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Recent results suggest that boundaries of coherent
fluid vortices (elliptic coherent structures) can be
identified as closed null geodesics of appropriate
Lorentzian metrics defined on the flow domain.
Here we derive an automated method for computing
such null geodesics based on the geometry of the
underlying geodesic flow. Our approach simplifies
and improves existing procedures for computing
variationally ~defined Eulerian and Lagrangian
vortex boundaries. As an illustration, we compute
objective vortex boundaries from satellite-inferred
ocean velocity data. A MATLAB implementation
of our method is available at https://github.com/
MattiaSerra/Closed-Null-Geodesics-2D.

1. Introduction

Typical trajectories of general unsteady flows show
complex paths, yet their phase space often contains
regions of organized behaviour. In light of this,
several methods for the identification of coherent
structures (CSs) have been developed [1-6]. Only
recent mathematical results [7-12], however, offer a
rigorous and objective (frame-invariant) definition of
CSs, uncovering the skeletons behind these well-
organized regions.

Objective coherent structures (OCSs) can be classified
as Lagrangian coherent structures (LCSs) and objective
Eulerian coherent structures (OECSs), depending on
the time interval over which they organize nearby
trajectories. Specifically, LCSs [13] are influential over a
finite time interval, while OECSs [12] are infinitesimally
short-term limits of LCSs. LCSs are suitable for
understanding and quantifying finite-time transport and
mixing in fluid flows, intrinsically tied to a preselected
time interval.
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OECSs, by contrast, can be computed at any time instant, and hence are free from any
assumptions on time scales. They are, therefore, promising tools for flow-control and real-time
decision-making problems [14]. Among the different types of coherent structures, vortex-type
(elliptic) structures are perhaps the most relevant for transport prediction and estimation, as they
carry the same fluid mass without filamentation or stretching over extended distances.

Lagrangian coherent vortices, in the sense of [9], are encircled by elliptic LCSs, i.e. exceptional
material barriers that exhibit no appreciable stretching or folding over a finite time interval.
By contrast, Eulerian coherent vortex boundaries (elliptic OECSs), in the sense of [12], are
the instantaneous limits of elliptic LCSs. As such, elliptic OECSs are distinguished curves
characterized by a lack of short-term filamentation. We will refer to elliptic LCSs and elliptic
OECSs collectively as elliptic OCSs. An alternative method for the identification of Lagrangian
coherent vortices can be found in [15]. Specifically, the method devised in [15] computes
vortex boundaries as stationary curves of the underlying stretching-based variational problem
numerically, as opposed to [9], in which the variational problem is solved exactly.

Variational arguments show that elliptic OCSs can be located as null geodesics of suitably
defined Lorentzian metrics [9,12]. Their computation, however, requires a number of non-
standard steps that complicate its implementation. These steps include (i) an accurate
computation of eigenvalues and eigenvectors of tensor fields [16]; (ii) trajectory integration for
direction fields as opposed to vector fields [17]; (iii) detection of singularities (regions of repeated
eigenvalues) of tensor fields and identification of their topological type [8]; and (iv) selection of
Poincaré sections (PSs) for locating closed direction-field trajectories (see [18] or appendix A).

We develop here a simple and accurate method for the computation of closed null geodesics
in two dimensions as periodic solutions of the initial value problem

¥ = F(r, A(r), VA®Y)), r:= [1 el xS, UcR?, s':=[0,27)
¢ (1.1)

and T’(O) S 720 ;

where F(r, A, VA) denotes a three-dimensional vector field, x denotes the parametrization of the
null geodesic, ¢ denotes the angle enclosed by its tangent direction and the horizontal axis, and
A e R?*2 denotes the metric tensor associated with the particular type of elliptic OCSs. Based on
the topological properties of planar closed curves, we also derive the set of admissible initial
conditions Rg for null geodesics. Seeking periodic orbits of the initial value problem (1.1) is
a significant simplification over previous approaches that were designed to locate closed null
geodesics as closed orbits of non-orientable direction fields with a large number of singularities
([9,18] or appendix A). Specifically, Karrasch et al. [18] devised an automated scheme for the
detection of closed null geodesics that relies on locating tensor-field singularities [19], and
requires user-input parameters (see appendix A). Furthermore, the detection of such singularities
is a sensitive process. This sensitivity increases with the integration time, leading to artificial
clusters of singularities (see [18] or figure 6), which in turns precludes the detection of the
outermost coherent vortex boundaries. Our method overcomes these limitations and identifies
closed null geodesics of a general Lorentzian metric without restrictions on their geometry, or on
the number and type of singularities present in their interior (cf. figure 7).

The global orientability of F(r, A, VA) also allows for cubic or spline interpolation schemes.
This leads to more accurate computations than with the integration of direction fields, for which
the lack of global orientability necessitates the use of linear interpolation. These simplifications
enable a fully automated and accurate detection of variationally defined vortex boundaries in
any two-dimensional unsteady velocity field without reliance on user inputs. The integration of
the three-dimensional vector field (1.1), as well as the computation of the admissible set of initial
conditions Ry, uses standard built-in MATLAB functions available as supplementary material to
this paper (see §7). Finally, the ODE in (1.1) can be used to compute null geodesics of general
Lorentzian metrics, and hence is also relevant for hyperbolic and parabolic OCSs defined from
variational principles in [8,12].
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2. Formulation of the problem
We consider a variational problem

Qly ()] :J L(x(s),x'(s))ds and SJ L(x(s),x'(s)) ds =0, 1)
¥

v
with a quadratic Lagrangian

L(x,x) = 3, A(x)x'), (2.2)

where A(x) is a tensor for all x € U ¢ R2, and (-, -) denotes the Euclidean inner product. Let x : s —
x(s), s € [0,0] C R, denote the parametrization of a geodesic y of the metric

&, x) = 3 (¢, A)Y) (2.3)

and x/(s) := dx/ds its local tangent vector.
The Euler-Lagrange equations [20] associated with (2.1) are

1 ’ / d "o
EVX(x SAX)X) — $[A(x)x 1=0

with the equivalent four-dimensional first-order formulation

X =v

(2.4)
and v = AT @[V, A@Y)] = AT @(VeA))].
Here, in tensor notation and with summation implied over repeated indices,

v = %A;l(x)vaklf]-(x)vl — Al-;lA]'kll(X)Ulvk, ijkle(l,2}).

The functional L(x,x’) in (2.2) has no explicit dependence on the parameter s. By Noether’s
theorem [20], the metric gy(v, v) is a first integral for (2.4), i.e.

8x(s)(V(5), v(5)) = 3 (v(s), A(X(s))v(s)) = go = const. (2.5)

Any non-degenerate level surface satisfying gx(v, v) =go defines a three-dimensional invariant
manifold for (2.4) in the four-dimensional space coordinatized by (x, v). Differentiation with
respect to s along trajectories in this manifold gives

d X A
L — (V018369 (v6), 0(5), () =0,

which is equivalent to
2(v, A(x)v) = —(v, (VxA(xX)v)v),
= —vAjxX)vgvj,  ij, ke (1,2} (2.6)

We denote with (-); and (-) | the components of (-) along v and v* = Ru, respectively, where R is a
counterclockwise 90° rotation matrix. Expressing v’ = vl’| + v/, we rewrite equation (2.6) as

2(v), A(x)v) + 20, A(x)v) = —(v, (Ve AX)V)v). 2.7)

Of particular interest for us are null geodesics of gx(v, v). Such curves satisfy gx(v,v) =0. In this
case, equation (2.7) simplifies to

20, A(x)v) = — (v, (VxA(x)v)v). (2.8)

Geometrically, this means that null geodesics on (U, gx) do not depend on their parametrization,
only on their geometry. Equation (2.8) holds in any dimension (x € R"), but we keep our
discussion two dimensional to focus on coherent-structure detections in planar flows.

10809107 €2 ¥ 205§ 7014 BioBuiysigndiaposieforeds;


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on March 1, 2017

3. Reduced three-dimensional null-geodesic flow

(a) Flow reduction

We introduce polar coordinates in the v direction by letting
v=pes, pPE RY, ey = (cos ¢, sin ®)', ¢e st (3.1)
and rewrite equation (2.5) along null geodesics as
Sx(peg, pey) = ngx(e¢,e¢) =90=0 < %(e,,;,A(x)qu) =0, xel, ¢ st (3.2)
We also define the zero surface of gy as
M={(x,¢)elUxS": gx(ep,e4) = %(e¢,A(x)e¢) =0}. (3.3)

In addition, we rewrite equation (2.8) as

/ 0 -1
2¢"(Rey, A(x)eg) = —plep, (VxAX)epley), R:= (1 0 > (3.4)
or, equivalently,
X = pey
oo (VeAGeg)es) 65
and o =—p 20eq KT AMeq) "

Next, we rescale time along each trajectory (x(s), p(s), ¢(s)) of (3.5) by letting
S
§=J p(o)do, (3.6)
0

which gives dx/ds =egs, d¢/ds =—(ey, (VrA(x)eg)ey) /2(e¢,RTA(x)e¢,). We then drop the bar on s
to obtain the final form

dx

ds @

dg  (eg, (VxA(x)eg)eg)

ds — 2(ep, RTA(x)eg)

3.7)
and

for the reduced three-dimensional null-geodesic flow, which is defined on the set
V={(x,¢) e U x S: A(x)eg fep, Ax) #0},

where 0 € R2*2 denotes the null tensor (see appendix C). In words, V is the set of points in U x st
where A(x) is non-degenerate and ey is not aligned with the eigenvectors of A(x). Note that, by
construction, ¢’(s) is the pointwise curvature of y. An equation related to equation (3.7) appears
in [21] for the geodesic flow associated with the Riemannian metric on a general manifold, defined
as the zero set of a smooth function F(x).

As a consequence of equations (2.7) and (2.8), the ODE (3.7) has one dimension less than
equation (2.4), and the x-projection of its integral curves coincides with null geodesics on (U, gx).
This follows from the equivalence of null surfaces and null geodesics in two dimensions. In
appendix D, using the Hamiltonian formalism, we derive an equivalent reduced geodesic flow in
the (x, p) variables, with p denoting the generalized momentum.

Figure 1 shows a closed null geodesic y of the metric gy(v, v) both in the x-subspace (figure 1a)
and in the U x S'-space (figure 1b). Specifically, figure 1b shows a closed integral curve of (3.7) on
the manifold M.
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Figure 1. (a) Closed null geodesic of g,(v, v) in the x-subspace. (b) Closed null geodesic of g, (u, u) in U x S' on the zero-
level surface of gy (e, e,). In this space, a closed null geodesic is an integral curve of (3.7) satisfying the boundary conditions:
x(o) =x(0)and ¢p(0') = ¢(0) = 27r. (Online version in colour.)

(b) Dependence on parameters

In applications to coherent vortex detection (see §4), the tensor field A(x) depends on a parameter
a € R, leading to a specific Lorentzian metric family of the form

Sra =3V, Aa(X)V), Ay =A(x) - al. (3.8)

The zero-level set of the metric family is defined by gyq«(eg,e4) =0. Interestingly, however,
plugging formula (3.8) into equation (3.7), we find out that the reduced ODE (3.7) remains
independent of «, i.e.
(eg, (VxAa(X)eg)ep)  (ep, (VxA(X)eg)ey)
2(es, RTAa(x)eg) ~ 2(eg, RTA(x)ey)

(3.9)

This is because Vyal =0 as aI does not depend on x, and (e¢,ozRTIe¢) =0 because R is skew-
symmetric. We summarize this result in the following theorem.

Theorem 3.1. The reduced three-dimensional null-geodesics flow of the Lorentzian metric family
Sra(v,v)= %(v,Aa(x)v), Ag(x) =A(x) —al, a €R, is independent of o and satisfies the differential
equation

¥ =ep,
= S0, (VaAXeg)es)
2(ep, RTA(x)ep)
defined on the set
V={(x,¢) €U xS': A(x)eg Jfeg, A(x) #0).
The ODE (3.7) is independent of «, and hence all null geodesics of the metric family gy o can be
integrated under the same vector field, as opposed to available direction-field formulations that

depend on « (see appendix A, equation (A 1)). This property of the ODE (3.7) further simplifies
the computation of null geodesics of gy« (v, v).

(c) Initial conditions for closed null geodesics

The only missing ingredient for computing closed null geodesics of gy « is a set of initial conditions
for the reduced null-geodesic flow (3.7). Here we derive the set of initial conditions Rg C V, such
that any closed null geodesic of gy« necessarily contains a point in Rg. According to §§2 and 3,
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(b)

X

Figure 2. (a) Section (¢ € [—7 /6, 7 /6]) of M., for different values of &, in a flow example analysed in more detail in
§5. The black plane corresponds to ¢ (x) = ¢ = 0. (b) Set of points xo(ct, ¢po) € U satisfying g, (o, &) =0, i.e. My N
@) = ¢ = 0, for different values of ce. (Online version in colour.)

for any fixed value of «, null geodesics of gy, must lie on the zero-level surface of gy «(e4,€4), i.e.
on

My ={(x,¢) e U x st Sxalep, ep) =0}

Furthermore, for every closed planar curve y, the angle ¢ between its local tangent vector and
an arbitrary fixed direction (figure 1a) assumes all values in the interval [0,2x]. This simple
topological property of closed regular planar curves allows us to define the admissible set of
initial conditions for (3.7) as follows.

For any fixed « € R and any fixed ¢g € st, we compute the set of initial conditions Ry 4,(0) as

R(x,¢0 (O) = {(xo(a/ ¢0)/ ¢0) eV: ng,O((€¢o/ etf)o) = 0} (310)

Figure 2 illustrates formula (3.10) in a flow example analysed in more detail in §5. Specifically,
figure 2a shows a section (¢ € [—7/6, 7/6]) of M, for different values of . The ¢(x) = ¢9 = 0 plane
is shown in black. Figure 2b shows the set points xo(«, ¢g) € U satisfying gx,« (€0, e0) = 0. For any
fixed «, the points within the set of initial conditions R4,¢,(0) that lie on closed null geodesics are
the ones for which the reduced ODE (3.7) admits a closed orbit (see, for example, the green dot in
the inset of figure 3c).

(d) Theinitial value problem for closed null geodesics

Putting together the results from §3, we obtain our main result, already summarized briefly in
equation (1.1).

Theorem 3.2. For any fixed parameter value o € R, and any fixed ¢o € S, define the set of initial
conditions

(x0, $0)a = {(x0(t, P0), P0) € V& Xeg,, (A(xo) — aleg,) = 0}. (3.11)

Closed null geodesics of the Lorentzian metric family gyq(v,v)= %(U,Aa (x)v), Ax(x)=A(x) —al,
coincide with the x-projection of closed orbits of the initial value problem

¥ =ep,
i leg, (VxAX)eg)eq)
¢ = 2(ep, RTA(x)ey) (3.12)
and x(0) = xo(a, ¢0),  ¢(0) = o

defined for any parameter value o € R on the set

V={xel, ¢ eS': (5, RTA(x)es) #0}. (3.13)
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Figure 3. (a) Elliptic OECSs for different values of the stretching rate 1 (in colour) along with the x-component of the initial
conditions xo (e, 0), as defined in equation (4.12). (b) The same elliptic OECSs as (a) on level sets of the OW parameter encoded
withthe grey colour map. (c) Elliptic OFCS for ¢ = 0 corresponding to the vortical region denoted by E2 (see () inthe R? x S!
space. The green surface represents the zero set defined by equation (4.9), the green curves show the set of initial conditions
(x0(0, 0), 0) computed with equation (4.12), the solid black curve is the periodic orbit of the ODE (4.11) with initial and final
points represented by the green dot and the red circle, respectively. The dashed black curve is the corresponding elliptic OECSs.
(Online version in colour.)

Null geodesics for a given value of « lie on the zero-level surface of gy« (e, eg) defined as
Mo ={(x, ) € V: Lieg, (A(x) — al)eg) =0}. (3.14)

For any fixed valued of «, the surface M, is a graph of the form ¢(x, «). Differentiating now
Sxa(Cp(x,a)s €(x,x)) With respect to a, we obtain d,¢(x, a) = (e¢,RTA(x)e¢)*1. This result, together
with (3.13), implies that closed null geodesics of gy cannot intersect for different values of «, in
agreement with the findings of [9,12]. Finally, closed null geodesics on (U, gx«) are structurally
stable structures, and hence will persist under small perturbations to gx«. In the case of OCS
detection (see §4), therefore, elliptic OCS persist under small perturbation (e.g. noise) to the
velocity field (4.1). In the following applications of theorem 3.2, we select ¢p = 0 in formula (3.11).

4. Null geodesics and the computation of objective coherent structures

In the next section, we recall the terminology used for the definition of LCSs [13] and OECSs [12]
in two-dimensional flows. Variational definitions of LCSs are now available also for three-
dimensional flows [11], but these definitions do not lead to geodesic problems, and hence are not
covered by the computational approach developed here. A similar conclusion holds for OECS
definitions obtained as short-term limits of three-dimensional LCS definitions.

(a) Set-up and notation
Consider the two-dimensional non-autonomous dynamical system
xX=u(x,t), 4.1)

with a twice continuously differentiable velocity field u(x, t) defined over the open flow domain
U C R?, over a time interval t € [, b]. We recall the customary velocity gradient decomposition

Vu(x, t) = S(x, t) + W(x, t),
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Table 1. Lorentzian metrics whose null geodesics define various coherent structures [12,13].

metric: g(v, v) = (v, Av)

type of 0CS LCS
hyperbolic and parabolic A=3ICR—RC] A=25R
elliptic A= %[({0 — A, reR Ay=S—pl, neR

with the rate-of-strain tensor S= %(Vu +VuT) and the spin tensor W = %(Vu —vu'). By our
assumptions, both S and W are continuously differentiable in x and .

The rate-of-strain tensor is objective (i.e. frame indifferent), whereas the spin tensor is not
objective, as shown in classic texts on continuum mechanics [22]. The eigenvalues s;(x,t) and
eigenvectors ¢;(x, t) of S(x, t) are defined, indexed and oriented here through the relationship

Sei=sje;, lefl=1,i=1,2; s1<s3, ex=Rer.

Fluid particle trajectories generated by u(x, t) are solutions of the differential equation x = u(x, t),
and define the flow map

Fj (xo)=x(tto,x0), xoeU, teltot]Cla,b],

which maps initial particle positions xg at time t( to their time ¢ positions x(t; ¢, xo).

The deformation gradient VF io governs the infinitesimal deformations of the phase space U. In
particular, an infinitesimal perturbation ¢y at point xp and time ¢y is mapped, under system (4.1),
to its time t position, ¢ = VF?0 (x0)20. The squared magnitude of the evolving perturbation is
governed by

(&, ) = {0, Ciy (o)), i, (x0) = [VFj, (x0)]" VFj (x0), (42)
where Cﬁo denotes the right Cauchy—Green strain tensor [22]. The eigenvalues 1;(xp) and
eigenvectors &;(x) of Cﬁo (xp) are defined, indexed and oriented here through the relationship

Cl, (xo)ri(x0) = Ai(x0)&i(x0), |&|=1, i=1,2; A <hy, &E=R&.

For notational simplicity, we omit the dependence of A;(xg) and &;(xg) on tg and t.

Objective coherent structures are defined as stationary curves of objective (frame-invariant)
variational principles and can also be viewed as null geodesics of suitably defined Lorentzian
metrics, with specific boundary conditions [12,13]. These metrics are summarized in table 1.

Although equation (3.12) can generally be applied to compute all the coherent structures
listed in table 1, here we focus on elliptic OCSs. Elliptic OCSs are closed null geodesics of the
corresponding Lorentzian metric families shown in table 1. In fluid dynamics terms, elliptic
LCSs are exceptionally coherent vortex boundaries that show no unevenness in their tangential
deformation. Similarly, elliptic OECSs are exceptionally coherent vortex boundaries that show no
infinitesimally short-term unevenness in their tangential deformation. The parameter A represents
the tangential stretching experienced by an elliptic LCS over the time interval [fg,t], while
denotes the tangential stretch rate along an elliptic OECS. In the next two sections, applying
theorem 3.2 to the Lorentzian metric families A, and A;, we derive initial value problems (ODEs
and initial conditions) for the computation of Eulerian and Lagrangian vortex boundaries.

(b) Elliptic objective Eulerian coherent structures

Elliptic OECSs are closed null geodesics of the one-parameter family of Lorentzian metrics
(see table 1)

Au(x, £)=S(x, t) — ul.
We denote by Sii(x) the entry at row i and column j of S(x, f) at a fixed time f, and its derivatives

8(,)Sif (x) by S:] (). A direct application of theorem 3.2 leads to the the following result.
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At each time t and for a given value of p, elliptic OECSs satisfy the pointwise condition
S (x, £) cos? ¢ + S¥2(x, ) sin2¢ + S22 (x, t)sin® ¢ — =0, (x,¢)€ V;, (4.3)
with the set V; defined as
Vi={xel, ¢ €S!: sin2¢[S%(x, 1) — S (x, )] + 2 cos 2¢S % (x, t) = 0}. (4.4)

Elliptic OECSs coincide with the x-projection of closed orbits of the initial value problem

X =e¢
. cos2 p(ViSUL(x, 1), e4) + sin 20 (Vo S12(x, 1), £4) + sin® ¢ (Vi S2(x, £), e) (4.5)
and ¢ =— ; oY) 11 12 ’
sin2¢[S%*(x, t) — St (x, t)] + 2 cos 2¢pS2(x, t)
(x0, $0); = {(x0(1,0),0) € Vi : S™(xg) — . =0}. (4.6)

In the case of incompressible flows (V - 1 =0), equation (4.5) simplifies to

¥ =eg

4 o [Sil1 (x,t)cos ¢ + S}; (x,t)sin ¢] cos 2¢ + [S}f(x, t)cos ¢ + S}Cf(x, t) sin ¢] sin 2¢ (4.7)
and ¢'=— 2[S12(x, t) cos 2¢p — S11(x, t) sin 2¢] '

(i) Elliptic OECSs: streamfunction formulation

In case the velocity field is derived from a time-dependent streamfunction v (x, ), the ODE (4.1)
is of the form

X1 = =V, (1, X2, 1)

. (4.8)
and X2 = Yy (x1, X2, ).

Denoting the partial derivative 9y, ¥ (x) by ¥;(x), i €{1,2}, we reformulate our results in terms of
the time-dependent streamfunction as follows.

For a velocity field generated by the time-dependent streamfunction ¥ (x1, xp, t), at each time ¢
and for a given value of u, elliptic OECSs satisfy the pointwise condition

Y21(x, £ cos 2¢ + [y (x, 1) — Y1 (x, H]sin2¢ + =0, (x,¢)€Vy, 4.9)
within the set V; defined as
Vi={xel, ¢ eS": [Yn1(x,t) — ¥2a(x, £)] cos 26 + 2421 (x, ) sin 26 7 0}. (4.10)

Furthermore, elliptic OECSs coincide with the x-projection of closed orbits of the initial value
problem

X =ey
nd o — (Vv 1),e9) 0826 + 1/2(Valym () = ¥m(x, D] ) sin2¢ (4.11)
B [V11(x, 1) — Yaa(x, £)] cos 2¢p + 2921 (x, £) sin 2¢) ’
(x0, $0)y = {(x0(11,0),0) € Vi : Y21 (x0, 1) — =0} (4.12)

(c) Elliptic Lagrangian coherent structures

For Lagrangian vortex boundaries (elliptic LCSs), the underlying Lorentzian metric is (see table 1)

As(x)=Ch (x) — 221
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To avoid confusion with the initial conditions of the reduced null-geodesic flow
(see equation (3.11)), here we denote the spatial dependence of the Cauchy—Green by x instead
of xo. Applying theorem 3.2 and denoting by C¥(x) the entry at row i and column j of Cﬁo (x) we
obtain the following result.

For a fixed time interval [fo, t;] and for a given value of A, elliptic LCSs satisfy pointwise the
condition

C'(x) cos? ¢ + C12(x) sin2¢ + C?2(x)sin ¢ — A2 =0, (x,p) €V, (4.13)
within the set V defined as
V={xel, ¢eS": sin2¢[C?(x) — C'1(x)] + 2 cos 2¢C?(x) = 0}. (4.14)

Furthermore, elliptic LCSs coincide with the x-projection of closed orbits of the initial value
problem

/

X = €¢
4 , cos? p(ViCIL(x), eg) + 5in 29 (V2C12(x), e4) + sin? ¢(ViC2(x), ep) (4.15)
an 9 == sin 2¢[C2(x) — C1L(x)] + 2 cos 2¢C2(x) '
(x0, ) = {(x0(2,0),0) € V: CM(xg) — 2* =0}. (4.16)

5. Example: mesoscale coherent vortices in large-scale ocean data

We now use the results of §4 to locate coherent vortex boundaries in a two-dimensional ocean-
surface-velocity dataset derived from AVISO satellite altimetry measurements (http://www.
aviso.oceanobs.com). The domain of interest is the Agulhas leakage in the Southern Ocean,
bounded by longitudes [3°W, 1°E], latitudes [32°S, 24°S] and the time slice we selected
corresponds to t =24 November 2006. This dataset has also been used in the vortex detection
studies [12,23,24], which provide a benchmark for comparison with the approach developed here.
Under the geostrophic assumption, the ocean surface height measured by satellites plays the
role of a streamfunction for surface currents. With /1 denoting the sea surface height, the velocity
field in longitude-latitude coordinates, [¢, 8], can be expressed as
dh(p,0,t) and 6=

¢ = 3(0h((pr 0, t)/

8 &
R%fc(e) cos 0 R%fc(é) cos 6

where f.(0) : =282 sin® denotes the Coriolis parameter, ¢ denotes the constant of gravity, Rg
denotes the mean radius of the Earth and £2 denotes its mean angular velocity. The velocity field
is available at weekly intervals, with a spatial longitude-latitude resolution of 0.25°. For more
detail on the data, see [25].

(a) Elliptic objective Eulerian coherent structures

Applying the results in §4, we obtain three objectively detected vortical regions in the domain
under study, each filled with families of elliptic OECSs (figure 3). Figure 3a shows elliptic OECSs
for different values of stretching rate u (in colour), along with the x-component of the initial
conditions xg(u, ¢g) for ¢g =0 (see equation (4.12) or figure 2). Figure 3b shows the same elliptic
OECSs of figure 3a along with level sets of the Okubo-Weiss (OW) parameter

OW(x, t) = s%(x, ) — ? (x, 1),

where w(x,t) denotes the vorticity. Spatial domains with OW(x,t) <0 are frequently used
indicators of instantaneous ellipticity in unsteady fluid flows [4,6]. The OW parameter, however,
is not objective (the vorticity term will change under rotations), and can hence generate both false
positives and false negatives in the vortex detection [12].

Figure 3¢ shows the elliptic OECS in correspondence of eddy 2 (figure 3a), for =0, in the
R? x S! space. Specifically, the green surface represents the zero set described by equation (4.9),
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Figure 4. (a) Elliptic LCSs for different values of stretching ratio A (right colour bar) along with the FTLE field at t, (left colour
bar). (b) Advected images of the elliptic LCSs of (a) at £, + 30 days on the FTLE field at #. (c) Outermost elliptic LCSs of (a)
(solid lines), together with their corresponding advected images at ty + 30 days (dashed lines), on the FTLE field at ¢,. The
red square highlights a region where the local FTLE ridge crosses the elliptic LCS corresponding to eddy 2. (Online version
in colour.)

the green curves show the set of initial conditions (x((0, 0), 0) computed with equation (4.12), the
solid black curve represents the closed integral curve of the ODE (4.11), and the dashed black
curve shows the corresponding elliptic OECS, i.e. the x-projection of the solid black curve. The
green dot represents the initial condition, within the set (xp(0,0),0), for which the ODE (4.11)
admits a closed orbit. The red circle represents the final point of the closed orbit. The domain
analysed in figure 3c is identical to the one used for illustration in figure 2.

(b) Elliptic Lagrangian coherent structures

In our Lagrangian analysis, we consider the time interval [ty, ty + T], with tg =24 November 2006
and T =230days. Applying the results in §4, we obtain three objectively detected Lagrangian
coherent vortices in the domain under study, each filled with families of elliptic LCSs
(figure 4).

Figure 4a shows elliptic LCSs for different values of the stretching ratio A (right colour bar),
along with the finite-time Lyapunov exponent (FTLE) field

1
Axo, to, T) = >T log(x2(xo, to, to + T)),

encoded with the left colour bar. The FTLE measures the maximal local separation of nearby initial
conditions over the time interval [fo ty + T]. FTLE ridges are usually used as a visual diagnostic to
distinguish coherent regions from the surrounding chaotic regions. The FTLE field, however, does
not give any vortex boundary, and can incorrectly indicate the presence of LCSs [13]. Moreover,
the extraction of FTLE ridges requires sophisticated post-processing algorithms [26]. This is
mainly because ridges separate regions of the phase space with different behaviours, increasing
considerably the sensitivity of any numerical computation in their vicinity. Examples include the
detection of Cauchy—Green singularities, which plays a crucial role in the direction-field-based
procedure for the computation of elliptic LCSs (see appendix A or [18]). Specifically, near FTLE
ridges, singularities tend to artificially cluster (figure 6), preventing, possibly, the identification of
the outermost elliptic LCSs.

On this note, figure 4c shows that the initial positions (solid line) of the outermost elliptic
LCSs in correspondence of eddies 1 and 3 almost overlap with nearby FTLE ridges. By
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contrast, the outermost elliptic LCSs in correspondence of eddy 2 cross the local FTLE ridge
(see red square in figure 4c). The dashed lines represent the final position of the outermost elliptic
LCSs. This highlights two important facts. First, elliptic LCSs computed with the present scheme
are insensitive to artificial clusters of singularities, and hence identify the correct boundary
of coherent Lagrangian vortices. Second, FTLE ridges do not signal correct Lagrangian vortex
boundaries.

Figure 4b shows the advected images of elliptic LCSs of figure 4a at time ¢y + 30 days, along
with the FTLE field at ty. All vortex boundaries remain perfectly coherent for a time interval equal
to the extraction time T, as expected.

6. Conclusion

Recently developed variational methods offer exact definitions for OCSs as centrepieces of
observed trajectory patterns. OCSs can be classified into LCSs [13] and objective OECSs [12],
depending on the time interval over which they shape trajectory patterns. LCSs are intrinsically
tied to a specific finite time interval over which they are influential, while OECSs are computable
at any time instant, with their influence confined to short time scales. Both types of OCS can
be computed as null geodesics of suitably defined Lorentzian metrics defined on the physical
domain of the underlying fluid.

Prior numerical procedures for the computation of such vortex boundaries require significant
numerical effort to overcome the sensitivity of the steps involved. Here we have derived and
tested a simplified and more accurate numerical method. Our method is based on a direct solution
of a reduced, three-dimensional version of the underlying ODEs for null geodesics. Based on
topological properties of simple planar closed curves, we also derive the admissible set of initial
conditions for the reduced ODEs overcoming the limitation of the existing procedure, and making
the detection of closed null geodesics fully automated. Specifically, the method we present here
does not rely on problem-dependent user-input parameters, and identifies closed null geodesics
regardless of the number and type of the metric tensor singularities contained in their interior. In
the supplementary material, we provide a MATLAB implementation of this method, with further
explanation in appendix B. We have illustrated the present method on mesoscale eddy-boundary
extraction from satellite-inferred ocean velocity data.

7. Supplementary material

A MATLAB code for the computation of closed null geodesics is available at https:/ / github.com/
MattiaSerra/Closed-Null-Geodesics-2D. Specifically, the MATLAB code computes elliptic LCSs
(see §4). Appendix B summarizes the different steps of the main code with explicit references to
the different subfunctions.

Data accessibility. The data used in this work are available at http:/ /www.aviso.oceanobs.com. The codes used
in this work are available at https:/ /github.com/MattiaSerra/Closed-Null-Geodesics-2D.
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Appendix A. Direction-field approach for computing elliptic objective coherent
structures

Using the notation introduced in §4, we summarize here the direction-field approach for the
computation of elliptic LCSs derived in [9]. The initial position of elliptic LCSs coincides with
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Figure 5. (a) Material deformation in the neighbourhood of a generic point x,, and of a singularity of the Cauchy—Green (CG)
tensor x;, over a finite time interval [t,, t]. (b) Identification of the topological type of tensor-line singularities, and definition of
the Poincaré section (PS) for the direction-field integration, as in [18]. The user-input parametersr, /, d , d,, d,, are used to
locate the PS, and depend on the specific problem. Specifically, r is the radius of the testing circle used to identify the singularity
type, /is the length of the PS, and dy, d,, d,,, bounds the distances of the first two closest singularities from the selected one.
(Online version in colour.)

limit cycles of the differential equation family

dx . L =27 pR—
—= , = + . Al
ds U (x) ;. \/)Q W & N — M & ( )

The direction fields nf(x) depend explicitly on 1, and, due to the lack of a well-defined orientation
for eigenvector fields, it is a priori unknown which one of the n}:f(x) fields can have limit cycles.
Therefore, both direction fields (&) should be checked. Similar arguments and expressions hold
for elliptic OECSs [12].

(a) Selection of initial conditions

Here we summarize an automated method for the selection of initial conditions (or PSs) of (A 1),
developed in [18]. Such a method is based on the location of Cauchy-Green singularities.

Singularities of the Cauchy—Green tensor are exceptional points in the initial configuration of
the fluid domain where no distinguished stretching directions exist, and hence an initially circular
neighbourhood around them will remain undeformed under the action of the flow map. Figure 5a
shows the material deformation in the neighbourhood of a generic point x,, and of a singularity
of the Cauchy-Green tensor x;, over a finite time interval [fg,t]. In a typical turbulent flow, one
expects that the occurrence of these points decreases with longer time interval due to the increased
mixing in the flow. The detection of tensor-field singularities, however, is a particularly sensitive
process, and this sensitivity increases with longer integration times, leading to artificial clusters
of singularities (see figure 6 or [18]).

In figure 5b, we illustrate the main steps used in [18] to locate the PS for closed null-geodesic
computations with the direction-field approach. First, Karrash et al. [18] identify the topological
type of each singularity using a testing circle of radius ». When singularities are too close to each
other (i.e. distance smaller than r), their topological type cannot be identified and they remain
unclassified. Applying an index theory argument to direction fields, Karrash et al. [18] show that
structurally stable singularities contained in the interior of any closed null geodesic on (U, gx)
satisfy the following relation:
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Figure 6. (a) Cauchy—Green singularities (green dots) along with the FTLE field for an integration time of two months.
(b) Cauchy—Green singularities (green dots) along with the FTLE field for an integration time of three months. (Online version
in colour.)

where W and T denote the number of wedge-type and trisector-type singularities. Therefore,
they conclude that each closed null geodesics contains at least two wedge-type singularities in
its interior. Relying on this necessary condition, they seek isolated wedge pairs and set a PS
of length I from their mid-points. Specifically, an isolated wedge pair exists if the distance d;
between the current wedge and the closest one is such that d1,, < d; < dy,,, and the second closest
singularity is a trisector, whose distance dp > d5,,. This procedure requires user-input parameters
r,1,dy,,d1,,d2,, which depend not only on the problem but also on the specific region analysed
and on the integration time T.

Figure 6 shows the singularities of Cig+T(x0) (green dots), along with the corresponding FTLE
field, in the flow domain bounded by longitudes [8° W, 8° E], latitudes [38°S, 28°S], with ty =
24 November 2006. Specifically, in figure 6a the integration time T =2 months, while in figure 6b
T =3 months. This figure shows an artificial clustering of singularities with increasing integration
times, which makes singularity-based methods for detecting closed null geodesics non-optimal.

Even if no such clustering of singularities occurs (e.g. in the detection of elliptic OECSs), a
parameter-free method, such as the one developed here, is necessary to avoid all possible false
negatives in coherent structure detection. More specifically, the algorithm developed by Karrash
et al. [18] limits the admissible number of singularities within any closed null geodesic to a
maximal number defined by the user. A closed null geodesics not satisfying this condition will
not be detected.

As an illustration, figure 7a shows elliptic OECSs identified from equations (4.11) and (4.12), in
the Southern Ocean (longitudes [3° W, 0° E], latitudes [38° S, 35° S]) at time t = 24 November 2006,
along with the x-component of the initial conditions x¢(,0). Figure 7b shows the same null
geodesics as figure 7a, along with the singularities of the underlying tensor field S(x,t). Even
though formula (A 2) is satisfied, the automated method proposed in [18] would miss these closed
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Figure 7. (a) Elliptic OECSs for different values of the stretching rate 1 (in colour) identified from equations (4.11) and (4.12),
in the Southern Ocean (longitudes [3° W, 0° E], latitudes [38° S, 35° S]) at time t = 24 November 2006, along with the x-
component of the initial conditions xo (¢, 0). (b) Same elliptic OECSs as (a), along with the singularities of the underlying tensor
field S(x, t). (Online version in colour.)

null geodesics as they contain more than two wedges in their interiors. By contrast, they are
identified by the method we developed here.

Appendix B. Steps for the computation of closed null geodesics

Algorithm 1 provides a brief summary of the main steps performed by the MATLAB code (see
the electronic supplementary material) for the computation of closed null geodesics. Specifically,
algorithm 1 computes elliptic LCSs. We list the MATLAB subfunctions used to compute the
formulae in §4.

Algorithm 1. Compute elliptic LCSs (see §4).

Input: (i) Entries of the Cauchy-Green tensor field Ci(x) and their spatial derivatives

cﬁ{k (%), i,j,k € {1,2}, along with the corresponding spatial grid vectors xi_g, i € {1,2}. (ii) A vector
lamV containing the desired values of the parameter .

(i) Compute R, (0) (see equation (4.16)): ¥0_lam.m

(ii) Compute ¢'(x1,x2, ¢) (see equation (4.15)): Phi_prime.m
(iii) Find closed null geodesics (see equations (4.15) and (4.16)): FindClosedNullGeod.m
(iv) Find outermost closed null geodesics: FindOutermost.m

Output: Elliptic LCSs corresponding to the different values of 1.

Algorithm 1 is general and can be used to compute elliptic OECSs (see §4) or any general
closed null geodesics as defined in theorem 3.2, where Cli(x) = Al (x), i, j€{1,2}. Steps (ii) and (iii)
of algorithm 1 can be used to compute general non-closed null geodesics of Lorentzian metrics of
the form A, = A(x) — al, such as hyperbolic and parabolic CSs, from given initial conditions.
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Appendix C. Domain of existence of the reduced geodesic flow

Equation (3.7) only admits non-degenerate r(s) = (x(s), #(s))T solutions in the set V.c U x Sl
B(x, ¢) := (eg, RTA(x)e¢ ) #0. Note that in the set V where B(x,¢)=0, equation gx(ep,ep) =
(see equation (3.2)) does not define locally a two-dimensional manifold parametrized by (x, ¢(x)).
In fact, by the implicit function theorem, ¢(x) is defined only if g(e4, e4) = 0 admits a solution and
9pQx(eg, e¢) # 0, where
dpgx(eg, ep) = %(ed,,RTA(x)e(b) + %(e(ﬁ,A(x)Re(;,)
= (eg, Sym(RT A(x))eg) = (ep, RT A(x)ep).
Therefore, the set V is the union of points that satisfy at least one of the two following conditions:
B(,$)=0 < ey =¢&i(-), A()Gi()=0i()5i(), ailx) R, i={1,2},
B(¢,) =0 <= A() is degenerate.
Equivalently,
V={(x,¢) e U x S: A()ey frep, A(x)#0).

Geometrically this means that, in V, there cannot be a transverse zero of the function Sx(eg, eq)-
Specifically, when the first condition holds, such zero is non-transverse at x only for the directions
¢(x) aligned with the eigenvectors of A(x). When the second condition holds, there cannot be any
transverse zero at x for all ¢, as A(x) is degenerate and no distinguished directions exist.

Appendix D

(a) Hamiltonian reduction of the geodesic flow
Here we use the Hamiltonian formalism to derive a reduced geodesic flow which is equivalent to
the one derived in §§2-3. With the generalized momentum p defined as

oL ,
P=37 =A()x, (D1)

the parametrization x(s) of a geodesic y of the metric gx(v, v) = %(v,A(x)v) satisfies the first-order
system of differential equations

'=AT p
B (D2)
and P = —*Vx p, A" (X)p),
which is a canonical Hamiltonian system with Hamiltonian
H(x,p) = 3 (p, A7 (¥)p) = L(x, X). (D3)

This Hamiltonian is constant along all geodesics of the metric gy. In particular, if gy is Lorentzian,
then null geodesics of gy lie in the zero-level surface of H(x, p). As in §3, we derive a reduced form
of the Hamiltonian flow (D 2), which is often referred to as the co-geodesic flow [27].

(b) Hamiltonian reduction to a three-dimensional geodesic flow
We introduce polar coordinates in the p direction by letting

p=pey, pE RT, ey = (cos ¢, sin qb)T, ¢ e st.
We then rewrite equation (D 2) as

X = pA  (¥)ey
(D4)
and p'ey + ¢ pRey = —pz%vx(%,A_l(x)eq;)
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that, together with the rescaling (3.6), gives
dx

? = Ail(x)e(p
d do ] 1 (B3)
P 2 2 -1
—_— —p“Re=—p°=V A
and 35 Pee + gz P Re=—0"5Vxley, (x)eg),
or, equivalently,
d
disf = A" W)y,
do 1 1
= = —(Vyleg, A R (D6)
FE 2( x(eg, A7 (x)eg), Reg)
d 1 _
and 2 =5 (Vxles, AT (Deg), p)-
For any p > 0, system (D 6) has a three-dimensional reduced flow
% =AY (x)ey
’ (D7)
and d—qj——l(v (e A_l(x)e ), Reg)
s~ 20 ol el

Therefore, any solution of (D 2) with p > 0 admits a projected flow of the form (D 7). This is due to
the existence of a global invariant foliation in (D 6) that renders the (x, ¢) coordinates of solutions
independent of the evolution of their p coordinate. Closed orbits of (D7) are, therefore, closed
geodesics on (U, gv), even though they may not be closed orbits of the full (D 6). Note that the ¢
component in equation (D7) is the polar angle of the generalized momentum (see equation (D 1)),
which is different from the ¢ in equation (3.7). Equation (D7) does not appear to be available in
the literature. The use of the energy (as opposed to the momentum p) as a coordinate appears
in [28] in the context of perturbations of closed geodesics by time-periodic potentials. The reduced
flow (D7) in the (x, p) coordinates is equivalent to the reduced flow (3.7) in the (x, v) coordinates.

Geodesics can also be viewed as trajectories of (D 2) contained in a constant-level surface of
the Hamiltonian H(x, p). Null geodesics, in particular, are contained in the level surface

Eg={(x,p) e U x R*: H(x,p) =0},
which in polar coordinates, for any p > 0, can be rewritten as
Eo={(x,¢) € U x §': H(x,§) = 3{e, A~ ()ey) =0).

Finally, one should select the initial conditions for the ODE (D7) as x(0) = xo and ¢(0) = ¢ on Eg
to satisfy (eg,, A~ (x0)eg,) = 0.
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