0 sð Þ ¼ sign e2 x sð Þð Þ; dx s� Dð Þ
ds

	 

e2 x sð Þð Þ

x 0ð Þ 2 S1m:

8><
>:

Stop integration when js1ðxðsÞÞj ceases to be monotone decreasing.

3. Compute repelling OECSs (e1–lines) as solutions of the ODE

x0 sð Þ ¼ sign e1 x sð Þð Þ; dx s� Dð Þ
ds

	 

e1 x sð Þð Þ

x 0ð Þ 2 S2m:

8><
>:

Stop integration when js2ðxðsÞÞj ceases to be monotone decreasing.

Output: Hyperbolic OECSs.

TABLE I. Summary of the different types of OECSs.

Type of OECS ODE Boundary conditions

Attracting x0 ¼ e2ðx; tÞ Arbitrary; x(s) contains a local minimum of s1ð 	 ; tÞ
Repelling x0 ¼ e1ðx; tÞ Arbitrary; x(s) contains a local maximum of s2ð 	 ; tÞ
Parabolic x0 ¼ eiðx; tÞ with alternating i s2ðx; tÞ ¼ s1ðx; tÞ
Elliptic x0 ¼ v6

l ðx; tÞ Periodic
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C. Parabolic OECSs

Algorithm 4. Compute Parabolic OECSs.

Input: S(x, t) as well as siðx; tÞ and eiðx; tÞ, for i¼ 1, 2, and the position and

type (wedge or trisector) of the rate-of-strain singularities xjðtÞ satisfying

s1ðxjðtÞ; tÞ ¼ s2ðxjðtÞ; tÞ; j ¼ 1;…;N:

1. For each trisector-type singularity xjðtÞ, compute the e1-lines and e2-lines

connecting the trisector to a wedge.

2. Out of these heteroclinic connections, keep only those that are weak mini-

mizers of the corresponding neutrality function N ei
, i¼ 1, 2 (cf.

Equations (20)–(23).)

3. With the separatrices obtained in this fashion, build alternating chains of

heteroclinic e1-lines and e2-lines

Output: Parabolic OECSs.

VIII. EXAMPLE: MESOSCALE OECSs IN
LARGE-SCALE OCEAN DATA

We use Algorithms 1–4 from Section VII to locate

OECSs in a two-dimensional ocean surface velocity data

set derived from AVISO satellite altimetry measurements

(http://www.aviso.oceanobs.com). The domain of interest is

the Agulhas leakage in the Southern Ocean bounded by lon-

gitudes [17�W, 7�E], latitudes [38�S, 22�S], and the time

slice we selected correspond to t¼ 24 November 2006.

Under the geostrophic assumptions, the ocean surface

height measured by satellites plays the role of a streamfunc-

tion for surface currents. With h denoting the sea surface

height, the velocity field in longitude latitude coordinates,

½/; h�, can be expressed as

_/ ¼ � g

R2f hð Þcos h
@hh /; h; tð Þ;

_h ¼ g

R2f hð Þcos h
@/h /; h; tð Þ;

where f ðhÞ :¼ 2X sin h denotes the Coriolis parameter, g is

the constant of gravity, R is the mean radius of the earth and

X its mean angular velocity. The velocity field is available at

weekly intervals, with a spatial longitude-latitude resolution

of 0.25�. For more details on the data, see Ref. 3.

A. Elliptic OECSs

Following Algorithm 1 in Section VII A, we locate sin-

gularities of the rate-of-strain tensor S(x, t), and discard iso-

lated wedge singularities whose distance to the closest

wedge point is larger than the typical mesoscale distance of

2� 
 200 km. The remaining wedge pairs mark candidate

regions for elliptic OECSs.

Along with elliptic OECSs, we will also show the value

of the Okubo–Weiss (OW) parameter

OWðx; tÞ ¼ s2
2ðx; tÞ � x2ðx; tÞ;

where xðx; tÞ denotes the vorticity. Spatial domains with

OWðx; tÞ < 0 are frequently used indicator of an instantane-

ous ellipticity in the unsteady fluid flows.27,33 While the OW

parameter is not objective (the vorticity term will change

under rotations), its simplicity makes it broadly used in

locating coherent vortices.

In the domain of study, we obtain a total of eighteen

objectively detected vortical regions, each filled with fami-

lies of elliptic OECSs. We plot these families over a two-

dimensional graph of �OWðx; tÞ, and also project them onto

the level curves of �OWðx; tÞ in the plane (Fig. 7).

Note that the objective vortical regions E#18;E#8 and

E#2 arise in regions where �OWðx; tÞ is nearly zero and

hence indicates no significant vortical activity. At the same

time, at the bottom right region of the domain, OW(x, t)
attains several strong local minima, even though there are

no elliptic OECSs present (cf. Fig. 7(b)). As a representa-

tive example, we show in Fig. 8 the three strongest local

minima of OW(x, t) in this region along with the deforma-

tion of material blobs, initially centered on those minima,

for an integration time of six days. For comparison, Fig. 9

shows the deformation experienced by blobs initialized

within two elliptic OECSs ðE#11;E#13Þ for different inte-

gration times, up to six days.

The blobs in Fig. 9 barely deform, and hence instantane-

ously computed elliptic OECSs exhibit short-term

Lagrangian vortex-type behavior, as expected.

Hence, the regions of highest ellipticity for the Okubo-

Weiss parameter show significant stretching, while regions

identified by elliptic OECSs remain highly coherent over the

same time interval. We have, therefore, clear examples of

both false positives and false negatives for Okubo–Weiss-

based vortex detection.

The vortical regions #2, #6, #8, #11, #13, #15, #18

approximate locations where exceptionally coherent

Lagrangian coherent eddies have been found in other studies

(see Refs. 22 and 18). These Lagrangian studies cover a time

interval of three months, with their initial time coinciding

with the time of the present Eulerian analysis. Remarkably,

about one third of the elliptic OECSs we find are signatures

of elliptic LCSs with long-term coherence.

Figure 10 underlines this observation by showing the

top view of Fig. 7(a) separately, using a different colormap

for the �OWðx; tÞ scalar field, and tagging with red numbers

elliptic OECSs in the coherent Lagrangian eddy domains

identified in Ref. 18. Without exception, these regions are

marked by near-zero values of the stretching rate, indicating

a high degree of Eulerian coherence for the elliptic OECSs.

A rigorous treatment of short-term Lagrangian forecasting

based on the OECSs will appear elsewhere. In the absence of

such a treatment, the time scales over which the OECS-

based predictions are valid are problem-dependent.

In contrast, most of these highly coherent Lagrangian

eddies have very moderate signatures in the contour plot of

the Okubo–Weiss parameter. Taking all regions of closed

OW(x, t) level sets with comparable values as predictions for

coherent eddies would result in an order-of-magnitude over-

prediction for vortical regions. This is consistent with the

findings of Ref. 3, which reports a roughly tenfold over-

prediction of the actual number of coherent Agulhas eddies

by the Okubo–Weiss criterion.
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B. Hyperbolic OECSs

We compute hyperbolic OECSs at the same time used in

our elliptic OECSs calculations, on a subdomain bounded by

longitudes [2.5�E, 7�E] and latitudes [38.25�S, 36�S]. Since

the velocity field is incompressible (TrðSÞ ¼ s1 þ s2 ¼ 0),

the maxima of s2 coincide with the minima of s1.

Consequently, the same OECS cores arise as starting points

in the computation of both attracting and repelling hyper-

bolic OECSs. We show all hyperbolic OECSs as obtained in

Fig. 11. As noted earlier, the cores of hyperbolic OECSs rep-

resent the objective saddle points in the unsteady velocity

field. In a general compressible flow, the cores of attracting

and repelling hyperbolic OECSs are distinct, and the corre-

sponding OECSs, generally, do not intersect each other.

Figure 11 (Multimedia view) shows how hyperbolic
OECSs act as instantaneous stable and unstable manifolds for

short-term particle motion. Remarkably, several hyperbolic
OECSs cross the local streamlines at large angles at the initial
time (Fig. 11(a)), as well as at later times (Figs. 11(b)–11(d)),
explaining the deformation of nearby blobs of fluid. In partic-
ular, the objective saddle point (cf. Remark 1) captured by a
hyperbolic OECS (point A in Figs. 11(a) and 11(d)) induces
markedly hyperbolic short-term Lagrangian behavior even
though it is located within an area of closed streamlines. In a
similarly surprising fashion, the objective saddle points B and
C create significant short-term material stretching in a direc-
tion perpendicular to the local streamlines. Black numbers
label objective saddles in decreasing strength (i.e., decreasing
s2 values). Figure 11(d) shows that this order correlates
strongly with the actual material deformation induced on
nearby sets of particles.

Figure 12 presents the same results as Fig. 11(d) but

over level sets of the negative Okubo–Weiss parameter

FIG. 7. (a) Elliptic OECSs for different

values of stretching rate l (bottom col-

orbar) on a surface representing the

magnitude of �OWðx; tÞ (upper color-

bar or z-axis). On top, the same elliptic

OECSs are shown over level sets of

–OW. Black numbers label vortical

regions foliated by families of elliptic

OECSs. (b) A different view for the

bottom-right part of the same domain.
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FIG. 8. (a) Strongest local minima of OW(x, t) in the bottom right region of the domain. (b) Material blobs of initial conditions centered on local minima of

OW(x, t). (c) Deformed material blobs after six days.

FIG. 9. Moderate deformation experienced by material blobs of initial conditions released within the elliptic OECSs E#11 and E#13.

FIG. 10. Top view of Fig. 7(a) with a

different colormap for the negative

OW(x, t) parameter. Red numbers iden-

tify elliptic OECSs located in regions

where exceptionally coherent Lagrangian

eddies have been found.
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�OWðx; tÞ. Note how some hyperbolic OECSs cross closed

contours around local minima of OW(x, t) that are generally

believed to signal elliptic regions.

Figure 13 illustrates that attracting OECSs continues to

shape the short-term tracer deformation patterns in larger

distances from their cores, for times up to six days. Over this

time interval, material blobs align with materially advected

e2-lines, underlining the role of attracting OECSs as short-

term unstable manifolds.

A common Eulerian diagnostic for short-term hyper-

bolic tracer behavior is the identification of instantaneous

saddle-type stagnation points in the velocity field. For com-

parison with this diagnostic, we show in Fig. 14(a) the only

three saddle-type stagnation points (magenta triangles) that

exist instantaneously in the domain at time t¼ 24 November

2006. Also shown are the corresponding stable (dashed blue

lines) and unstable (dashed red lines) directions inferred

from streamlines (black lines) for these stagnation points,

along with the ten objective saddle points (red dots) found at

the same time instant.

Two of these red dots marking hyperbolic OECS cores

in Fig. 14 fall near two instantaneous stagnation points, and

give an improved objective prediction for the cores of short-

term saddle-type behavior in Lagrangian particle motion.

The improvement is seen by tracking the deformation of the

advected fluid blobs, initially centered on the stagnation

points. These blobs must stretch as they lie close to two

objective saddle points. The stretching blobs, however, align

more closely with the advected e2-lines shown in Fig. 11

when compared to the advected streamline segments shown

in Fig. 14. The instantaneous stagnation point on the top left,

instead, induces no notable material stretching on nearby

particles since there are no hyperbolic OECS cores in its vi-

cinity. The remaining eight hyperbolic OECSs remain com-

pletely hidden in the instantaneous streamline picture (cf.

Fig. 14), even though they induce significant saddle-type ma-

terial stretching, as we have already seen in Fig. 11.

FIG. 11. (a) Hyperbolic OECSs: attracting (red) and repelling (blue) overlaid on streamlines. The red dots denote the objective saddle points (cores of the

OECSs), i.e., maxima of s2, which coincide with the minima of s1 in the present incompressible flow. (b)–(d) Advected images of the hyperbolic OECSs up to

1.5 days and their effect on nearby particles. Black numbers label hyperbolic OECSs in decreasing order of s2. Magenta letters identify hyperbolic OECSs

inducing short-term Lagrangian stretching completely hidden in the streamline geometry. A: Observed hyperbolic behavior within closed instantaneous

streamlines. B and C: Hyperbolic OECSs showing significant stretching, with attracting OECSs perpendicular to the streamlines. (Multimedia view) [URL:

http://dx.doi.org/10.1063/1.4951720.1]

FIG. 12. (a) Same figure as Fig. 11(d) with level sets of �OWðx; tÞ in the

background.
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These results illustrate that an instantaneous forecast
strategy based on the saddle-type stagnation points of the ve-

locity field may miss the majority of significant short-term
material stretching events in the flow. Even for the detected
stagnation points, there is no guarantee that they signal

nearby Lagrangian hyperbolic behavior correctly, unless the
velocity field has slow enough variation in their vicinity.20

This mismatch between objective and frame-dependent pre-

dictions for saddle points is generally expected to increase
further for highly unsteady flows.

C. Parabolic OECSs

We now discuss the existence of parabolic OECSs in the

full domain used for computing elliptic OECSs. There is no

known persistent Eulerian or Lagrangian jet in this part of the

ocean, but we nevertheless uncover parabolic OECSs in this

region that act as short-term pathways for material transport.

In Fig. 15, we show three parabolic OECSs obtained

from the application of Algorithm 4 to the velocity data stud-

ied here. These OECSs are, therefore, alternating chains of

FIG. 13. (a) More extended view of an attracting OECS, with blobs of initial conditions placed along the OECS, overlaid on streamlines. (b) Advected image

of the OECS and of the marked initial conditions for 6 days.

FIG. 14. (a) Saddle-type stagnation points of the velocity field (magenta triangles) with their associated stable (dashed blue lines) and unstable (dashed red

lines) streamlines. Red dots denote the objective saddle points at the same time instant. (b)–(d) Advected images of the stable and unstable streamlines of

saddle-type stagnation points up to 1.5 days and their effects on nearby particles.
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e1-lines (blue) and e2-lines (red), connecting trisector-type

(blue dots) singularities and wedge-type singularities (black

dots), with the streamlines shown in the background for ref-

erence. The three parabolic OECSs are of approximate sizes

500 km for P#1 and 300 km for P#2 and P#3.

As a representative example, Fig. 16 (Multimedia view)

shows the advected positions of the parabolic OECS, P#3,

along with the deformation of material blobs initialized

along this OECS, for integration times up to six days. The

advection illustrates the existence of a short-term pathway

along which initial conditions march towards the bottom

right. The deformation of the blobs has a characteristic boo-

merang shape, which is similar to that observed along persis-

tent Lagrangian jets.10,14 This objective short-term transport

route, therefore, has a clearly verifiable material impact even

though it has no clear signature in the instantaneous stream-

line geometry.

IX. CONCLUSIONS

We have developed a variational theory of objective

Eulerian Coherent Structures (OECSs) for two-dimensional,

non-autonomous dynamical systems. In this theory, we

define OECSs at time t as curves with the lowest instantane-

ous material stretching rate or shearing rate in the flow. We

defined elliptic OECSs as closed stationary curves of the in-

stantaneous stretching-rate and shearless OECSs as station-

ary curves of the instantaneous shearing-rate functional. A

further classification of shearless OECSs divides them into

hyperbolic (attracting or repelling) and parabolic (jet-type)

OECSs. The approach we have taken here is objective, i.e.,

returns the same OECSs in frames translating and rotating

relative to each other.

In our present, instantaneous context, objectivity guar-

antees a self-consistent detection of short-term material

coherent structures via OECSs in unsteady, two-dimensional

fluid flows. Indeed, we have shown that an elliptic OECS

provides an accurate identification of short-term material

vortices; hyperbolic OECSs reveal generalized saddle points

with the corresponding stable and unstable manifolds; and

parabolic OECSs uncover short-term jet-type pathways for

material transport. We have verified the accuracy of these

OECS-based predictions by actual material advection in our

ocean data example obtained from satellite altimetry.

We have also compared our results to other broadly

used instantaneous coherent structure indicators: streamline

topology (which is neither Galilean invariant nor objective)

and the Okubo–Weiss criterion (which is Galilean invariant

but not objective). Such diagnostics often need an ad hoc
selection of threshold parameters, which limits the reliability

of the results they provide. In contrast, our procedure uses no

free parameters or thresholds.

We have found examples of false positives and false

negatives suggested by these non-objective Eulerian indica-

tors. For instance, several regions of maximum OW– elliptic-

ity turn out to stretch significantly more than the regions

identified by elliptic OECSs. Even when the indicators hap-

pen to suggest an OECS, the objective variational principles

FIG. 15. (a)–(c) Parabolic OECSs as

alternating heteroclinic connections of

e1-lines (blue) and e2-lines (red)

between trisector-type singularities

(blue dots) and wedge-type singular-

ities (black dots). Instantaneous

streamlines are shown in the

background.
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developed here give more accurate results, as confirmed by

short-term material advection of the detected sets.

As an alternative, elliptic OECSs can also be sought as

closed curves showing short-term rotational coherence,

i.e., equal material rotation rate.19 Obtained as the instanta-

neous limit of a Lagrangian rotational coherence principle,

rotationally coherent OECSs are also objective. These

OECSs do not restrict stretching rates and hence would

generally be expected to give slightly larger but less coher-

ent Eulerian vortices than the ones detected by the

approach developed here. Those larger vortices display

tangential filamentation, while the stretching-rate-based

OECSs introduced here are instantaneous limits of the per-

fectly coherent, black-hole-type elliptic LCSs derived in

Ref. 18.

OECS-based forecasting of material transport and mix-

ing is necessarily confined to shorter time scales. Such

shorter time scales, however, are precisely the relevant ones

for flow control or environmental assessment where quick

operational decisions need to be made. Results on the use of

OECSs in short-term forecasting and an extension to higher

dimensions will appear elsewhere.
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APPENDIX A: DEFORMATION-RATE MEASURES FOR
MATERIAL CURVES

At time t0, consider a smooth curve of initial conditions

c, parametrized as s 7!xðsÞ via its arclength s 2 ½0; r�. Let

x0ðsÞ and nðsÞ ¼ R x0ðsÞ
jx0ðsÞj denote the local tangent and normal

vectors to c, respectively. While tangent vectors of c are

mapped into tangent vectors by the linearized flow map

rFt
t0

, initial normal vectors at time t0 are not mapped by

rFt
t0

into the normal space at time t (Fig. 17(a)). The local

deformation of c and its nearby trajectories, over the time

interval [t0, t], can be expressed in terms of two Lagrangian

quantities: the tangential shear and the tangential strain over

the time interval [t0, t] (see Refs. 10 and 18).

Specifically, the tangential shear at point x(s) is given by

pt
t0

sð Þ ¼ Dt
t0

x sð Þð Þ ¼
hx0 sð Þ;Dt

t0
x sð Þð Þx0 sð Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx0 sð Þ;Ct
t0

x sð Þð Þx0 sð Þihx0 sð Þ; x0 sð Þi
q ;

Dt
t0

:¼ 1

2
Ct

t0
R� RCt

t0

h i
;

and the tangential strain at the same point is give by

qt
t0

sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx0 sð Þ;Ct

t0
x sð Þð Þx0 sð Þi

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx0 sð Þ; x0 sð Þi

p :

FIG. 16. (a) Parabolic OECS, P#3, at initial time overlaid on streamlines. (b)–(d) Advected images of the Parabolic OECS up to 6 days, and its effect on nearby

particles. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4951720.2]
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The quantities pt
t0

and qt
t0

give pointwise information on

tangential shear and tangential stretching experienced by a

material curve c over the time interval [t0, t] in an objective

(frame-invariant) fashion.

The instantaneous rates of shear and tangential stretch-

ing along c can be obtained by differentiating pt
t0

and qt
t0

with

respect to t and setting t ¼ t0. Specifically, we have

_p s; tð Þ :¼ d

ds
ptþs

t sð Þjs¼0

¼ hx
0 sð Þ; S x sð Þ; tð ÞR� RS x sð Þ; tð Þ½ �x0 sð Þi

hx0 sð Þ; x0 sð Þi
;

and

_q s; tð Þ : ¼ d

ds
qtþs

t sð Þjs¼0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx0 sð Þ; x0 sð Þi
p

�
hx0 sð Þ;

d

ds
Ctþs

t x sð Þð Þjs¼0x0 sð Þi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx0 sð Þ;Ct

t x sð Þð Þx0 sð Þi
p

¼ hx
0 sð Þ; S x sð Þ; tð Þx0 sð Þi
hx0 sð Þ; x0 sð Þi

;

where we used the following relations:

rFt
t xð Þ ¼ I;

d

ds
rFtþs

t xð Þjs¼0 ¼ rv x; tð ÞrFt
t xð Þ ¼ rv x; tð Þ;

d

ds
Ctþs

t xð Þjs¼0 ¼ r
:

Ftþs
t xð Þ>rFtþs

t xð Þ þ rFtþs
t xð Þ> r

:

Ftþs
t xð Þ

� �
js¼0 ¼ 2S x; tð Þ;

d

ds
Dtþs

t js¼0 xð Þ ¼ S x; tð ÞR� RS x; tð Þ½ �; Dt
t ¼ 0:

(A1)

APPENDIX B: v6
l IS A ONE-PARAMETER FAMILY OF

ROTATED VECTOR FIELDS

Assume there exists a limit cycle of (16), c, for one

choice of 6 and a fixed value of l. The hyperbolic nature of

limit cycles guarantees their persistence with respect to small

changes in the parameter l, which leads to a one-parameter

family of limit cycles for the vector field v6
l . In general,

these limit cycles can deform in an arbitrary fashion and

even intersect each other.

In the present case, however, v6
l turns out to be as a

one-parameter family of rotated vector fields in the sense of

Ref. 9. This means that trajectories of (16), for each of the

choices 6, cannot intersect when l varies and shrink or

expand for monotonic changes of the parameter. Hence, limit

cycles of one-parameter family of rotated vector fields,

corresponding to different values of l, cannot intersect each

other.

To qualify as a one-parameter family of rotated vector
fields, v6

l must be locally smooth in a neighborhood of the

limit cycle, and the vector field defined by d
dl v6

l � v6
l must

keep the same orientation with respect to the plane spanned

by d
dl v6

l and v6
l .

Indeed, v6
l is smoothly orientable in the vicinity of limit

cycles, although it is not globally orientable due to the orienta-

tional discontinuities of the ei fields. For the second condition

above, it is equivalent to check that signh d
dl v6

l �v6
l ; e3i, with

e3 denoting the planar unit vector, remains unaltered over the

domain Ul for each of the choices 6.

In the [e1, e2, e3] basis, h d
dl v6

l � v6
l ; e3i can be com-

puted as

FIG. 17. (a) Evolution of local tangent and normal vectors under the linearized flow map rFt
t0

in the extended phase space of x and t. (b) Eulerian counterpart

letting x(s) be the unit speed parametrization of a regular curve at the current time t.
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O6
l xð Þ ¼ v6

l �
d

dl
v6

l xð Þ ¼ o6
l xð Þe3;

o6
l xð Þ ¼

*
d

dl
v6

l � v6
l ; e3

+
¼ 6

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� s1ð Þ s2 � lð Þ

p ;

therefore, d
dl v6

l � v6
l keeps the same orientation for each of

the signs 6, under a monotonic change of the parameter l.

With our choice of relative orientation between e1 and

e2 (cf. Equation (4)), the sign of o6
l ðxÞ gives the direction of

rotation (positive counterclockwise) of the v6
l field when the

parameter l increases, for each of the choices 6. Finally, the

quantity o6
l ðxÞ could be used in the computation of Elliptic

OECSs through a systematic change of the parameter l, as

described in Ref. 18.
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