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Abstract

We study the damped, periodically forced, focusing NLS equation with even,
periodic boundary conditions. We prove the existence of complicated solutions
that repeatedly leave and come back to the vicinity of a quasi-periodic plane
wave with two time scales. For pure forcing, we prove the existence of a com-
plicated, self-similar family of homoclinic bifurcations. For mode-independent
damping, we construct “jumping” transients. For mode-dependent damping, we
find generalized Šilnikov-type solutions that connect a periodic plane wave to
itself through repeated jumps. We also study the breakdown of the unstable
manifold of plane waves through repeated jumping. Our results give a direct ex-
planation for the numerical observations of Bishop et al. c© 1999 John Wiley &
Sons, Inc.

1 Introduction

The perturbed nonlinear Schrödinger (NLS) equation we study in this paper can
be written in the form

iut = uxx + 2 |u|2 u+ iε
[
D̂u+ Γei2Ω2t

]
,(1.1)

for which the forcing amplitude Γ and frequency 2Ω2 are real numbers, D̂ is a
bounded, negative operator, and ε ≥ 0 is a small parameter. The function u(x, t)
is even and periodic with period L = 2π in the spatial variable x. Equation (1.1)
is a well-known example of a partial differential equation that exhibits easily ob-
servable chaotic behavior in the time domain. The peculiar jumping of solutions
around plane waves of (1.1) was first observed numerically by Bishop et al. [2],
who used the simple linear damping term D̂u ≡ −αu. From a series of studies of
finite-dimensional models (see [1, 3, 6, 7, 11, 12, 13, 16, 17], etc.) it has become
clear that the jumping behavior of the perturbed NLS equation should be related to
the presence of homoclinic solutions in the unperturbed limit.

Dynamically most interesting is the orbit family that is homoclinic to periodic
plane waves in a one-to-one resonance with the periodic forcing term. Li et al. [14]
showed that if the linear damping term −αu is amended with a “smoothed” Lapla-
cian operator, then the perturbed partial differential equation (1.1) will also admit
a pair of homoclinic orbits for certain parameter values. These orbits connect a
quasi-periodic plane wave to itself and can be considered as infinite-dimensional
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analogs of Šilnikov’s homoclinic orbit as they “spiral” back to the plane wave. Re-
cently, Li [15] showed that the presence of such a symmetric pair of orbits implies
the existence of Smale horseshoes. He then used symbolic dynamics to show the
existence of chaotic jumping solutions for open sets in the parameter space.

In this paper we investigate a different mechanism for irregular jumping. This
mechanism is provided by families of orbits that leave the set of plane waves of
equation (1.1), exhibit irregular jumps near the “wings” of the destroyed homo-
clinic structure, and then finally return to a small vicinity of the plane waves, where
they settle for long times. To construct such orbits, we do not need to introduce
the smoothed Laplacian operator or other extra terms. As a consequence, our re-
sults apply directly to the perturbed NLS studied numerically by Bishop et al. In
fact, the orbits we find are so robust that they even continue to exist in the limit
of zero damping. In this Hamiltonian limit they exhibit a complicated sequence of
homoclinic bifurcations as the forcing frequency is varied.

The methods we use are based on an infinite-dimensional extension of Feni-
chel’s geometric singular perturbation theory, the study of infinite-dimensional
Poincaré maps, and detailed, long-term energy estimates. The analysis is technical
for two main reasons. First, the flow associated with the perturbed NLS equation
is not smooth in the time variable t, which results in nonsmooth Poincaré maps.
Second, these maps become singular in the limit of ε = 0. The first problem is
present throughout our analysis but is finally resolved by restricting to H∞ initial
conditions. The second problem is more serious and requires a detailed study of
long-term passages of solutions near the set of plane waves. The multipulse orbits
are constructed by matching the energy of a point on the returning solution with the
energy of its projection onto a “large” stable manifold that guides solutions back
to a vicinity of plane waves. If the two energies match, the two points coincide.
Such a coincidence is inferred from the transverse zeros of an appropriately de-
fined energy function. The calculation of zeros is very simple because, as opposed
to earlier studies, we do not rely on invariants of the unperturbed NLS that are not
known explicitly.

The paper is organized as follows: In Section 2 we describe the main properties
of the unperturbed NLS equation. In Section 3 we invoke some invariant-manifold
results from Li et al. [14] that are crucial in our construction and enable us to de-
rive a convenient local normal form near the set of plane waves. The normal form
is then used in Section 4 in our estimates for solutions that perform a long-time
passage near the set of plane waves. These estimates are heavily used in Section 4,
where we set up a local and a global Poincaré map to track solutions that exhibit
large excursions from, and local passages near, the resonant plane waves. Section
5 is devoted to estimates on the change of energy on such solutions, and all these
ingredients are put together in Section 6, where we prove our main theorem on
the existence of multipulse orbits homoclinic to a small vicinity of resonant plane
waves. This result is then applied in Section 7 to study multipulse jumping in the
purely forced NLS equation and then in Section 8 to the forced and linearly damped
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NLS equation. In Section 9 we show how our methods yield multipulse analogs of
the Šilnikov-type orbits of Li et al. [14]. Finally, in Section 9 we describe how the
unstable manifold of the plane waves breaks down into pieces with different jump-
ing behavior. We believe that this last result provides the most direct explanation
available for the irregular jumping in the NLS observed by Bishop et al.

2 Setup

2.1 The NLS as an Evolution Equation

We remove the explicit time dependence from equation (1.1) by applying the
transformation u→ ue−i2Ω2t, which yields the new equation

ut = −iuxx − 2i
[
|u|2 −Ω2

]
u+ ε

[
D̂u− Γ

]
.(2.1)

We consider this equation as an evolution equation on the phase space

P =
{
u ∈ H1

C | u(x) = u(x+ 2π), u(x) = u(−x)
}
.

Here Hk
C denotes the Sobolev space of complex-valued functions defined on the

line that are square-integrable on [0, 2π) together with their first k distributional
derivatives. We will use the notation Hk for the subspace of real-valued elements
of Hk

C. On the phase space P, equation (2.1) can be viewed as a perturbed Hamil-
tonian system

ut = i∇ū [H0(u, ū) + εH1(u, ū)] + εg(u, ū)(2.2)

with

H0(u, ū) =
1

2π

∫ 2π

0
|ux|2 + 2Ω2 |u|2 − |u|4 dx ,

H1(u, ū) =
iΓ
2π

∫ 2π

0
ū− udx ,(2.3)

g(u, ū) = D̂u .

(Throughout this paper, ∇af refers to the gradient of the function f defined as
Df(a)·v = 1

2π

∫ 2π
0 ∇af(a(x))v(x) dx.) The symplectic form on P for the Hamil-

tonian part of equation (2.2) is given by

ω(c, d) = i (〈d, c〉L2 − 〈c, d〉L2)(2.4)

with c, d ∈ TpP. (We use the L2 inner product 〈a, b〉L2 = 1
2π

∫ 2π
0 a(x)b̄(x) dx.)

Note that the unperturbed Hamiltonian H0 naturally splits into an unbounded term
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H00 and a bounded term H01:

H0 = H00 +H01 ,

H00 =
1

2π

∫ 2π

0
|ux|2 dx ,

H01 =
1

2π

∫ 2π

0
2Ω2 |u|2 − |u|4 dx .

The contribution from the unbounded part to equation (2.2) is given by the linear
term

i∇ūH00(u, ū) = M0u

with the linear operator M0 = −i∂xx. Note that M0 maps any function u ∈ H3
C

into an H1
C-function when defined in the sense of distributions. Since the space

H3
C is dense in H1

C , the domain of the operator M0 is dense in the phase space P.
Furthermore, for any u ∈ Hk

C we have

‖M0u‖Hk−2 = ‖uxx‖Hk−2 = ‖∂2
xu‖L2 + ‖∂3

xu‖L2 + · · ·+ ‖∂ku‖L2

≤ ‖u‖L2 + ‖∂xu‖L2 + ‖∂2
xu‖L2 + ‖∂3

xu‖L2 + · · ·+ ‖∂kxu‖L2

= ‖u‖Hk ;(2.5)

thus M0 is bounded in the Hk−2 norm when it acts on Hk
C functions.

An important fact about (2.1) is that it admits a flow F t : P → P (see Li et
al. [14]). The flow operator F t is continuous in t and is Cr in u and ε for fixed t.
Furthermore, Hk

C initial conditions remain in Hk
C for all times; i.e., all Hk

C spaces
are invariant with respect to the flow.

2.2 Resonance in the NLS Equation

We can write any solution u(x, t) as

u(x, t) = c(t) + b(x, t) , 〈b〉 ≡ 1
2π

∫ 2π

0
b(x, t)dx = 0 .(2.6)

Here c is the spatial mean of u, b is the deviation from that mean, and 〈b〉 is the
spatial average of b. As is well-known, one of the invariants of the integrable NLS
equation is given by

I(u, ū) = ‖u‖L2 = 〈|u|2〉 = |c|2 + 〈|b|2〉 .
As in Li et al. [14], we rewrite c in the form

c(t) = |c(t)|eiφ(t) =
√
I(t)− 〈|b(x, t)|2〉 eiφ(t) .(2.7)

We denote the set of spatially independent solutions (i.e., solutions with ∂xu ≡ 0)
by Π. This two-dimensional subspace of P contains plane waves that belong to the
space Hk

C for any integer k; i.e., we have

Π = {u ∈ P | ∂xu ≡ 0} ⊂ H∞C .
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Using the real coordinates (I, φ) as new variables, we find that on the plane Π, the
NLS equation restricts to the ODE

φ̇ = 2(Ω2 − I) , İ = 0 .

This equation shows that Π is foliated by periodic orbits for I > 0. For any nonzero
value of the forcing frequency Ω, one of the periodic orbits becomes degenerate;
i.e., φ̇ vanishes on it. This closed curve

C = {(φ, I) | I = Ω2}
is therefore a circle of equilibria (see Figure 2.1). Such equilibria correspond to
unperturbed plane waves of (1.1) that are in a one-to-one resonance with the forc-
ing.

2.3 The Flow near the Resonance

The stability type of the circle C is determined by the eigenvalues of the lin-
earized flow near C. As shown in Li et al. [14], in directions transverse to C the
linearized flow admits the eigenvalues

Ω±j = ±j
√

4Ω2 − j2 , j = 0, 1, 2, . . . ;(2.8)

thus for any Ω > 1
2 , the resonant circle is unstable. As the forcing frequency Ω in-

creases, the number of linearly stable and unstable directions also increases. At the
same time, for any fixed value of Ω, there will be infinitely many purely imaginary
exponents Ω±j corresponding to sufficiently high values of j. As a result, in linear
approximation any plane wave with Ω > 1

2 has finite-dimensional stable and unsta-
ble subspaces Es and Eu and an infinite-dimensional center subspace. The center
subspace is the direct sum of the plane E0 ≡ Π (corresponding to a double zero
eigenvalue for j = 0) and an infinite-dimensional subspace Ec corresponding to
the purely imaginary eigenvalues. The spaces Es, Eu, and E0⊕Ec are stable, un-
stable, and center subspaces, respectively, for the linear operator M : Hk

C → Hk−2
C

defined as

Mv = −ivxx − 2iΩ2(v + v̄) .(2.9)

Π

C

FIGURE 2.1. The resonant circle of fixed points.
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We note that all these subspaces are independent of the plane wave under consid-
eration, and hence the stable, unstable, zero, and center subbundles of the normal
bundle of the circle are all trivial.

In this paper we study the global consequences of the simplest instability, which
occurs for

1
2
< Ω < 1 .(2.10)

In that case, the stable and unstable subspaces are one-dimensional and hence Ec

is of codimension 4. We now locally decompose the coordinate u ∈ H1
C as u 7→

(y, z, I, φ) with y = (y1, y2) ∈ R2, z = (z1, z2) ∈ H1 × H1, I ∈ R, φ ∈ S1.
Here the y-coordinates are lined up with the linearly stable and unstable directions
along the circle C, the z-coordinates parametrize the center subspace Ec, and (I, φ)
are action-angle variables on the plane Π in a vicinity of the resonant circle. The
existence of this smooth change of coordinates follows from the triviality of the
stable, unstable, and center subbundles of NC, as noted above.

In a neighborhood of C, the plane Π satisfies the equations y = 0 and z = 0,
and equation (1.1) can be written locally as

ẏ = Λy + Ȳ (y, z, I, φ; ε) ,

zt = Az + Z̄(y, z, I, φ; ε) ,

İ = εĒ(y, z, I, φ; ε) ,

φ̇ = F̄0(y, z, I, φ) + εF̄ε(y, z, I, φ; ε) .

(2.11)

Here Λ = diag(−λ, λ) with λ =
√

4Ω2 − 1, and A = M | Ec has a purely
imaginary discrete spectrum. It follows from the definition of the operator M that
A has a dense domain DA ⊂ H1 with H3 ⊂ DA, and by (2.5) we have

‖Az‖Hk−2 ≤ KA‖z‖Hk(2.12)

for an appropriate constant KA > 0.
Since (2.1) admits a (continuous) flow, the operator A necessarily generates a

C0-group on H1. The flow satisfies the linearized system of equations

∂tz1 = ∂xxz2 ,

∂tz2 = −∂xxz1 − 4Ω2z1 .

If zkj (t) with k ≥ 2 denotes the kth-order Fourier coefficient of the solution zj(t)
of this linear system, then we have(

zk1(t)
zk2(t)

)
=
(

cos λkt 0
−λkk2 sinλkt cos λkt

)(
zk1(0)
zk2(0)

)
with λk = k

√
k2 − 4Ω2. This formula gives∣∣∣zk(t)∣∣∣2 =
∣∣∣zk1(t)

∣∣∣2 +
∣∣∣zk2(t)

∣∣∣2 ≤
1 +

√
1− 4Ω2

k2

∣∣∣zk(0)
∣∣∣2 < 2

∣∣∣zk(0)
∣∣∣2 ,
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where we used (2.10) and the fact that k ≥ 2. This last inequality implies

‖z(t)‖2L2 = ‖z1(t)‖2L2 + ‖z2(t)‖2L2 =
1

2π

∞∑
k=2

{∣∣∣zk1(t)
∣∣∣2 +

∣∣∣zk2(t)
∣∣∣2}

<
1

2π

∞∑
k=2

2
∣∣∣zk(0)

∣∣∣2 = 2‖z(0)‖2L2

and

‖∂xz(t)‖2L2 = ‖∂xz1(t)‖2L2 + ‖∂xz2(t)‖2L2

=
1

2π

∞∑
k=2

k2
{∣∣∣zk1(t)

∣∣∣2 +
∣∣∣zk2(t)

∣∣∣2}

<
1

2π

∞∑
k=2

2k2
∣∣∣zk(0)

∣∣∣2 = 2‖∂xz(0)‖2L2 ,

which in turn yield

‖z(t)‖H1 = ‖ expAt · z(0)‖H1 ≤ CA‖z(0)‖H1(2.13)

with CA =
√

2. Therefore, the C0-group generated by the operator A is uniformly
bounded.

2.4 Orbits Homoclinic to the Resonance

We have found that for the parameter range 1
2 < Ω < 1, each fixed point on the

circle C admits one linearly unstable and one linearly stable direction. Bäcklund
transformations can be used to show that along these unstable and stable directions
solutions leave and come back to the circle C (see, e.g., Ercolani and McLaughlin
[4]). This means that heteroclinic orbits exist in the phase space P that connect
different equilibria in C to one another. From any point on the resonant circle
there are precisely two heteroclinic connections to another point of the circle. The
heteroclinic solutions are of the form

uh±(x, t) = Ωeiφ0
cos 2p− i sin 2p tanh τ ± sin p sech τ cos x

1∓ sin p sech τ cosx
,

p = tan−1
√

4Ω2 − 1 ,

τ =
√

4Ω2 − 1(t+ t0) .(2.14)

The ± index refers to two distinct families, which in turn are parametrized by
the phase variable φ0 and the initial time t0. The two orbit families form two
2-dimensional homoclinic manifolds W±0 (C) to the circle C.
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Formula (2.14) also gives the two limit points of the heteroclinic connections:

lim
t→+∞

uh±(t) = Ωeiφ0 (cos 2p− i sin 2p) = Ωei(φ0−2p) ,

lim
t→−∞

uh±(t) = Ωeiφ0 (cos 2p+ i sin 2p) = Ωei(φ0+2p) .

There is a constant phase shift of

∆φ = −4p = −4 tan−1
√

4Ω2 − 1(2.15)

between the two limit points of every heteroclinic orbit. The heteroclinic orbits
also have the property that after perturbation, the leading-order change of energy
along them is the same for all orbits. Using the notation G = (g, ḡ) and the duality
pairing

〈∇H0, G〉 ≡ 〈∇uH0, g〉+ 〈∇ūH0, ḡ〉 ,
we can write this change of energy as a Melnikov-type integral:

I =
∫ ∞
−∞
〈∇H0, G〉 |uh±(t) dt

=
∫ ∞
−∞

∫ 2π

0
(∇uH0 g +∇ūH0 ḡ) |uh±(t) dx dt

= −2 Re
∫ ∞
−∞

∫ 2π

0

(
ūxx + 2

[
|u|2 − Ω2

]
ū
)
D̂u|uh±(t) dx dt

= −2 Re
∫ ∞
−∞

∫ 2π

0

(
ūxx + 2

[
|u|2 − Ω2

]
ū
)
D̂u|ũh±(t) dx dt

(2.16)

with ũh±(t) = e−iφ0uh±(t). Formula (2.14) shows that ũh±(t) is independent of the
phase φ0, and hence the integral I is certainly the same for all orbits inW+

0 (C) and
for all orbits in W−0 (C). To see that I is the same for both W+

0 (C) and W−0 (C),
note that uh+(x, t) = uh−(x+ π, t). Therefore, introducing the change of variables
x 7→ x+ π gives

〈∇H0, G〉|uh−(t) = 〈∇H0, G〉|uh+(t) ,

and hence the integral I is the same for all heteroclinic connections in W+
0 (C) ∪

W−0 (C).

3 Invariant Manifolds and Fenichel Coordinates

In our study of the perturbed NLS equation, we first recall two important invari-
ant manifold results from Li et al. [14]. The first theorem below is concerned with
the existence of a locally invariant center manifold for the circle C for ε ≥ 0. (We
recall that a manifold with boundary is locally invariant if solutions can only leave
the manifold through its boundary.) The center manifold turns out to be a normally
hyperbolic manifold that admits locally invariant stable and unstable manifolds.
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THEOREM 3.1 For ε ≥ 0 small, the invariant plane Π is contained in a codimen-
sion-2, locally invariant manifold

Mε =
{

(y, z, I, φ) | y = yε(z, I, φ), (z, I, φ) ∈ V ⊂ H1 × R1 × S1
}
⊂ P ,

where the function yε(z, I, φ) is of class Cr in its arguments as well as in ε, and
yε(0, I, φ) = 0. Furthermore, for any r ≥ 1, Mε admits codimension-1 local
stable and unstable manifolds of class Cr, denoted W s

loc(Mε) and W u
loc(Mε),

which depend on ε in a Cr fashion.

The next theorem of Li et at. [14] gives the existence of invariant foliations for
the local stable and unstable manifolds ofMε.

THEOREM 3.2 The local unstable manifold W u
loc(Mε) is foliated by a negatively

invariant family Fu =
⋃
p∈Mε

fu(p) of Cr-curves fu(p), i.e., Fu = W u
loc(Mε)

and F−t (fu(p)) ⊂ fu
(
F−t(p)

)
for any t ≥ 0 and p ∈ Mε ⊂ H1 (here F t

denotes the flow generated by system (1.1)). Moreover, the fibers fu(p) are of
class Cr in ε and p, and fu(p) ∩ fu(p′) = ∅ unless p = p′. Finally, there exist
Cu, λu > 0 such that if q ∈ fu(p), then

‖F−t(q)− F−t(p)‖Hk < Cue
−λut

for any t ≥ 0 as long as F−t(p) ∈ Mε. The local stable manifold W s
loc(Mε)

admits a positively invariant foliation Fs =
⋃
p∈Mε

f s(p) with similar properties.

REMARK 3.3 We note that the plane Π is a subset of H∞, so there exist fibers
fu(p) and f s(p) for any p ∈ Π in any Sobolev space Hk. Since Hk+1 ⊂ Hk and
the fibers emanating from a given base point p are unique in any Hk-space, we
obtain a unique, 2m-parameter family of fibers fu(p) and f s(p) emanating from
points in Π. The union of these stable and unstable fibers immediately provides us
with H∞ local stable and unstable manifolds W s

loc(Π) and W u
loc(Π) for the plane

Π.

To study the dynamics nearMε, we will use a normal form that is an infinite-
dimensional version of the one first suggested by Fenichel [5] (see also Jones and
Kopell [9]). This normal form can be obtained through local changes of coordi-
nates that “straighten out” the stable and unstable manifolds ofMε as well as their
foliations.

As a preliminary step, we introduce the scaling

I = I0 +
√
εη(3.1)

to blow up a neighborhood of the circle of equilibria C. In terms of the coordinates
(y, z, η, φ), we obtain the following result:

LEMMA 3.4 There exists ε0 > 0 such that for 0 ≤ ε < ε0, a Cr local change of
coordinates Tε : (y, z, η, φ) 7→ (w, ζ, ρ, ψ) (with a Cr-inverse) transforms system
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(2.1) to the form

ẇ1 = [−λ+ (Y1, w) + 〈Y2, ζ〉+
√
εY3]w1 ,

ẇ2 = [λ+ (Y4, w) + 〈Y5, ζ〉+
√
εY6]w2 ,

ζt = Aζ + (Z1ζ, ζ) +
√
εZ2ζ + Z3w1w2 ,

ρ̇ =
√
εE ,

ψ̇ = 〈F1ζ, ζ〉+
√
εF2 + F3w1w2 .

(3.2)

Here (·, ·) denotes the Euclidean inner product. The functions Y1, Y4 : P ×
[0, ε0]→ R2, Y2, Y5 : P × [0, ε0]→ H−1, Y3, Y6 : P × [0, ε0]→ R, E, F2, F3 :
P × [0, ε0] → R, Z1 : P × [0, ε0] →

(
H1
)2×2

, Z3 : P × [0, ε0] → H1, and
the three-tensors (Z1·, ·) and 〈F1·, ·〉 are all of class Cr−4 in (y, z, η, φ) and ε.
Moreover,

DwZ1 = 0 , DwZ2 = 0 , DwF1 = 0 , DwF2 = 0 .(3.3)

PROOF: The proof of the theorem closely follows the steps outlined in Fenichel
[5] for finite-dimensional systems. Namely, we introduce the change of coordinates
y 7→ w near the manifold Mε in which Mε is described by w1 = w2 = 0, and
W s(Mε) and W u(Mε) satisfy w2 = 0 and w1 = 0, respectively. Next, we
change the (z, η, φ)-coordinates appropriately to (ζ, ρ, ψ)-coordinates so that the
stable and unstable fibers described in Theorem 3.2 satisfy ζ = const, ρ = const,
and ψ = const. The details of this construction can be found, e.g., in Tin [20] or
Jones [10].

The only subtle point that arises in the infinite-dimensional case is the follow-
ing: The changes of coordinates depend on the H1-variable z; hence all compo-
nents of the transformed equations will have terms arising from zt on their right-
hand sides. As a result, the unbounded term Az is not confined to the z equations
anymore as in (2.11), and the system appears to become less tractable. However,
the apparently unbounded terms are in fact always bounded due to cancellations.
We show this for the first change of coordinates only, since later coordinate changes
can be dealt with similarly.

Based on (3.1), we can rewrite (2.11) as

ẏ = Λy + Y (y, z, η, φ;
√
ε) ,

zt = Az + Z(y, z, η, φ;
√
ε) ,

η̇ =
√
εE(y, z, η, φ;

√
ε) ,

φ̇ = F0(y, z, η) +
√
εFε(y, z, η, φ;

√
ε) ,

(3.4)

where Y , Z, E, F0, and Fε are of class Cr nonlinear functions. The blowup
construction implies that this system has a plane of equilibria for ε = 0 that satisfies
y = 0 and z = 0. As a result,

Y (0, 0, η, φ; 0) = 0 , Z(0, 0, η, φ; 0) = 0 , F0(0, 0, η) = 0 ,
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must hold, which imply

Y = f1y + 〈f2, z〉+
√
εf3 , Z = f4y + f5z +

√
εf6 ,

F0 = f7y + 〈f8, z〉 +
√
εf9 ,

(3.5)

for appropriate Cr−1-functions f1, . . . , f9. Since the linearized flow of (3.4) at any
point of Π leaves the y, z, and η−φ subspaces invariant, the functions in (3.5) can
be rewritten as

Y = (f10y)y + 〈f11y, z〉+ 〈f12z, z〉+
√
εf3 ,

Z = (f13y, y) + (f14, y)z + (f15z, z) +
√
εf6 ,(3.6)

F0 = (f16y)y + 〈f17y, z〉+ 〈f18z, z〉+
√
εf9 ,

with appropriate Cr−2-functions f10, . . . , f18. We recall that (·, ·) denotes the usual
Euclidean scalar product of vectors, while 〈·, ·〉 denotes the duality pairing between
H−1 and H1. From Theorem 3.1 we know thatMε must satisfy an equation of the
form

y = yε(z, η, φ) = y0(z, I0 +
√
εη, φ) + εy1(z, η, φ;

√
ε) , |η| + ‖z‖H1 < δ ,

where yε is a Cr-function that depends on the parameter ε in a Cr fashion, and
δ > 0 is a sufficiently small number. We introduce the change of variables

w = y − yε(z, η, φ) .(3.7)

For initial data z ∈ H3, the solution is a C1-function of time. Then from equation
(3.4) we obtain that the w-component of the transformed equations is of the form

d

dt
w = Λ(w + yε) + Y (w + yε, z, η, φ)

− Dzy
ε(Az + Z)−Dηy

ε√εE −Dφy
εF .

(3.8)

As we indicated earlier, (3.8) suggests that in the new coordinates the right-hand
side of the w-component of the evolution equation may not be a differentiable
function any more. However, from the local invariance ofMε we obtain that

Dzy
εAz = Λyε + Y (yε, z, η, φ;

√
ε)−Dzy

εZ(yε, z, η, φ;
√
ε)

−
√
εDηy

εE(yε, z, η, φ) −Dφy
εF (yε, z, η, φ)

(3.9)

for z ∈ H3 and |η| + ‖z‖H1 < δ. Substituting this last expression back into (3.8)
and making use of the structure of the right-hand side in (3.6), we see that for
z ∈ H3, (3.8) can be written as

d

dt
w = Λw + (f̃10w)w + 〈f̃11w, z〉 + 〈f̃12z, z〉 +

√
ε f̃3(3.10)

with a Cr−2 right-hand side. This last expression shows that for z ∈ H3, the func-
tion Dzy

εAz is in fact of class Cr−1. But the space H3 is dense in H1; thus any
point z ∈ H1 can be approximated by a sequence {zk}∞k=1 ⊂ H3 that converges to
z in the H1-norm. Then the continuity of the right-hand side of (3.9) implies that
in the limit zk → z, equation (3.8) remains of the form (3.10). Therefore, equation
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(3.10) holds for any initial condition z ∈ H1 in the sense of distributions provided
z is small enough in the H1-norm.

In the new coordinates the manifoldMε satisfies w = 0. Consequently, by the
local invariance ofMε, (3.10) implies

〈f̃12z, z〉+
√
εf̃3 = [〈f̃19z, z〉 +

√
εf̃20]w ,

where the matrix-valued functions f̃19 and f̃20 are of classCr−3 in their arguments.
Therefore, in the new coordinate system, (3.4) can be rewritten as

d

dt
w = [Λ + (f̃10w) + 〈f̃19z + f̃11, z〉+

√
εf̃20]w ,

zt = Az + (f̃13w,w) + (f̃14, w)z + (f̃15z, z) +
√
ε f̃6 ,

d

dt
η =
√
εẼ(w, z, η, φ;

√
ε) ,

d

dt
φ = (f̃16w)w + 〈f̃17z, z〉 + 〈f̃18z, z〉 +

√
εf̃9 .(3.11)

The remaining steps in the proof can be shown to yield bounded terms in the
same fashion. Enforcing the invariance conditions after each step leads to further
factorization of the right-hand side of (3.11), which finally gives the normal form
(3.2).

4 Local Estimates

We want to use the normal form (3.2) to study the behavior of trajectories in a
neighborhood of the manifoldMε. The trajectories we are interested in are con-
tained in the unstable manifold W u(Π), and they do not intersect the local stable
manifold W s

loc(Mε) upon entering a small neighborhood ofMε. SinceMε is of
“saddle-type,” such trajectories pass near the manifold and leave its neighborhood.
We are interested in how the coordinates (w, ζ, ρ, ψ) change during this passage.

For 0 ≤ ε ≤ ε0, the normal form is related to the NLS equation (2.1) within
some fixed open set

S = {(w, ζ, ρ, ψ) | |w| < Kw, ‖ζ‖H1 < Kζ ,
√
ε|ρ| < KI , ψ ∈ S1} ,

where Kw, Kζ , and KI are fixed positive constants (see Figure 4.1). We consider
solutions u(t) = (w(t), ζ(t), ρ(t), ψ(t)) of the normal form that enter a small,
fixed “box”

U0 = {(y, z, ρ, ψ) ∈ S | |wi| ≤ δ0 <
√

2Kw/4,

‖ζ‖H1 ≤ δ0 < Kζ , |ρ| ≤ Kρ < KI/
√
ε}

with positive constants δ0 and Kρ. Since the functions on the right-hand side of
(3.2) are of class Cr−4 on S for all 0 ≤ ε ≤ ε0 and for appropriate B > 0, we
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FIGURE 4.1. The sets U0 and S.

have
|Yi|, ‖Yj‖H1 , ‖Zq‖H1 , |E|, ‖F1‖H1 , |Fl| < B,

|DYi|, ‖DYj‖H1 , ‖DZq‖H1 , |DE|, ‖DF1‖H1 , |DFl| < B,
(4.1)

for i = 1, 3, 4, 6, j = 2, 5, l = 2, 3, q = 1, 2, 3, and 0 ≤ ε ≤ ε0. We want to follow
a solution u(t) that enters the set U0 by intersecting its boundary ∂U0 within the
domain

∂1U0 = {(w, ζ, ρ, ψ) ∈ ∂U0 | ‖ζ‖H1 < δ0, |ρ| < Kρ}
at time t = T ∗, as shown in Figure 4.1. For such a solution we have w1(0) = δ0,
and we assume that for 0 < ε ≤ ε0, the rest of the coordinates of the entry point
u(0) obey the entry conditions

‖ζ(0)‖H1 < c1ε
β ,

c2ε

δ0
< |w2(0)| < c3ε

δ0
, |ρ(0)| < c4 < Kρ ,(4.2)

for fixed positive constants c1, . . . , c4 and for some power 1
2 < β < 1.

The first condition in (4.2) restricts the set of initial conditions to those with
small “oscillatory” components. These components give the fast-varying coordi-
nates of trajectories passing close toMε. The second condition in (4.2) means that
the solution u(t) enters U0 close to the local stable manifold W s

loc(Mε) and hence
stays nearMε for a long time. We cannot track the fast oscillatory components on
long time scales with great precision, but their norm turns out to remain small as
long as it was small at t = 0. In particular, u(t) exits U0 through the domain ∂1U0

of its boundary (see Figure 4.2).

LEMMA 4.1 Suppose that for a solution u(t) ∈ H1, the entry conditions in (4.2)
are satisfied. Then for any fixed constant β with 1

2 < β < 1, there exist ε1 > 0 and
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FIGURE 4.2. The geometry of the entry conditions.

δ1 > 0 such that for all 0 < δ0 < δ1 and 0 < ε0 < ε1 there exists T ∗ > 0 with
u(T ∗) ∈ ∂1U0. Moreover, the minimal such time T ∗ obeys the estimate

T ∗ < Tε =
2
λ

log
δ2

0

c2ε
.(4.3)

PROOF: The main ideas in the proof are the same as in Haller [7], where the
same passage problem was addressed with finite-dimensional ζ-components. For
this reason, we only sketch the proof and refer the reader to Haller [7, 8] for details.

We fix the constants Bζ and α with Bζ > c1 > 0 and β < α < 1. By the
continuity of the solution u(t) in t, (4.2) implies the existence of a time T̄ > 0 such
that for all t ∈ [0, T̄ ), we have

‖ζ(t)‖H1 ≤ Bζεβ , |ρ(t)| ≤ Kρ , |w1(t)w2(t)| ≤ c3
δ0
εα .(4.4)

Clearly, (4.4) implies u(t) ∈ S. For small enough t > 0, it also implies u(t) ∈
U0 by the continuity of u(t) in t. It is also clear that T̄ can be slightly increased
and (4.4) will still hold. Let T ∗ > 0 denote the time when u(t) first intersects
the boundary ∂U0. One can easily see that T ∗ < Tε by assuming the contrary
and observing that in that case |w2(Tε)| > |w20| exp(λTε/2) > δ0, which is a
contradiction. We have to argue that T̄ can in fact be increased up to T ∗ if we
choose Bζ ,Kρ, and α properly and keep ε small enough. We proceed by assuming
that T̄ cannot be increased to T ∗ for any choice of the constants in (4.4) and show
that this leads to a contradiction.

Let us assume that for all fixed Bζ ,Kρ, and α, there exists a time T0 with
T̄ ≤ T0 < T ∗ such that (4.4) holds for all t < T0, but at least one of the inequalities
is violated at t = T0. We will consider these inequalities individually and argue
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that none of them can be violated at t = T0. We note that since T0 < T ∗, we have
|w| <

√
2δ0.

For all 0 ≤ t < T0, a Gronwall estimate on the third equation in (3.2) combined
with (2.13) and (4.1) gives

‖ζ(t)‖H1 ≤ CA
[
c1ε

β +B
c3
δ0
εαTε

]
e2CABBζ

√
εTε < 2ec1CAεβ ,(4.5)

which, by the continuity of ‖ζ(t)‖H1 , yields

‖ζ(T0)‖H1 ≤ 2ec1CAεβ < Bζε
β(4.6)

for Bζ = 7c1CA. Hence the first inequality in (4.4) cannot be violated at t = T0.
A direct estimate on the normal form (3.2) shows that the ρ-component of the

solution obeys

|ρ(t)| < |ρ(0)| +
√
εBt < c4 +

2B
λ

√
ε log

δ2
0

c2ε
< c4 + 1 .(4.7)

Thus, selecting Kρ = c4 + 2 and using the continuity of the function ρ(t), we
obtain that the second inequality in (4.4) cannot be violated either at t = T0.

As far as the last inequality in (4.4), the normal form (3.2) yields the differential
equation

d

dt
(w1w2) = [(Y1 + Y4, w) + 〈Y2 + Y5, ζ〉+

√
ε(Y3 + Y6)]w1w2.(4.8)

Then a simple Gronwall estimate shows that

|w1(t)w2(t)| ≤ c3ε exp
{

2B
[
2
√

2δ0 +Bζε
β +
√
ε
]
Tε
}

<
c3ε

δ0
exp 2δ0B[

√
2 + 1]Tε ,

which implies that

|w1(t)w2(t)| < c3
δ0

(
δ2

0

c2

)4B[
√

2+1]
δ0
λ

ε1−4B[
√

2+1]
δ0
λ <

c3
δ0
εα(4.9)

if we choose δ0 small enough. Again, by continuity with respect to t, (4.9) implies

|w1(T0)w2(T0)| ≤ c3ε
α

δ0
;

hence the last inequality in (4.4) cannot be violated at t = T0 either. But this
contradicts our original assumption on the time T0 and proves the statement of the
lemma.

We are now in the position to study how the coordinates of passing trajectories
change while they pass through the neighborhood U0.
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LEMMA 4.2 Let us fix a constant 1
2 < β < 1 and assume that for 0 < ε < ε0

and 0 < δ0 < δ1, the entry conditions (4.2) hold for a solution u(t) ∈ H1 that
enters the set U0 at t = 0 and leaves it at t = T ∗. Let us introduce the notation
a = (w20, ζ0, ρ0, ψ0) and let u0 = (δ0,a) and u∗ = u(T ∗) = (w∗1, δ0, ζ

∗, ρ∗, ψ∗)
define the coordinates of the solution at entry and departure, respectively. Then
there exist constants K > 0, 0 < µ < 1

2 , and δ∗0 > 0, and for any 0 < δ0 < δ∗0
there exists ε∗0 > 0 such that for all 0 < ε < ε∗0 the following estimates hold:

(i)

|w∗1| < Kεβ , ‖ζ∗ − ζ0‖H1 < Kεβ ,

|ρ∗ − ρ0| < K
√
ε
β
, |ψ∗ − ψ0| < K

√
ε
β
.

(ii)

|Daw
∗
1| < Kεβ , ‖Da ζ

∗ − (0, 1, 0, 0)‖H−1 < Kεµ ,

|Da ρ
∗ − (0, 0, 1, 0)| < Kεµ , |Daψ

∗ − (0, 0, 0, 1)| < Kεµ .

(iii)

|Dεµw
∗
1| < Kεβ , ‖Dεµζ

∗‖H−1 < Kεµ ,

|Dεµ ρ
∗| < Kεµ , |Dεµψ

∗| < Kεµ .

PROOF: Again, most of the proof is similar to that of the analogous finite-
dimensional results in Haller [7], so we only outline the main steps. From the
normal form (3.2), we easily obtain the bounds

T1 =
1

λ+ 3δ0B
log

δ2
0

c2ε
< T ∗ < T2 =

1
λ− 3δ0B

log
δ2

0

c2ε
(4.10)

for any solution obeying conditions in (4.2). The normal form also provides us
with the estimate

|w∗1| = |w1(T ∗)| < |w1(T1)| < |w10| e−(λ−3δ0B)T1 < δ0

(
δ2

0

c2

)λ−3δ0B
λ+3δ0B

εβ(4.11)

provided

δ0 <
λ(1− β)

3B(1 + β)
.(4.12)

Since we have shown in the proof of Lemma 4.1 that all the inequalities in (4.4)
hold for t ∈ [0, T ∗], selecting Bζ = 7c1CA (as in the proof of that lemma) and
setting t = T ∗, we obtain

‖ζ∗‖H1 < Bζε
β .

This inequality and (4.2) imply that

‖ζ∗ − ζ0‖H1 ≤ ‖ζ∗‖H1 + ‖ζ0‖H1 < (Bζ + 1)εβ .(4.13)
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From the third equation of the normal form (3.2), we see that

|ρ∗ − ρ0| ≤
√
εBTε <

2B
λ

√
ε
β
.(4.14)

Finally, the last equation in (3.2), (4.1), and (4.4) yield the estimate

|ψ∗ − ψ0| <
[
B2
ζBε

2β +
√
εB +

Bc3
δ0

εα
]
Tε

<
2B
λ

[
B2
ζ +

c3
δ0

+ 1
]√

ε
β
,(4.15)

where we used (4.3). But then (4.11), (4.13), (4.14), and (4.15) show that statement
(i) of the lemma is satisfied for a large enough constant K.

To prove statement (ii), we first need the variational equation associated with
the normal form (3.2). We shall only sketch the estimates in (ii) for the derivatives
of u∗ with respect to ρ0 that satisfy the equations

d

dt
(Dρ0w1) =

[
−λ+ (Y1, w) + 〈Y2, ζ〉+

√
εY3

]
Dρ0w1

+ [(DY1Dρ0u,w) + (Y1,Dρ0w) + 〈DY2Dρ0u, ζ〉

+ 〈Y2,Dρ0ζ〉+
√
εDY3Dρ0u

]
w1,

d

dt
(Dρ0w2) =

[
λ+ (Y4, w) + 〈Y5, ζ〉+

√
εY6

]
Dρ0w2

+ [(DY4Dρ0u,w) + (Y4,Dρ0w) + 〈DY5Dρ0u, ζ〉

+ 〈Y2,Dρ0ζ〉+
√
εDY3Dρ0u

]
w2 ,

d

dt
(Dρ0ζ) = ADρ0ζ + (DZ1Dρ0u ζ, ζ) + (Z1Dρ0ζ, ζ) + (Z1ζ,Dρ0ζ)

+
√
εDZ2Dρ0uζ +

√
εZ2Dρ0 ζ +DZ3Dρ0uw1w2

+ Z3Dρ0(w1w2) ,

d

dt
(Dρ0ρ) =

√
εDE3Dρ0u ,

d

dt
(Dρ0ψ) = 〈DF1Dρ0u ζ, ζ〉+ 〈F1Dρ0ζ, ζ〉+ 〈F1ζ,Dρ0ζ〉

+
√
εDF2Dρ0u+DF3Dρ0uw1w2 + F3Dρ0(w1w2) .

(4.16)

We select constants α, γ, µ, and ν with

0 < µ < ν <
1
2
< γ < β < α < 1 .(4.17)
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Then, by the continuity of Du0u(t) with respect to t, there exists a time T0 ≤ T ∗

such that for all t ∈ [0, T0) and for ε > 0 sufficiently small,

‖Dρ0ζ(t)‖H1 ≤ B′ζεγ , |Dρ0ρ(t)− 1| ≤ K ′ρεµ ,
|Dρ0ψ(t)| ≤ K ′ψεµ,

(4.18)

and

|Dρ0 [w1(t)w2(t)]| ≤ K ′0εβ , |Dρ0w1(t)| ≤ K ′wεβ ,
|Dρ0w2(t)| ≤ K ′wε−ν , ‖Dρ0u(t)‖H1 ≤ 2K

′
wε
−ν ,(4.19)

with appropriate positive constants.
As in the proof of Lemma 4.1, we can show that none of the inequalities in

(4.18) and (4.19) can be violated at t = T0 = T ∗ if we choose the constants
properly. In analogy with the finite-dimensional case, the necessary estimates can
be obtained by setting, e.g.,

α =
β + 1

2
, γ =

2β + 1
4

, ν = β(1− β) , µ =
1− β

2
,

and selecting δ0 > 0 small enough (see Haller [7, 8] for details).
The proof of statement (iii) is based on similar estimates for the variational

equation for the derivatives of u(t) with respect to εµ. In particular, we can show
that the inequalities

‖Dεζ(t)‖H−1 ≤ B̄′ζεγ , |Dερ(t)| ≤ K̄ ′ρεµ , |Dεψ(t)| ≤ K̄ ′ψεµ ,
and

|Dε[w1(t)w2(t)]| ≤ K̄ ′0εβ , |Dεw1(t)| ≤ K̄ ′wεβ ,
|Dεw2(t)| ≤ K̄ ′wε−ν , ‖Dεu(t)‖H−1 ≤ 2K̄

′
wε
−ν .

continue to hold up to t = T ∗, which then imply statement (iii) of the lemma.

The last local estimate we need in our construction is concerned with the in-
tegral of the norm of the coordinates over the time of passage within the set U0.
Such quantities will be essential in our later estimates for the change of the energy
of solutions.

LEMMA 4.3 Let us fix the constant 1
2 < β < 1 and assume that for 0 < ε < ε0

and δ0 < δ1, the entry conditions (4.2) hold for a solution u(t) that enters the set
U0 at t = 0 and leaves it at t = T ∗. Then there exist constants L > 0 and δ∗0 > 0,
and for any δ0 < δ∗0 there exists ε∗0 > 0 such that for all 0 < ε < ε∗0 we have∫ T ∗

0
‖ζ(t)‖H1 dt < L

√
ε ,

∫ T ∗

0
|w1(t)| dt < Lδ0 ,∫ T ∗

0
|w2(t)| dt < Lδ0 ,

∫ T ∗

0
|ρ(t)| dt < Lεµ ,(4.20)

where µ = (1− β)/2.
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PROOF: From the normal form (3.2), (4.9), and (4.10) we obtain that for t ∈
[0, T ∗],

|ζ(t)| ≤
∣∣∣eAtζ0

∣∣∣+ ∫ t

0

∣∣∣eA(t−τ) ((Z1ζ, ζ) +
√
εZ2ζ + Z3w1w2

)∣∣∣ dτ
< CA

(
Bζε

β +B0c3ε
α 1
λ− 3δ0B0

log
δ0

c2ε

)
+
∫ t

0
2δ0CAB0 |ζ(τ)| dτ ,

which, by Gronwall’s inequality, implies

|ζ(t)| < CA

(
Bζε

β +B0c3ε
α 1
λ− 3δ0B0

log
δ0

c2ε

)
e2δ0CAB0t

< 2CABζεβe2δ0CAB0t ,

since α > β. Consequently, we have∫ T ∗

0
|ζ(t)| dt < Bζε

β

δ0B0

[
exp

(
2δ0CAB0

λ− 3δ0B0
log

δ0

c2ε

)
− 1

]
<

2Bζ
δ0B0

ε
β− 2δ0CAB0

λ−3δ0B0 <
2Bζ
δ0B0

√
ε

for δ0, ε > 0 small enough, which proves the first inequality in (4.20). The remain-
ing three estimates follow similarly from the normal form (3.2) (see Haller [7] for
more details).

5 Local and Global Maps

Lemma 4.2 shows that the “local map” u0 7→ u∗(u0), as well as its partial
derivatives with values in H−1, remain bounded as ε → 0. This enables us to
extend the local map to the limit ε = 0 so that the extension is differentiable in
εµ at ε = 0. This extension will be useful later when we construct multi-pulse
orbits for the perturbed NLS equation using an implicit function theorem argument
near ε = 0. The smooth extension of the local map is needed as we will need
smoothness of the constructed solutions in ε.

To elaborate on the above idea of extension, we introduce the set

Lε = {(w, ζ, ρ, ψ) ∈ ∂1U0 ∩W u(Π) | |w1| = δ0 ,

c2ε

δ0
≤ |w2| ≤

c3ε

δ0
, ‖ζ‖H1 ≤ c1εβ, |ρ| ≤ c4} .

(5.1)

Note that Lε is a subset of the unstable manifold W u(Π) whose points satisfy the
entry conditions in (4.2).

For positive ε, Lε is the disjoint union of two-dimensional manifolds, and these
manifolds degenerate into the single manifold

L0 = ∂1U0 ∩W s
loc(Π)
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FIGURE 5.1. The meaning of the extension L0 of the local map.

for ε = 0. For ε > 0, we define the local map Lε : Lε → ∂1U0 as

Lε(δ0, w20, ζ0, ρ0, ψ0) = (w∗1, δ0, ζ
∗, ρ∗, ψ∗)(5.2)

(see Lemma 4.2 for notation). The map Lε is of class C1 with values in H−1. For
ε ≥ 0 we now define the extension map L0 : Lε → ∂1U0 as

L0(δ0, w20, ζ0, ρ0, ψ0) = (0, δ0, ζ0, ρ0, ψ0) .

This map projects any point to the manifold W s
loc(C) and then maps the projection

along an unstable fiber to the intersection of the fiber with ∂1U0, as shown in Figure
5.1. Clearly, L0 is a smooth map with values in H1. In addition, we have the
following result:

COROLLARY 5.1 For ε > 0 small enough and for fixed 1
2 < β < 1 in the entry

conditions (4.2), there exists 0 < µ < 1
2 such that the local map can be written as

Lε(u0) = L0(u0) + εµL1(u0, ε
µ) ,

where L1 is C1 in its arguments with values in H−1 and L1(u0; 0) = 0.

The statement of this corollary follows directly from Lemma 4.2, since the
manifold Lε is finite-dimensional; hence the solution-dependent constants K and
µ appearing in the statement of the lemma can be chosen uniformly for u0 ∈ Lε.

REMARK 5.2 It is also easy to see from (5.2) that the map L0 is C1 in δ0 in a
neighborhood of δ0 = 0. In this limit, the domain of L0 becomes L0 = Π.
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FIGURE 5.2. The definition of the extension G0 of the global map.

We also want to follow initial conditions as they leave the box U0 and then
return. To this end, we define the domain

Gε = {(w, ζ, ρ, ψ) ∈ ∂1U0 ∩W u(Π) | |w2| = δ0, ‖ζ‖H1 ≤ Kεβ}(5.3)

and the global map Gε : Gε → ∂1U0 as

Gε(w∗1, δ0, ζ
∗, ρ∗, ψ∗) = (δ0, w20, ζ0, ρ0, ψ0) .(5.4)

The constant K > 0 in the definition of Gε is the same as in statement (i) of Lemma
4.2. An expression for the global map is given below.

LEMMA 5.3 For ε ≥ 0 and for all sufficiently small δ0 ≥ 0, the global map can
be written as

Gε(u∗) = u∗ + ∆φ+ δ0G1(u∗, δ0) +
√
εG2(u∗, ε) ,

where Gj are C1 in their arguments with values in H−1, and the phase shift ∆φ is
defined in (2.15).

PROOF: Note that the map G0 : G0 → Π remains well-defined in the limit
δ0 = 0 with domain G0 = Π. This map maps the α-limit points of unperturbed
heteroclinic orbits in W u(C) ≡ W s(C) to their ω-limit points. Therefore, for
δ0 = 0, we have G0(u∗) = u∗ + ∆φ. For δ0 > 0, G0 maps the first intersections
of solutions in the homoclinic manifolds W±0 (C) with ∂U0 to their second inter-
sections with ∂U0 (see Figure 5.2). But these solutions are just the unperturbed
fibers in W s,u

loc (C), and fibers depend smoothly on their base points; thus we obtain
that

G0(u∗) = u∗ + ∆φ+ δ0G1(u∗, δ0) .(5.5)

By the properties of the underlying flow, the global map Gε(u∗) is smooth in the
initial condition u∗ and the parameter

√
ε with values in H−1. We finally observe

that initial conditions in the domain of Gε are at most O(εβ) (with β > 1
2 ) away

from G0, and the magnitude of the perturbation in the normal (3.2) is of order
O(
√
ε). These facts together with (5.5) complete the proof of the lemma.
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6 Energy Estimates

In this section we study how the value of the Hamiltonian H = H0 + εH1

changes on solutions as they repeatedly approach and leave a vicinity of the mani-
foldMε. Later we will use the “energy” H and the variables (w2, ζ, ρ, ψ) to track
solutions that visit the neighborhood U0. This tracking of solutions will be the key
tool in constructing multipulse solutions homoclinic toMε. Since the Hamiltoni-
ans H0 and H1 are defined for the original complex evolution equation (2.1), we
need to evaluate them at complex conjugate pairs of points. In our notation, we
only emphasize the dependence of these functions on u ∈ H1

C; i.e., we use the
notation F (u) ≡ F (u, ū) for functions of u and ū. Our notation for the derivative
and the gradient of such functions is, respectively,

DF ≡ (DuF,DūF ) , ∇F ≡ (∇uF,∇ūF ) .

Accordingly, for a vector A = (a, ā) ∈ H1
C ×H1

C, we use the shorthand notation

〈∇F,A〉 = 〈∇uF, a〉+ 〈∇ūF, ā〉 .
We now prove our main energy estimate for solutions that lie in the unstable

manifold W u(Π) and obey the entry conditions (4.2).

LEMMA 6.1 Suppose that u(t) is a solution of the normal form (3.2) that lies in
the unstable manifold of the invariant plane Π. Let q0 be the first intersection of
u(t) with the surface ∂1U0, and let bε = b0 + (0,

√
εη) ∈ Π with b0 = (φ0, 0) ∈ C

be the base point of the unstable fiber fu(bε) that contains the point q0. Suppose
that the solution returns to ∂1U0 N times to intersect it at the points p1, . . . , pN
and to leave it again at the points q1, . . . , qN−1. Assume further that, for some
constants 1

2 < β < 1, 0 < ε < ε0, and δ0 < δ1, the entry conditions (4.2) hold for
the solution u(t) at each entry point pk. (For N = 1, c2 = 0 is allowed in (4.2).)

Then, for δ0, ε > 0 sufficiently small, we have

H(pN ) = H0 | C + ε [H(b0) +NI +O (δ0, ε
µ)] ,

where 0 < µ < 1
2 and the quantity I is defined in (2.16). The “slow” Hamiltonian

H is the first-order term in the expansion of (H0 + εH1) | Π near the circle C, i.e.,

H =
1
2
D2
IH01(Π)

∣∣∣∣
C
η2 +H1 | C

= −η2 + 2ΓΩ sinφ .(6.1)

PROOF: We can write the energy H(pN ) as

H(pN ) = H(bε) + [H(q0)−H(bε)] +
N−1∑
l=1

H(ql)−H(pl)

+
N∑
l=1

H(pl)−H(ql−1) .

(6.2)
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The first sum in this expression is the change in the energy of u(t) during local
passages nearMε, while the second sum is the change of energy outside U0. We
now estimate the four main terms in (6.2) separately.

The first term can be written as

H(bε) = (H0 + εH1) |bε = H0 | C + εH(b0) +O(ε3/2),(6.3)

since ∇H0 = 0 on the circle C for ε = 0.
To estimate the second term in (6.2), we consider the “Hamiltonian” unstable

fiber fug=0(bε) (i.e., a fiber for the case of g = 0), which intersects the surface ∂1U0

at a point qH . By the continuity of the Hamiltonian H, for zero dissipation, orbits
asymptoting to each other must have the same energy. As a result, by Theorem 3.2,
we must have H(qH) = H(bε) for g ≡ 0. If qc ∈ C is the projection of the point
qH on the circle C, then we have ∇H0(qc) = 0, and the mean value theorem gives

|H(q0)−H(bε)| = |H(q0)−H(qH)| = |DH(q∗) · (q0 − qH)|
= |(DH0(q∗) + εDH1(q∗)) · (q0 − qH)|
= |(DH0(q∗ − qc) + εDH1(q∗)) · (q0 − qH)|
≤ ‖DH0(q∗ − qc) + εDH1(q∗)‖H−1‖q0 − qH‖H1

≤
(

(1 +K01) ‖q∗ − qc‖H1 + εK
′)‖q0 − qH‖H1 ,(6.4)

where the point q∗ lies on the line connecting q0 and qH ,K
′
> 0 is an upper bound

for ‖DH1‖H1 within the cylinder S, K01 > 0 is an upper bound on ‖DH01‖H1 ,
and we used the inequality (2.5). Since the unstable fibers are of class Cr in the
parameter ε, and the H1-distance of the point q∗ from the circle C is less than δ0,
we have the estimates

‖q0 − qH‖H1 < K1ε , ‖q∗ − qc‖H1 < δ0 ,

for some constant K1. Therefore, the inequality (6.4) can be rewritten as

|H(q0)−H(bε)| < (1 +K01 +K
′
)K1δ0ε .(6.5)

To estimate the third term in (6.2), we recall that the solution u(t) is of class
C1 in t for initial data pl ∈ H3

C. For such initial values we can write

N−1∑
l=1

H(ql)−H(pl) =
N−1∑
l=1

∫ T ∗l

0
Ḣ(u(t))dt

=
N−1∑
l=1

∫ T ∗l

0
DH · (iJ∇H + εG)u(t) dt

= ε
N−1∑
l=1

∫ T ∗l

0
〈∇H0 + ε∇H1, G〉u(t) dt

= ε
N−1∑
l=1

∫ T ∗l

0
〈∇H0, G〉u(t) dt+O

(
ε2 log

1
ε

)
.(6.6)
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Here T ∗l denotes the time of flight for the solution u(t) from the point pl to ql,
and hence it obeys the estimate (4.3). We also used the relation 〈∇H, iJ∇H〉 = 0
with the matrix J defined as

J =
(

0 −1
1 0

)
.

Now observe that
∑N−1
l=1 H(ql) − H(pl) is a continuous function of the initial

conditions p1, and hence by the denseness of H3
C in the phase space H1

C, (6.6)
holds for any solution u(t) with initial data in H1

C (see the proof of Lemma 3.4 for
the details of a similar argument).

We now estimate the terms in the integrand on the right-hand side of (6.6).
Noting that ∇H0 | C = 0, we obtain that if (w, ζ, ρ, ψ) are the coordinates of a
point p ∈ S, then

∇H0(p) = A1(w, ζ, ρ, ψ)w1 +A2(w, ζ, ρ, ψ)w2 +A3(w, ζ, ρ, ψ)ζ

+A4(w, ζ, ρ, ψ)ρ
(6.7)

for appropriate Cr−1 functions Ai. Using (2.5), Lemma 4.3, and (6.7), we obtain

N−1∑
l=1

∫ T ∗l

0
〈∇H0, G〉u(t) dt = O(δ0) +O(εµ) .(6.8)

This last equation and the energy expression (6.6) shows

N−1∑
l=1

H(ql)−H(pl) = O(εδ0,ε
1+µ) .(6.9)

To complete the proof of the lemma, it remains to estimate the last sum in the
expression (6.2). Standard “finite-time-of-flight” Gronwall estimates imply that
outside the fixed neighborhood U0 of the manifold Mε, the perturbed solutions
remain close to a chain of unperturbed solutions ul(t), l = 1, . . . ,N, with

lim
t→−∞

u1(t) = b0 , lim
t→+∞

ul−1(t) = lim
t→−∞

ul(t) , l = 2, . . . ,N.(6.10)

(The uniform upper bound for these flight times can be obtained by restricting
to compact subsets of W u(Π).) Since the size of U0 is of order O(δ0), we can
compute the change in energy between the points ql−1 and pl in the same way as
in equation (6.6) for initial conditions in H1

C. We then obtain

N∑
l=1

H(pl)−H(ql−1) = ε
N∑
l=1

∫ ∞
−∞
〈∇H0, G〉 |ul(t) dt+O(εδ0) .(6.11)

Again, the denseness of H3
C in H1

C and the continuity of the above expression al-
lows us to conclude that (6.11) holds for arbitrary initial conditions. But (6.2),
(6.3), (6.9), and (6.11) together imply the statement of the lemma since I =∫∞
−∞ 〈∇H0, G〉 |ul(t) dt is independent of the choice of the solution ul(t), as we

observed after formula (2.16).
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We now derive an estimate for the energy of a point sN ∈ W s
loc(Mε) ∩ ∂1U0

that has the same (ζ, ρ, ψ)-coordinates as the point pN on the incoming solution
u(t) (see Figure 6.1). This estimate will be important when we compute the en-
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FIGURE 6.1. The definition of the points sN and cε.

ergy difference between the entry point pN and its projection sN on the unstable
manifold ofMε.

LEMMA 6.2 Suppose that u(t) is a solution of the normal form, and let the points
p1, . . . , pN and q0, . . . , qN−1 be defined as in Lemma 6.1. Suppose that the as-
sumptions of that lemma hold and cε ∈ Mε is the base point of a stable fiber
f s(cε) such that for the point sN = f s(cε) ∩ ∂1U0,

(ζpN , ρpN , ψpN ) = (ζsN , ρsN , ψsN ) .(6.12)

Then, for the energy of the point sN , we have the expression

H(sN ) = H0 | C + εH(b0 +N∆φ) +O
(
εδ0, ε

1+β
2

)
,(6.13)

where ∆φ is defined in (2.15) and H is defined in (6.1).

PROOF: Since the entry conditions (4.2) are assumed to hold for the incoming
solution u(t), equation (6.12) implies that for the stable fiber f s(cε) containing sN
we have

‖ζcε‖H1 < K7ε
β.(6.14)

Since sN lies at a distance of order O(δ0) from the invariant manifoldMε, by the
smoothness of individual stable fibers we have

(ηcε , φcε) = (ηsN , φsN ) +O(δ0) .(6.15)
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We now relate the energy of the base point cε to the energy of the point sN . Let the
point sH be the intersection of the “Hamiltonian” fiber f sg=0(cε) with the surface
∂1U0. Then, applying the mean value inequality as in (6.4) with some point s∗
lying on the line connecting sN and sH , we can write

|H(sN )−H(cε)| = |H(sN )−H(sH)|
= |DH(s∗) · (sN − sH)| <

(
1 +K01 +K

′)
δ0K8ε .

From this inequality we obtain that

H(sN ) = H(cε) +O(δ0ε) .(6.16)

Hence, to find an approximation for the energy of the point sN ,we have to compute
the energy of the fiber base point cε. The restricted Hamiltonian Hε = H | Mε is
easily found to be of the form

Hε = H | Mε = H0 | C + εH +O
(
ε‖z‖H1 , ‖z‖2H1 , ε

3
2

)
(6.17)

with the slow Hamiltonian H defined in (6.1).
Since the solution u(t) travels for an O(1) amount of time near the set of tra-

jectories described in (6.10), we know that the point q0 is O(
√
ε)-close to the

unperturbed solution u1(t), and the point pN is O(
√
ε
β)-close to the unperturbed

solution uN (t). Since uN (t) locally coincides with an unperturbed stable fiber, the
smoothness of fibers implies that the base point cε of the fiber containing qN is
H1 O(

√
ε
β)-close to the unperturbed fiber base point limt→∞ uN (t) (see Figure

6.1). As a result, we obtain

cε = b0 +N∆φ+O
(√

ε
β
)
.(6.18)

But equation (6.18) with (6.14) and (6.17) gives

H(cε) = Hε(cε) = H0 | C + εH(b0 +N∆φ) +O
(
ε1+β

2 , ε2β , ε
3
2

)
,

which implies the statement of the lemma. It remains to note that all the constants
in the above estimates can be chosen uniformly if we restrict to initial conditions
in a compact subset of the finite-dimensional manifold W u(Π).

We are now in a position to strengthen Lemma 4.2 on the coordinates of the
solution u(t) upon its exit from the set U0. The improvement is the fact that the
local map Lε is actually C0 O(ε)-close to L0 if we just consider the w1- and ζ-
coordinates of the image.

LEMMA 6.3 If the solution u(t) is contained in the manifold W u(Π), then state-
ment (i) of Lemma 4.2 can be strengthened to

|w∗1| < Kε , ‖ζ∗‖H1 < Kεβ ,

|ρ∗ − ρ0| < K
√
ε
β
, |ψ∗ − ψ0| < K

√
ε
β
.
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PROOF: Consider the point q∗ ∈ W u
loc(Π) for which w1q∗ = 0, ζq∗ = 0, and

(ρq∗ , ψq∗) = (ρu∗ , ψu∗) hold. By the first inequality in (i) of Lemma 4.2, the
points q∗ and u∗ are O(εβ)-close. To determine the energy of the point q∗, we
consider the unstable fiber fu(b∗) that contains q∗. For zero dissipation (g ≡ 0),
the energy of the base point b∗ of the fiber fug=0(b∗) can be written in the form
H(b∗) = H0 | C+O(ε), where we used the expression (6.17). Since the energy is
constant on fibers for g ≡ 0, we immediately obtain

H(q∗) = H0 | C +O(ε) .(6.19)

Equation (6.19) remains unchanged for nonzero dissipation, since unstable fibers
are perturbed by an amount of order O(ε) when we add the dissipative terms. For
u∗ = q1, we obtain from Lemma 6.1 that

H(u∗) = H0|C +O(ε) .(6.20)

Then (6.19) and (6.20) together with the mean value theorem give

K10ε > |H(q∗)−H(u∗)| =
∣∣∣∣DH(q̂(u∗, ε)) · q∗ − u∗

‖q∗ − u∗‖H1

∣∣∣∣ ‖q∗ − u∗‖H1

= |〈∇H(q̂(u∗, ε)), E(u∗, ε)〉| ‖q∗ − u∗‖H1 ,(6.21)

where q̂(u∗, ε) is a point on the line connecting the points q∗ and u∗, and E(u∗, ε)
= (e(u∗, ε), ē(u∗, ε)) with e(u∗, ε) being a unit vector on that line. Since the
representation of E(u∗, ε) in the (w1, w2, ζ, ρ, ψ)-coordinates is just (0, 1, 0, 0),
using equation (1.1), we have

|〈∇H(q̂), E(u∗, ε)〉| = |〈−i (ut|sε − εg) , E(u∗, ε)〉|

≥ |ẇ1| |q̂ − ε sup
Uk

‖g‖H1(6.22)

≥ |ẇ1| |q̂ − εKg ,

where Kg is an upper bound on g on the set U0. Here we used the real coordinate
representation of ut from equation (3.2). From (3.2) we also have the estimate

|ẇ1| |q̂ ≥
[∣∣λ−B0(|w|+ ‖ζ‖H1 +

√
ε)
∣∣ |w1|

]
|q̂

≥
∣∣∣∣∣λ−B0

(
δ0

√
2

2
+ δ0 +

√
ε

)∣∣∣∣∣ δ0

≥ δ0
λ

2
.

Therefore, we can find a uniform lower bound K11 > 0 such that (6.21) can be
rewritten as

|〈∇H(q̂(u∗, ε), E(u∗, ε)〉| > K11 − εµK >
K11

2
.
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This inequality and (6.21) show that

‖q∗ − u∗‖H1 <
2K10

K11
ε ,(6.23)

which in turn gives

|w∗1| < K12ε ,(6.24)

since w1q∗ = 0. The remaining inequalities are just restatements of the results
listed in Lemma 4.2.

A solution u(t) ∈ W u(Π) is homoclinic to the manifold Mε if the points
pN ∈ W u(Π) and sN ∈ W s

loc(Mε) coincide. By construction, these points have
the same w1-, ζ-, ρ-, and ψ-coordinates, so they coincide if their w2-coordinates
are equal. However, following the evolution of the w2-coordinate along solutions
is not possible since w2 is only defined near Mε. Instead, we show that the w2-
coordinate of pN can be uniquely determined as a function of the other coordinates
and H(pN ). This fact will enable us to find orbits by solving the equation

H(pN )−H(sN ) = 0 .(6.25)

LEMMA 6.4 Suppose that the conditions of Lemma 6.1 are satisfied. Then for
ε > 0 small enough there exists a C1-function fε : H1 × R × S1 × R 7→ R such
that for any l = 1, . . . ,N,

w2pl = fε (ζpl , ρpl , ψpl ,H(pl)) .

PROOF: The surface {w1 = δ0} satisfies u = sε(w2, ζ, ρ, ψ), where sε is
a Cr-embedding into the phase space P. The intersection of the energy surface
{H(u, ū) = h} with {w1 = δ0} satisfies the equation

H(Sε(w2, ζ, ρ, ψ)) − h = 0

where Sε = (sε, s̄ε). On this intersection set, the coordinate w2 is a C1-function
of the rest of the coordinates and the energy h provided

〈∇H(Sε(w2, ζ, ρ, ψ)),Dw2Sε(w2, ζ, ρ, ψ)〉 6= 0(6.26)

holds at the points of intersection. We want to see if this equation is satisfied at
the point pl. Since pl → sl as ε → 0, and pl is contained in a compact subset of
W u(Π), it is enough to verify that

|〈∇H0(sl),Dw2S0(w2sl , ζsl , ρsl , ψsl)〉| > cl(6.27)

for some constant cl > 0. But Dw2S0(w2sl , ζsl , ρsl , ψsl) lies in the tangent space
of ∂1U0, so (6.27) follows from the same argument that we used to give a lower
bound for the expression in (6.21).
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7 The Energy Function

As we noted in the previous section, a solution u(t) that approaches the plane Π
and the manifoldMε in backward and forward time, respectively, must necessarily
satisfy the energy equation (6.25). Lemmas 6.1 and 6.2 show that at leading order,
the left-hand side of this equation is given by the N th-order energy function

∆NH(φ) = H(η, φ+N∆φ)−H(η, φ)−NI(7.1)

= 2ΩΓ[sin (φ+N∆φ)− sinφ]−NI .
This function ∆NH is C1, which can be seen as follows: The solution uh(t) is

Cr with respect to the φ-coordinate of its backward limit point u. This follows by
picking the initial condition uh0 ∈ ∂U0∩W u

loc(Π) so that uh(0) = uh0 and recalling
the smoothness of unperturbed unstable fibers inW u

loc(Π) with respect to their base
points. It remains to point out that∇uH00(·) is a linear map that is continuous with
values in H−1; hence it is C1 with values in H−1. Since G is C1 with values in
H1, we obtain that Du 〈∇H00, G〉 is continuous; i.e., I is of class C1.

One expects that nondegenerate zeros of the energy function give rise to zeros
of the energy equation (6.25) and hence can be used to construct orbits homoclinic
to the manifoldMε. To describe the properties of such homoclinic orbits, we now
introduce some definitions.

DEFINITION 7.1 Let us consider a point b0 ∈ C, and let j = {jl}Nl=1 be a sequence
of +1’s and−1’s. An orbit uε of system (2.1) is called anN -pulse homoclinic orbit
with base point b0 and jump sequence j if for some µ > 0 and for ε > 0 sufficiently
small,

(i) uε intersects an unstable fiber fu(bε) with base point bε = b0 +O(εµ) ∈ Π,
(ii) uε intersects a stable fiber f s(cε) with base point cε = b0 +N∆φ+O(εµ) ∈
Mε such that distH1(cε,Π) = O(ε), and

(iii) outside a small fixed neighborhood of the manifoldMε, the orbit uε is order
O(εµ) H1-close to a chain of unperturbed heteroclinic solutions ul(t), l =
1, . . . ,N, such that

lim
t→−∞

u1(t) = b0 , lim
t→+∞

ul−1(t) = lim
t→−∞

ul(t) , l = 2, . . . ,N,

and

ul(t) ∈
{
W+

0 (C) if jl = +1,
W−0 (C) if jl = −1.

A three-pulse homoclinic orbit is shown in Figure 7.1.
Let us now consider a point p+ that is on the unperturbed stable manifold

W s+
loc (M0). Here the superscript + refers to the component of W s

loc(M0) that
contains points of the homoclinic manifold W+

0 (C). Since W s+
loc (M0) is a hy-

persurface, it makes sense to define the vector n(p+) ∈ H1 as the unit normal to
W s+

loc (M0) that points in the direction of the other unperturbed homoclinic mani-
fold W−0 (C). (See Figure 7.2 for a schematic picture.)
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FIGURE 7.1. 3-pulse homoclinic orbit with jump sequence {+1,−1,+1}.

This allows us to introduce the number

σ = sign
〈
∇H0,N(p+)

〉
(7.2)

with N = (n, n̄). Note that σ is independent of the choice of the point p+ by the
normal hyperbolicity of the unperturbed manifoldM0. Furthermore, σ remains the
same if we interchange the roles of the homoclinic manifolds W+

0 (C) and W−0 (C)
in this construction. Using the results in Haller and Wiggins [6] for the two-mode
truncation of the NLS equation, we find the value of σ to be

σ = +1

(see Haller [8] for the details of the calculation). This means that the energy H0 is
locally higher on the side of W s+

loc (M0) that contains W−0 (C). This meaning of σ
is clearly preserved under small perturbations.

Our next definition uses σ to build sign sequences that will turn out to yield
jump sequences for multipulse orbits.

DEFINITION 7.2 For any value φ0 ∈ S1, the positive sign sequence χ+(φ0) =
{χ+

l (φ0)}Nl=1 is defined as

χ+
1 (φ0) = +1, χ+

l+1(φ0) = σ sign(∆lH(φ0))χ+
l (φ0) , l = 1, . . . ,N − 1.

C(  )+W0

p+
(    )W s+

loc 0

(p  )+n

FIGURE 7.2. The definition of the vector n(p+).
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The negative sign sequence χ−(φ0) = {χ−l (φ0)}Nl=1 is defined as

χ−(φ0) = −χ+(φ0) .

The main result of this section is formulated in the following theorem, which
establishes a connection between the zeros of the energy function and N -pulse
homoclinic orbits:

THEOREM 7.3 Suppose that for some positive integer N ≥ 1, φ0 ∈ S1 is a trans-
verse zero of the function ∆NH; i.e., we have

∆NH(φ0) = 0 , Dφ∆NH(φ0) 6= 0 .

Suppose further that ∆lH(φ0) 6= 0 holds for all integers l = 1, . . . ,N − 1.
Then there exist constants 0 < µ < 1

2 and Cη > 0 such that for any small
enough ε > 0, the NLS equation (2.1) admits two one-parameter families of N -
pulse homoclinic orbits u±ε (φ, η0) with base points b±ε (φ, η0) ∈ Π such that

b±ε (φ, η0) =
(
φ0 +O(εµ),

√
ε η0

)
.

Here |η0| < Cη is an arbitrary localized action value. The jump sequences of the
orbits are given by χ±(φ0), respectively. Furthermore, the base points b±ε depend
on φ and εµ in a C1 fashion.

PROOF: Consider a point bε = (φ0,
√
ε η0) on the plane Π and the unstable

fiber fu(bε) based at bε that lies in the manifoldW u+
ε (Π) . (HereW u+

ε (Π) denotes
the connected component ofW u

ε (Π) that contains the homoclinic manifoldW+
0 (C)

for ε = 0.) The fiber fu(bε) intersects the surface |w2| = δ0 at a point q0, as shown
in Figure 7.3. Let us consider a solution u(t) with initial condition u(0) = q0.
By Remark 3.3, we know that u(t) ∈ H∞ for all t ∈ R. This solution leaves
the neighborhood U0 of the manifold Mε and, by standard Gronwall estimates,
returns and intersects the face |w1| = δ0 of the surface ∂1U at a point p1 (see
Figure 7.3). Since the unstable fibers are straight in the (w, ζ, ρ, ψ)-coordinates,
we have ‖ζq0‖H1 = 0, and hence q0 lies in the domain Gε of the global map Gε
(see (5.3)) and we can write p1 = Gε(q0).

Since the manifold W s+
loc (Mε) is a graph over the variables (w1, ζ, ρ, ψ), there

exists a unique point s1 ∈W s+
loc (Mε) ∩ ∂1U0 with

(ζs1 , ρs1, ψs1) = (ζp1, ρp1 , ψp1) ,

as shown in Figure 7.3. According to Lemma 6.4, p1 ≡ s1 holds if and only if

H(p1)−H(s1(p1)) = 0 ,(7.3)

where we view s1 as a function of p1. Since p1 ∈ H∞ and the projection p1 7→ s1

clearly maps Hk into Hk for any k ≥ 1, we know that s1 ∈ H∞ is a smooth
function of p1.As a result, the right-hand side of equation (7.3) isC1 in the variable
p1.

By standard Gronwall estimates, the point p1 of the solution u(t) is O(ε) H1-
close to a stable fiber f s(b1) with base point b1 = bε + ∆φ ∈ Π (see Figure 7.3).
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q
0 q1

q2

p1

p2

p
N

sN

oU1 0

bε

f u(b )ε

U0

FIGURE 7.3. The construction of the proof of Theorem 7.1.

As a result, it satisfies the entry conditions listed in (4.2) with β = 1 and c2 = 0.
Consequently, Lemma 6.1 applies with n = 1 and gives

H(p1(bε)) = H0 | C + ε [H(b0) +NI +O(δ0, ε
µ)](7.4)

for an appropriate constant 0 < µ < 1
2 . Furthermore, Lemma 6.2 with n = 1 gives

H(s1(bε)) = H0 | C + εH(b0 + ∆φ) +O
(
εδ0, ε

3
2

)
.(7.5)

Since bε = b0 +O(
√
ε) = (φ0,

√
εη0), for any ε > 0 we can use (7.4) and (7.5) to

rewrite the energy equation (7.3) as

∆1H(φ0) + δ0F1(p1(bε); δ0, ε
µ) + εµG1(p1(bε); δ0, ε

µ) = 0(7.6)

with p1 = (0, w2p1 , ζp1, ρp1 , ψp1) = Gε(q0). The relationship between b0 and p1

is given by

p1(b0) = Gε ◦ P uε (b0) ,(7.7)

where P uε : W u+
loc (Π) ∩ ∂1U0 → Π is the fiber projection map that maps the

intersection points of unstable fibers in W u+
loc (Π) with the surface ∂1U0 to their

base points. By Theorem 3.2, the function P uε is a Cr-map on H1. By Lemma
5.3, Gε is a C1-map from Gε to H−1. As a result, equation (7.7) shows that p1 is
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a C1-function of b0 ∈ H∞ with values in H∞. This in turn implies that the right-
hand side of the energy equation (7.6) is of class C1 with respect to b0 because the
functions F1 and G1 are C1 in p1, as we observed after formula (7.3), and ∆1H is
a C1-function.

Suppose that N = 1 in the statement of the theorem. Then, by assumption,
(φ0, η0) with any 0 < |η0| ≤ Cη is a solution of equation (7.6) for δ0 = ε = 0.
We want to apply the implicit function theorem to argue that this solution can be
continued for ε, δ0 > 0. Setting ε = 0 and differentiating (7.6) with respect to φ
yields

(7.8) Dφ

[
∆1H(φ0) + δ0F1(p1(b0); δ0, 0)

]
=

Dφ∆1H(φ0) + δ0

〈
∇p1F ,DG0DP

u
0 Dφ0T −1

0

〉 ∣∣∣∣
(η0,φ0)

,

where Tε is the normal form transformation constructed in Lemma 3.4. Now
Dφ∆1H is a continuous function, and we have Dφ∆1H(φ0) 6= 0 by assumption.
Hence for sufficiently small δ0 > 0, (7.8) is nonzero. (This follows by recalling
that the right-hand side of (7.8) continuous in (η0, φ0) and the term

〈∇p1F ,DG0DP
u
0 Dφ0T −1

0 〉|(η0,φ0)

remains bounded as δ0 → 0 by Lemma 5.3.) Thus (7.6) admits a solution φ̄(η0, δ0)
= φ0 + O(δ0) for δ0 > 0 small and ε = 0. We fix δ0 sufficiently small and
substitute the solution φ̄ back into equation (7.6). We observe that the derivative of
the left-hand side of the resulting equation with respect to φ is given by

Dφ∆1H
(
φ̄
)

+ δ0

〈
∇p1F1,DGεDP

u
ε Dφ0T −1

ε

〉
+ εµ

〈
∇p1G1,DGεDP

u
ε DφT −1

ε

〉
.

By Lemma 5.3, this derivative is continuous at ε = 0 and is also nonzero by
assumption. Thus equation (7.6) admits a solution φ̂(η0, δ0, ε) = φ0 + O(δ0, ε

µ)
for ε > 0 sufficiently small. For any fixed ε, the solution cannot depend on δ0,
since δ0 is just an auxiliary parameter to measure the size of the neighborhood
U0 that we have worked in. Therefore, we must have dφ̂/dδ0 = 0, implying
φ̂(η0, ε) = φ0 + O(εµ). This proves the existence of the orbit family u+

ε (η0) for
N = 1. The smoothness of u+

ε (η0) with respect to εµ follows from Lemma 5.3.
Assume now that N > 1 in the statement of the theorem. Then, by the as-

sumptions of the theorem, for ε and δ0 sufficiently small, the energy equation (7.6)
cannot be satisfied, so the solution u(t) does not intersect the local stable mani-
fold ofMε upon its first return to the neighborhood U0. Using (7.4), (7.5), and the
compactness of [−Cη, Cη]× S1, there exist positive constants K(1)

1 and K(1)
2 such

that

K
(1)
1 ε < |H(p1)−H(s1)| < K

(1)
2 ε .(7.9)
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Now the mean value theorem implies that

|H(p1)−H(s1)| =
∣∣∣∣〈∇H(p∗1),

p1 − s1

‖p1 − s1‖H1

〉∣∣∣∣ ‖p1 − s1‖H1

> C
(1)
2 ‖p1 − s1‖H1 ,(7.10)

where p∗1 is a point on the line connecting p1 and s1, and the existence of C(1)
2 > 0

follows from an argument similar to that leading to estimate (6.27). At the same
time, the mean value theorem and (2.5) imply that

|H(p1)−H(s1)| < C
(1)
1 ‖p1 − s1‖H1(7.11)

for some constant C(1)
1 > 0, so it follows from (7.9)–(7.11) that

K
(1)
1 ε

C
(1)
1

< ‖p1 − s1‖H1 <
K

(1)
2 ε

C
(1)
2

.(7.12)

This last expression in (7.12) immediately shows that the coordinates (w2p1 , ζp1 ,
ρp1, ψp1) satisfy the entry conditions in (4.2) (because the normal form coordinates
of the point s1 satisfy w1s1 = δ0, w2s1 = 0, and ‖ζs1‖H1 = O(ε)). Consequently,
the point p1 is contained in the domain Lε of the local map Lε, and we can write
q1 = Lε(p1) where q1 is the next intersection of the solution u(t) with the surface
∂1U0.

Let p2 denote the intersection of the solution u(t) with the surface ∂1U0 upon
its second return to the neighborhood U0. (The existence of p2 is guaranteed by
the usual Gronwall estimates for ε > 0 small enough.) We again have a point
s2 ∈W s

loc(Mε) ∩ ∂1U0 such that

(ζs2, ρs2 , ψs2) = (ζp2, ρp2 , ψp2) .

Again, the solution u(t) gives rise to a 2-pulse homoclinic orbit if

H(p2)−H(s2(p2)) = 0

or, alternatively,

∆2H(φ0) + δ0F2(p2(bε); δ0, ε
µ) + εµG2(p2(bε); δ0, ε

µ) = 0 ,(7.13)

where we used Lemmas 6.1 and 6.2. As in equation (7.6), the functions F2 and G2

are C1 in their arguments. Since

p2(bε) = Gε ◦ Lε ◦Gε ◦ P uε (bε) ,

we see that for ε ≥ 0, p2 is a C1-function of bε and εµ by Corollary 5.1 and
Lemma 5.3 with values in H∞ (recall that u(t) ∈ H∞). Then, just as in the case
of N = 1, the implicit function theorem applied to (7.13) implies the existence of
the orbit family u+

ε (η0) for N = 2.
The proof for any N > 2 is identical to the case of N = 2, and the existence of

the other N -pulse homoclinic orbit family u−ε (η0) for any N ≥ 1 can be obtained
from an identical construction for solutions contained in W u−(Π). Therefore, it
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remains to show that the jump sequences of the two families u±ε (η0) are indeed
given by the sign sequences χ±(φ0), respectively. We sketch the argument only
for u+

ε since the argument for u−ε is identical.
Consider an N -pulse homoclinic orbit u+

ε . By construction, it makes its first
pulse in the vicinity of the unperturbed manifold W+

0 (C); hence the first element
of its jump sequence is indeed χ+

1 (φ0) = +1. For small ε, δ0 > 0, at the first
re-entry point p1 we have

sign(H(s1)−H(p1))

= sign[ε(∆1H(φ0 +O(δ0, ε
µ)) + δ0FN (pN (b+ε ); δ0, ε

µ)

+ εµGN (pN (b+ε ); δ0, ε
µ))]

= sign(∆1H(φ0)) .(7.14)

If this quantity is positive, then at the point p1 the solution u(t) has higher en-
ergy than nearby points in the hypersurface W s+

loc (Mε). Recalling the meaning
of the constant σ (see (7.2)), we can conclude that σ sign(∆1H(φ0)) = +1 im-
plies that the solution u(t) stays near the homoclinic manifold W+

0 (C), whereas
σ sign(∆1H(φ0)) = −1 causes the solution to perform its second jump in the
vicinity of the manifold W−0 (C). Therefore, the second element in the jump se-
quence of u+

ε is given by χ+
2 (φ0) as defined in Definition 7.2. The remaining ele-

ments of the jump sequence of u+
ε are constructed recursively in the same fashion;

hence they coincide with the corresponding elements of the sign sequence χ+(φ0)
in Definition 7.2. This completes the proof of the theorem.

The above theorem gives the basic tool for constructing multipulse orbits that
backward-asymptote to the plane Π and intersect the locally invariant manifold
W s

loc(Mε) in forward time. To find the asymptotic behavior of multipulse or-
bits, one has to have some approximate knowledge of the dynamics on the two-
dimensional plane Π. A Taylor expansion shows that near the resonant circle C,
the flow on Π satisfies the equations

φ̇ =
√
εDηHg(η, φ) +O(ε) ,

η̇ = −
√
εDφHg(η, φ) +O(ε) ,

(7.15)

with

Hg(η, φ) = H(η, φ)−
∫ φ

0
(D̂u)I |C(u) du

= −η2 + 2ΓΩ sinφ−
∫ φ

0
(D̂u)I |C(u) du(7.16)

where (D̂u)I is the I-component of the perturbation term D̂u in equation (2.1).
As seen from (7.15), for finite times solutions on the manifold Π are approximated
with an error of order O(

√
ε) by the level curves of the function Hg. In general,
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the flow generated by Hg is only locally Hamiltonian since Hg is not necessarily
periodic in φ.

8 Homoclinic Tree in the Forced NLS Equation

Without the dissipative term D̂u, equation (2.1) is a near-integrable Hamil-
tonian system. We are interested in finding multipulse orbits for this system that
exhibit jumping behavior around the plane Π of spatially independent solutions.
These solutions may ultimately leave W s

loc(Mε) through its boundary, but they
remain O(ε) H1-close to Π on time scales of order O(1/

√
ε). As a result, in nu-

merical simulations they appear as solutions homoclinic to Π.
For D̂ ≡ 0, the constant I computed in (2.16) vanishes, and hence the energy

function studied in the previous section simplifies to

∆NH(φ) = 2ΩΓ [sin (φ+N∆φ)− sinφ] .(8.1)

If we use the nondimensionalized variables, we find that the energy function ob-
tained in (8.1) for the partial differential equation is the same as that obtained for
its modal truncation in Haller and Wiggins [6]. Since the existence of multipulse
homoclinic orbits is fully determined by the energy function, we can directly use
the finite-dimensional study carried out in Haller and Wiggins [6] to construct mul-
tipulse solutions for the full, forced NLS equation.

Although the sign constants σPDE = +1 and σtrunc = −1 differ in sign, the
angular variable φ used in Haller and Wiggins [6] also differs in sign from that used
in this paper. Therefore, if φ0 is a transverse zero of ∆NHtrunc, then φ̃0 = −φ0

is a transverse zero for ∆NHPDE (given in (8.1)), and

σtrunc
[
∆kHtrunc(φ0)

]
=
(
−σPDE

) [
−∆kHtrunc(−φ0)

]
=
(
−σPDE

) [
−∆kHPDE(φ̃0)

]
= σPDE

[
∆kHPDE(φ̃0)

]
.

Consequently, any N-pulse orbit for the modal truncation yields an N -pulse orbit
for the forced NLS equation with the same jump sequence. Since the flow on the
plane Π is close to the pendulum flow generated by the slow Hamiltonian H, any
zero line φ = φ0 will intersect families of slow periodic orbits that are created near
the resonance by the perturbation. As a result, for any transverse zero of ∆NH,
there exist two families of multipulse orbits that are backward-asymptotic to a slow
periodic orbit on Π. (These orbits are quasi-periodic in the original coordinates
used in (1.1)). Since equation (8.1) gives the transverse zeros

φN1 =
π

2
− N∆φ (Ω)

2
, φN2 =

3π
2
− N∆φ (Ω)

2
,(8.2)

a direct application of Theorem 7.3 yields the following result:
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THEOREM 8.1 Let us fix the forcing frequency 1
2 < Ω < 1, and consider any

integer N ≥ 1 for which N∆φ(Ω) 6= 2jπ for all integers j.
Then, for ε > 0 sufficiently small,

(i) The forced NLS equation admits four 1-parameter families of N -pulse ho-
moclinic orbits, which are backward-asymptotic to slow periodic solutions
on the invariant plane Π. The coordinates of the base points of the N -pulse
homoclinic orbits are of the form

ul,± =
(
Ω +O(

√
ε)
)
ei(φ

N
l +O(

√
ε)) , l = 1, 2.

(ii) For N > 1, the jump sequences of the orbit families are given by the recur-
sive formula

jl,±k+1 = ± sign
[
Γ
[
sin
(
φNl + k∆φ

)
− sinφNl

]]
jl,±k ,

k = 1, . . . ,N − 1, l = 1, 2,

where jl,±1 = ±1. Furthermore, for any l1, l2 ∈ {+1,−1} , l1 6= l2, the
following holds: Every time the jump sequence jl1,± changes sign, the jump
sequence jl2,± with l1 6= l2 will not change sign.

The multipulse orbits described above necessarily exhibit the same type of ho-
moclinic bifurcations as the analogous orbits for the modal truncation, since their
appearance and disappearance is governed by the same equation. As discussed in
detail in Haller and Wiggins [6], we can classify the slow periodic orbits created in
the resonance band into layers. Crossing the boundaries of these layers, the homo-
clinic orbit with the lowest number of pulses undergoes a bifurcation that changes
its pulse number. As a result, slow periodic orbits in different layers have different
types of “primary” homoclinic orbits, all of which were shown in [6] to be alternat-
ing in terms of their jump sequences. Plotting the half-widths of the above layers
as a function of the phase shift ∆φ, we obtain the homoclinic tree shown in Figure
8.1. This diagram shows how the width of the layers containing slow periodic or-
bits with the same type of primary homoclinic orbits changes as the phase shift is
varied. Any fixed ∆φ = const slice of the diagram therefore gives the widths of
the layers that exist for that value of ∆φ. The primary pulse numbers correspond-
ing to these layers are shown in Figure 8.2. This diagram indicates that homoclinic
orbits with higher pulse numbers are easier to destroy by a change in the system
parameters. It is highly surprising that such a complicated structure can be shown
to exist in a partial differential equation. The construction of these diagrams is
entirely based on the analysis of the zeros of the one-variable real function ∆NH
and can be found in Haller and Wiggins [6].
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FIGURE 8.1. The homoclinic tree.

9 N -Pulse Jumping Orbits in the Damped-Forced NLS Equation

The numerical experiments of Bishop et al. [2] on the perturbed NLS equation
were performed with the mode-independent damping term

g(u, ū) = D̂u = −αu(9.1)

with damping coefficient α > 0. The irregular jumping of solutions in the time
domain was already noted for this simple damping term.

According to Theorem 7.3, the existence of multipulse orbits is determined by
the zeros of the energy function

∆NH(φ) = H(η, φ+N∆φ)−H(η, φ) −NI
= 2ΩΓ [sin (φ+N∆φ)− sinφ]− αΩNIα(Ω)

= ΩΓ cos (φ+N∆φ/2) sin (N∆φ/2) − αΩNIα(Ω)

(9.2)
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FIGURE 8.2. The pulse numbers as a function of the phase shift.
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where

Iα(Ω) =
1
Ω

∫ ∞
−∞
〈∇H0, G〉 |uh±(t) dt

=
2
Ω

Re
∫ ∞
−∞

∫ 2π

0

(
uūxx + 2 |u|2

[
|u|2 − Ω2

])∣∣∣
uh±(t)

dx dt .

(9.3)

Note that Iα(Ω) only depends on the forcing frequency Ω. From (9.2) we obtain
that if

∆φ 6= 2jπ
N

, j ∈ Z,(9.4)

and

χα ≤
∣∣∣∣∣sin

N∆φ(Ω)
2

NIα(Ω)

∣∣∣∣∣(9.5)

holds with χα = α/Γ, then the zeros of the function ∆NH(φ) are given by

φN1 =
π

2
− N∆φ (Ω)

2
− cos−1 NχαIα(Ω)

sin N∆φ(Ω)
2

,

φN2 =
3π
2
− N∆φ (Ω)

2
− cos−1 NχαIα(Ω)

sin N∆φ(Ω)
2

.

These zeros are also easily seen to be transverse; thus each gives rise to a multipulse
homoclinic orbit in the sense of Definition 7.1.

The flow on the invariant plane obeys the equations

φ̇ = −
√
ε2η +O(ε) ,

η̇ = −
√
ε
(
2ΓΩ cosφ+ 2αΩ2

)
+O(ε) ,

(9.6)

which, as described in (7.15) and (7.16), are locally Hamiltonian at leading order
with the Hamiltonian

Hg(η, φ) = −η2 + 2ΓΩ sinφ+ 2αΩ2φ .(9.7)

For |χαΩ| < 1, this local Hamiltonian has two critical points: a saddle s0(χα) and
a center c0(χα) given by

s0(χα) =
(
0, π + cos−1(−χαΩ)

)
, c0(χα) =

(
0, cos−1(−χαΩ)

)
.(9.8)

The level curves of Hg are shown in Figure 9.1(a), and the corresponding phase
portrait of (9.6) is shown in Figure 9.1(b). Note that the unstable manifold of the
saddle point is intersected transversely by any φ = const line and hence by the
lines φNi = const. This is also true for the stable manifold of the actual saddle
point sε(χα) of equation (9.6). Therefore, a direct application of Theorem 7.3
leads to the following result:
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THEOREM 9.1 Let us fix the forcing frequency 1
2 < Ω < 1 and consider any inte-

ger N ≥ 1 for which conditions (9.4) and (9.5) hold. Then, for ε > 0 sufficiently
small,

(i) The perturbed NLS equation (2.1) admits four one-parameter families of
N -pulse homoclinic orbits, which are backward-asymptotic to the invari-
ant plane Π and forward-asymptotic to a codimension-2 invariant manifold
Mε that contains Π. In each orbit family, at least one orbit is backward-
asymptotic to a saddle fixed point of the plane Π. The coordinates of the base
points of the N -pulse homoclinic orbits are of the form

ul,± =
(
Ω +O(

√
ε)
)
ei(φ

N
l +O(

√
ε)) , l = 1, 2.

(ii) For N > 1, the jump sequences of the orbit families are given by the recur-
sive formula

jl,±k+1 = ± sign
[
Γ
[
sin
(
φNl + k∆φ

)
− sinφNl

]
− αkIα(Ω)

]
jl,±k ,

k = 1, . . . ,N − 1, l = 1, 2,

where jl,±1 = ±1. Forα > 0 sufficiently small and for any l1, l2 ∈ {+1,−1} ,
l1 6= l2, the following holds: Every time the jump sequence jl1,± changes
sign, the jump sequence jl2,± with l1 6= l2 will not change sign.

10 N -Pulse Šilnikov-Type Orbits
in the Damped-Forced NLS Equation

In a series of papers by McLaughlin et al. (see the introduction), the NLS equa-
tion is considered with the dissipative term

g(u, ū) = D̂u ≡ −αu+ βB̂Ku ,(10.1)

where the operator B̂K is the smoothed diffusion operator: It acts as the operator
∂2
x for low wave numbers but vanishes on higher Fourier modes of the function
u(x). If b̃(k) denotes the Fourier transform of B̂Ku(x) and ũ(k) is the Fourier

π5
2

η

π5
2

φ

0

φ

η

00

φ
π
2

a) b)

π
2

FIGURE 9.1. The levels of Hg and the flow on the plane Π.
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transform of u(x), then

b̃(k) =

{
−k2ũ(k) if k < K,

0 if k ≥ K,
with some fixed, large integer K > 0. Using this dissipative term, Kovačič and
Wiggins [11] found orbits homoclinic to a saddle point in the two-mode truncation
of the NLS. These Šilnikov-type orbits exist for a codimension-1 set of the (α, β)-
parameter plane. Similar results were recently obtained by Li et al. [14] for the full
PDE (see also McLaughlin and Shatah [18]).

However, the set of parameter values for Šilnikov-type orbits is rather small, so
one cannot expect to observe chaos for generic parameter values. In this section
we show that multipulse analogs of the Šilnikov-type orbits also exist for the full
partial differential equation, and their domain of existence in the parameter space
is a fairly large set. Consequently, complicated dynamics exists for much larger
sets of parameter values than those obtained from Melnikov-type calculations for
single-pulse homoclinic orbits.

For the dissipative term (10.1), the energy function takes the form

∆NH(φ) = 2ΩΓ [sin (φ+N∆φ)− sinφ]

−NΩ [αIα(Ω)− βIβ(Ω,K)] ,
(10.2)

with Iβ defined as

Iβ(Ω,K) = − 2
Ω

Re
∫ ∞
−∞

∫ 2π

0

(
ūxx + 2

[
|u|2 − Ω2

]
ū
)
B̂Ku

∣∣∣
uh±(t)

dx dt .

Since the homoclinic solutions uh±(t) are given by H∞-functions, the duality pair-
ing

〈∇H0, βuxx〉 |uh±(t) = −2β
Ω

Re
∫ 2π

0

(
ūxx + 2

[
|u|2 − Ω2

]
ū
)
uxx

∣∣∣
uh±(t)

dx

is bounded, and we have

lim
K→∞

Iβ(Ω,K) = I0(Ω)(10.3)

with

I0(Ω) = −2β
Ω

Re
∫ ∞
−∞

∫ 2π

0

(
ūxx + 2

[
|u|2 − Ω2

]
ū
)
uxx

∣∣∣
uh±(t)

dx dt .(10.4)

Since the integrand in this expression is an analytic function of x, its Fourier coef-
ficients decay exponentially with the wave number k. This fact enables us to write

Iβ(Ω,K) = I0(Ω) +O(e−γK)

for an appropriate constant γ > 0 and K sufficiently large.
In the vicinity of the resonant circle C, trajectories are still close to those of the

restricted system (9.6). We would like to construct orbits homoclinic to the saddle
point sε(χα). As shown in Li et al. [14], sε(χα) has infinitely many eigenvalues
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with negative real parts that perturb from the purely imaginary eigenvalues on the
linearized equation. Li et al. also showed the existence of a codimension-1 stable
manifold W s

loc(sε(χα)) for ε > 0 small enough. The intersection of this stable
manifold withMε is a codimension-1 submanifold ofMε whose tangent space at
sε(χα) is close to the product of the center subspace Ec with the stable subspace of
the saddle s0(χα). Furthermore, the “height” of this stable manifold W s(sε(χα))
is O(ε3/4).

In our construction, first we want to ensure that the energy-difference function
(10.2) has a transverse zero φ0. This always holds if

∆φ 6= 2jπ
N

, j ∈ Z , |αIα(Ω)− βIβ(Ω,K)| < Γ
N

∣∣∣∣sin N∆φ
2

∣∣∣∣ .(10.5)

As in the proof of Theorem 7.3, this means that the equation

∆NH(φ;χα) + δ0FN (pN (φ); δ0, ε
µ, χα) + εµGN (pN (φ); δ0, ε

µ, χα) = 0

has a solution φ̄(χα, ε) = φ0(χα) +O(εµ). By the C1-dependence of φ̄ on εµ (cf.
Theorem 7.3), the curve {φ = φ̄(χα, ε)} intersects the unstable manifold of the
fixed point sε(χα) transversely in a point

p̄(χα, ε) = (η0(χα) +O(εµ), φ0(χα) +O(εµ)) ∈ Π .

This means that there exists an N -pulse homoclinic orbit in the sense of Definition
7.1 with base point p̄(χα, ε). This orbit intersects a stable fiber f s(p̂(χα, ε)) whose
base point has the (y, z, η, φ)-coordinates

p̂(χα, ε) = (0,O(ε), η0(χα) +O(εµ), φ0(χα) + ∆φ(χα) +O(εµ))
∈Mε .

(10.6)

We would like to find conditions under which this base point lies in the stable
manifold of the fixed point sε(χα), and hence the N -pulse orbit is homoclinic to
sε(χα).

In a vicinity of the invariant plane Π, the stable manifold of sε(χα) can be
written as a graph over either the (φ, z)- or the (η, z)-variables. Considering the
former case (the latter can be dealt with in the same way), we obtain that a compact
subset of W s(sε(χα)) satisfies an equation of the form

η = m1(φ, χα) + zm2(φ, z, χα, ε)(10.7)

where mj are of class Cr and η = m1(φ, χα) defines locally the stable manifold
of s0 on the plane Π. As shown in Li et al. [14], the “height” of the manifold
W s(sε(χα)) isO(ε3/4); i.e., the representation (10.7) is valid for ‖z‖H1 < Cε3/4.
But from (10.6) we see that

distH1(p̂(χα, ε),Π) = O(ε) ;

therefore for ε > 0 small enough, p̂(χα, ε) lies in a domain where the represen-
tation (10.7) is valid. Then by (10.6) and (10.7), p̂(χα, ε) ∈ W s(sε(χα)) holds
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if

η0(χα) + εµhη(χα, ε)−m1(φ0(χα) + ∆φ(χα) + εµhφ(χα, ε), χα)

− εhz(χα, ε)m2(φ0(χα) + ∆φ(χα) + εµhφ(χα, ε), εhz(χα, ε), χα, ε) = 0 ,

(10.8)

where the functions hη, hφ, and hz are C1 in χα and εµ. Assume now that the
approximate projection (0, 0, η0(χα), φ0(χα) + ∆φ(χα)) of p̂(χα, ε) crosses the
stable manifold of s0 transversely for a parameter value χα = χ0

α . Then, using
(10.7), we can write

η0(χ0
α)−m1

(
φ0(χ0

α) + ∆φ(χ0
α), χ0

α

)
= 0 ,

Dχα [η0(χα)−m1(φ0(χα) + ∆φ(χα), χα)]χα=χ0
α
6= 0 ;

(10.9)

thus the implicit function theorem guarantees a solution χ̄α(ε) = χ0
α + O(εµ) to

equation (10.8). Consequently, for the parameter value χ̄α(ε), the perturbed NLS
equation admits an N -pulse homoclinic orbit that connects the fixed point sε(χα)
to itself.

It remains to find parameter values χ0
α for which (η0, φ0 + ∆φ) does cross

the one-dimensional stable manifold of the saddle s0(χα) transversely. If such a
crossing occurs, then both (η0, φ0) and (η0, φ0 + (N∆φ) mod 2π) must lie on the
same level curve of the slow Hamiltonian Hg. (We have to take the modulus of
the angle difference between the two points, since Hg is only a local Hamiltonian
that is not globally constant on the unstable manifold of s0(χα) for φ ∈ R.) We
therefore require

Hg(η0, φ0 +N∆φ) = Hg(η0, φ0) + 4πLαΩ2(10.10)

for some integer L. This condition is obtained from (9.7) by observing that for
φ ∈ R, the values of the Hamiltonian on the infinitely many copies of the saddle
s0(χα) differ by integer multiples of 2αΩ2 · 2π. Since φ0 is a zero of the energy-
difference function (10.2), equation (10.10) can be rewritten in the form

β =
α

Iβ(Ω,K)

[
2Ω ∆φ(Ω) + Iα(Ω)− 4πΩ

L

N

]
.(10.11)

For any fixedN and (Ω,Γ, α,K), this last expression defines the set of β-values
for which the first equation in (10.9) is satisfied. Since the expression is linear in
α, the derivative dβ/dα is nonzero whenever the condition gives a nonzero β. As a
result, the crossing is transversal, and hence the second crossing condition in (10.9)
is also satisfied. For fixed (Ω,Γ, α,K), we obtain a β-value from equation (10.11)
for each value of the integer L. However, only those L-values give meaningful
results for which the condition∣∣∣∣L− N∆φ(Ω)

2π

∣∣∣∣ < Γ
4παΩ

∣∣∣∣sin N∆φ(Ω)
2

∣∣∣∣(10.12)

holds. This last inequality is obtained by combining the second inequality in (10.5)
with equation (10.11). Using formula (10.3), we obtain the following result:
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THEOREM 10.1 LetN be an arbitrary but fixed positive integer, and let the forcing
frequency Ω with 1

2 < Ω < 1 be such that condition (9.4) is satisfied. Assume that
L is an integer satisfying (10.12) and

ML
0 =

{
(α, β,Γ, ε)

∣∣∣ β =
α

I0 (Ω)

[
2Ω ∆φ+ Iα(Ω)− 4πΩ

L

N

]}
(10.13)

is a nonempty, codimension-1 surface of the (α, β,Γ, ε) parameter space.
Then there exists ε0 > 0, K0 > 0, γ > 0, and for all 0 < ε < ε0 and K > K0,

there exist two codimension-1 surfaces ML±
ε ∈ R4 with the following properties:

(i) ML±
ε is O(εµ, e−γK) C0-close to the surface ML±

0 in the (α, β,Γ, ε) pa-
rameter space for an appropriate constant 0 < µ < 1

2 .

(ii) For every (α, β,Γ, ε) ∈ ML±
ε , system (2.1) admits an N -pulse homoclinic

orbit that is doubly asymptotic to the fixed point

sε(χα) = (η0(χα) +O(εµ), φ0(χα) +O(εµ)) ∈ Π .

The jump sequence of the orbits in ML±
ε is given by

j±k+1 = ± sign[Γ[sin(φ0(χα) + k∆φ(χα))− sinφ0(χα)]

− αkIα(Ω)]j±k , k = 1, . . . ,N − 1,

where j±1 = ±1.

11 Disintegration of the Unstable Manifold of Π

The previous sections were concerned with the existence of multipulse homo-
clinic orbits that are doubly asymptotic to the manifoldMε. Individual multipulse
orbits are in general difficult to observe, so they cannot fully account for the jump-
ing behavior of the perturbed NLS equation. Yet the significance of homoclinic or-
bits is great: They separate open sets in the manifold W u(Π) that exhibit different
behaviors. Namely, every time anN -pulse homoclinic orbit returns to the manifold
Mε, the unstable manifold W u(Π) is intersected transversely by the stable mani-
fold W s(Mε). As a result, W u(Π) is divided into subsets in which solutions will
perform jumps near different components of the unperturbed homoclinic structure.
This implies observable, irregular, transient behavior near the broken homoclinic
structure, even if there are no chaotic invariant sets created by the perturbation (see
Rom-Kedar et al. [19] for related numerical results).

The methods we developed in earlier sections can in fact be used to follow
any solution in the unstable manifold W u(Π) on time scales that are of order
O(log 1/

√
ε). This fact enables us to “track” pieces of the unstable manifold of

Π as they depart from each other and perform different “jumps.” We use the fol-
lowing definition to distinguish between different types of jumping orbits within
the unstable manifold of Π:

DEFINITION 11.1 Let us consider a point b0 ∈ C and let j = {jl}Nl=1 be a sequence
of +1’s and −1’s. An orbit uε of system (2.1) is called an N -pulse orbit with base
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point b0 and jump sequence j if for some 0 < µ < 1
2 and for ε > 0 sufficiently

small,

(i) uε intersects an unstable fiber fu(bε) with base point bε = b0 +O(εµ) ∈ Π,
and

(ii) outside a small fixed neighborhood of the manifoldMε, the orbit uε is order
O(
√
ε) H1-close to a chain of unperturbed heteroclinic solutions ul(t), l =

1, . . . ,N, such that

lim
t→−∞

ul(t) = b0 , lim
t→+∞

ul−1(t) = lim
t→−∞

ul(t) , l = 2, . . . ,N.

Furthermore, for l = 1, . . . ,N and for all t ∈ R, we have

ul(t) ∈
{
W+

0 (C) if jl = +1
W−0 (C) if jl = −1.

We have the following result for the existence of such N -pulse orbits:

THEOREM 11.2 Suppose that for some positive integer N and for some φ0 ∈
S1 we have

2Γ [sin (φ0 + l∆φ)− sinφ0]− l [αIα(Ω)− βIβ(Ω,K)] 6= 0 ,
l = 1, . . . ,N − 1.

Then, for ε > 0 sufficiently small, there exist constants 0 < µ < 1
2 and Cη > 0

such that for any 0 ≤ |η0| < Cη, the system (2.1) admits two N -pulse orbits u±ε
with base point bε ∈ Π such that φbε = φ0 + O(εµ) and ηbε = η0. The jump
sequences of the orbits are given by

j±k+1 = ± sign[Γ[sin (φ0 + k∆φ)− sinφ0]− αkIα(Ω)]j±k ,
k = 1, . . . ,N − 1,

where j±1 = ±1. In particular, if N is an integer satisfying the assumptions of
Theorem 9.1, then for ε > 0 small, both W u+(Π) and W u−(Π) disintegrate into
at least 2N disjoint components, all of which have different jump sequences.

PROOF: Using the assumption of the theorem and the arguments from the proof
of Theorem 7.3, we immediately conclude that for ε > 0 small enough, the inequal-
ities

∆lH(φ0) + δ0Fl(pl(bε); δ0, ε
µ) + εµGl(pl(bε); δ0, ε

µ) 6= 0

hold for l = 1, . . . ,N − 1. As a result, the unstable manifold W u(Π) contains two
N -pulse orbits. The jump sequences of these orbits can be found in exactly the
same way as in the proof of Theorem 7.3.
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