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Abstract

We study the damped, periodically forced, focusing NLS equation with even,
periodic boundary conditions. We prove the existence of complicated solutions
that repeatedly leave and come back to the vicinity of a quasi-periodic plane
wave with two time scales. For pure forcing, we prove the existence of a com-
plicated, self-similar family of homoclinic bifurcations. For mode-independent
damping, we construct “jumping” transients. For mode-dependent damping, we
find generalized Silnikov-type solutions that connect a periodic plane wave to
itself through repeated jumps. We also study the breakdown of the unstable
manifold of plane waves through repeated jumping. Our results give a direct ex-
planation for the numerical observations of Bishop et al. © 1999 John Wiley &
Sons, Inc.

1 Introduction

The perturbed nonlinear Schrédinger (NLS) equation we study in this paper can
be written in the form

(1.1 Uy :um—i—Q\u\?u—i—is [bu+Fei292t ,

for which the forcing amplitude I' and frequency 2022 are real numbers, Disa
bounded, negative operator, and £ > 0 is a small parameter. The function u(x, t)
is even and periodic with period L = 27 in the spatial variable x. Equation (1.1)
is a well-known example of a partial differential equation that exhibits easily ob-
servable chaotic behavior in the time domain. The peculiar jumping of solutions
around plane waves of (1.1) was first observed numerically by Bishop et al. [2],
who used the simple linear damping term Du = —au. From a series of studies of
finite-dimensional models (see [1, 3, 6, 7, 11, 12, 13, 16, 17], etc.) it has become
clear that the jumping behavior of the perturbed NLS equation should be related to
the presence of homoclinic solutions in the unperturbed limit.

Dynamically most interesting is the orbit family that is homoclinic to periodic
plane waves in a one-to-one resonance with the periodic forcing term. Li et al. [14]
showed that if the linear damping term —aw is amended with a “smoothed” Lapla-
cian operator, then the perturbed partial differential equation (1.1) will also admit
a pair of homoclinic orbits for certain parameter values. These orbits connect a
quasi-periodic plane wave to itself and can be considered as infinite-dimensional
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analogs of Silnikov’s homoclinic orbit as they “spiral” back to the plane wave. Re-
cently, Li [15] showed that the presence of such a symmetric pair of orbits implies
the existence of Smale horseshoes. He then used symbolic dynamics to show the
existence of chaotic jumping solutions for open sets in the parameter space.

In this paper we investigate a different mechanism for irregular jumping. This
mechanism is provided by families of orbits that leave the set of plane waves of
equation (1.1), exhibit irregular jumps near the “wings” of the destroyed homo-
clinic structure, and then finally return to a small vicinity of the plane waves, where
they settle for long times. To construct such orbits, we do not need to introduce
the smoothed Laplacian operator or other extra terms. As a consequence, our re-
sults apply directly to the perturbed NLS studied numerically by Bishop et al. In
fact, the orbits we find are so robust that they even continue to exist in the limit
of zero damping. In this Hamiltonian limit they exhibit a complicated sequence of
homoclinic bifurcations as the forcing frequency is varied.

The methods we use are based on an infinite-dimensional extension of Feni-
chel’s geometric singular perturbation theory, the study of infinite-dimensional
Poincaré maps, and detailed, long-term energy estimates. The analysis is technical
for two main reasons. First, the flow associated with the perturbed NLS equation
is not smooth in the time variable ¢, which results in nonsmooth Poincaré maps.
Second, these maps become singular in the limit of € = 0. The first problem is
present throughout our analysis but is finally resolved by restricting to H° initial
conditions. The second problem is more serious and requires a detailed study of
long-term passages of solutions near the set of plane waves. The multipulse orbits
are constructed by matching the energy of a point on the returning solution with the
energy of its projection onto a “large” stable manifold that guides solutions back
to a vicinity of plane waves. If the two energies match, the two points coincide.
Such a coincidence is inferred from the transverse zeros of an appropriately de-
fined energy function. The calculation of zeros is very simple because, as opposed
to earlier studies, we do not rely on invariants of the unperturbed NLS that are not
known explicitly.

The paper is organized as follows: In Section 2 we describe the main properties
of the unperturbed NLS equation. In Section 3 we invoke some invariant-manifold
results from Li et al. [14] that are crucial in our construction and enable us to de-
rive a convenient local normal form near the set of plane waves. The normal form
is then used in Section 4 in our estimates for solutions that perform a long-time
passage near the set of plane waves. These estimates are heavily used in Section 4,
where we set up a local and a global Poincaré map to track solutions that exhibit
large excursions from, and local passages near, the resonant plane waves. Section
5 is devoted to estimates on the change of energy on such solutions, and all these
ingredients are put together in Section 6, where we prove our main theorem on
the existence of multipulse orbits homoclinic to a small vicinity of resonant plane
waves. This result is then applied in Section 7 to study multipulse jumping in the
purely forced NLS equation and then in Section 8 to the forced and linearly damped
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NLS equation. In Section 9 we show how our methods yield multipulse analogs of
the gilnikov—type orbits of Li et al. [14]. Finally, in Section 9 we describe how the
unstable manifold of the plane waves breaks down into pieces with different jump-
ing behavior. We believe that this last result provides the most direct explanation
available for the irregular jumping in the NLS observed by Bishop et al.

2 Setup
2.1 The NLS as an Evolution Equation

We remove the explicit time dependence from equation (1.1) by applying the

. _ 5902 . . .
transformation u — ue ™ *>*"t_ which yields the new equation

2.1) w = —ittge — 2i [[uf* = Q| u+ 2 [Du-T)|.
We consider this equation as an evolution equation on the phase space
P = {ue HE |u(z) = u(z +27), u(z) = u(-2)} .

Here H(]é denotes the Sobolev space of complex-valued functions defined on the
line that are square-integrable on [0, 27) together with their first & distributional
derivatives. We will use the notation H* for the subspace of real-valued elements
of H{é. On the phase space P, equation (2.1) can be viewed as a perturbed Hamil-
tonian system

(2.2) u =iV [Ho(u, @) + eHy(u, w)] + eg(u, @)

with

1 2
Hy(u,u) = %/0 ug|? 4 202 |ul? — |ul* dz,

; 2w
(2.3) Hi(u,u) = i u—udr,
T Jo
g(u,u) = Du

(Throughout this paper, V,f refers to the gradient of the function f defined as
Df(a)-v= 5= 02” V.f(a(z))v(x) dz.) The symplectic form on P for the Hamil-
tonian part of equation (2.2) is given by

2.4) w(e,d) =i ({d,c)r2 — {c,d)2)

with ¢,d € T,P. (We use the L? inner product (a,b);> = 5= [™ a(z)b(z) da.)
Note that the unperturbed Hamiltonian Hy naturally splits into an unbounded term
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Hyo and a bounded term Hyy:

Hy = Hoo + Hor,

1 2 9
H()o = — |’LLI| dx,
21 Jo
Lof2m o 4
H01 = —/ 202 \u\ — \u! dr .
21 Jo

The contribution from the unbounded part to equation (2.2) is given by the linear
term
ivaHoo(u, ﬂ) = Myu

with the linear operator My = —id,,. Note that My maps any function u € Hgé
into an Hé-function when defined in the sense of distributions. Since the space
H(% is dense in Hé , the domain of the operator M is dense in the phase space P.
Furthermore, for any v € H(]é we have

[Moull iz = gl a2 = 107ull 2 + [|85ull g2 + - - + ([0 2
< ullgz + 10,ull 22 + 103ull 12 + [ull L2 + - + | 05ul 2
(2.5) = [Jull g ;
thus My is bounded in the H*~2 norm when it acts on H, (’ﬁ functions.
An important fact about (2.1) is that it admits a flow F*: P — P (see Li et
al. [14]). The flow operator F"* is continuous in ¢ and is C" in u and ¢ for fixed t.

Furthermore, H(’ﬁ initial conditions remain in H(’é for all times; i.e., all H(’ﬁ spaces
are invariant with respect to the flow.

2.2 Resonance in the NLS Equation
We can write any solution u(z,t) as

1 2m
2
Here c is the spatial mean of u, b is the deviation from that mean, and (b) is the
spatial average of b. As is well-known, one of the invariants of the integrable NLS
equation is given by

I(u, @) = |lull 2 = (Jul*) = [e[* + {b]*)

As in Li et al. [14], we rewrite c in the form

2.7) c(t) = )= \JI(t) — (Jb(z, 1)[2) €0

We denote the set of spatlally independent solutions (i.e., solutions with 0, u = 0)
by II. This two-dimensional subspace of P contains plane waves that belong to the
space H(]é for any integer k; i.e., we have

M={ueP|ou=0} C HZ.

(2.6) u(z,t) = c(t) + b(x,t), (b) = b(xz,t)dx =0.
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Using the real coordinates (I, ¢) as new variables, we find that on the plane II, the
NLS equation restricts to the ODE

dp=29Q*-1), I=0.

This equation shows that II is foliated by periodic orbits for I > (. For any nonzero
value of the forcing frequency €2, one of the periodic orbits becomes degenerate;
i.e., ¢ vanishes on it. This closed curve

C={(6.1) | 1=9%

is therefore a circle of equilibria (see Figure 2.1). Such equilibria correspond to
unperturbed plane waves of (1.1) that are in a one-to-one resonance with the forc-
ing.

2.3 The Flow near the Resonance

The stability type of the circle C is determined by the eigenvalues of the lin-
earized flow near C. As shown in Li et al. [14], in directions transverse to C the
linearized flow admits the eigenvalues

(2.8) OF = £51/49% — 2, j=0,1,2,...;

thus for any 2 > %, the resonant circle is unstable. As the forcing frequency (2 in-
creases, the number of linearly stable and unstable directions also increases. At the
same time, for any fixed value of (2, there will be infinitely many purely imaginary
exponents Qj[ corresponding to sufficiently high values of j. As a result, in linear

approximation any plane wave with €2 > % has finite-dimensional stable and unsta-
ble subspaces E° and £ and an infinite-dimensional center subspace. The center
subspace is the direct sum of the plane E° = II (corresponding to a double zero
eigenvalue for j = 0) and an infinite-dimensional subspace E° corresponding to
the purely imaginary eigenvalues. The spaces E*, E*, and E° @ E° are stable, un-
stable, and center subspaces, respectively, for the linear operator M : H{é — H(IE*Q
defined as

(2.9) Mv = —ivg, — 2i0% (v + 7).

FIGURE 2.1. The resonant circle of fixed points.



6 G. HALLER

We note that all these subspaces are independent of the plane wave under consid-
eration, and hence the stable, unstable, zero, and center subbundles of the normal
bundle of the circle are all trivial.

In this paper we study the global consequences of the simplest instability, which
occurs for
(2.10) % <Q<1.
In that case, the stable and unstable subspaces are one-dimensional and hence E°
is of codimension 4. We now locally decompose the coordinate u € H}C as u —
(y,2,1,¢) withy = (y1,2) € R%, 2 = (21,22) € H' x H', I € R, ¢ € S
Here the y-coordinates are lined up with the linearly stable and unstable directions
along the circle C, the z-coordinates parametrize the center subspace E°, and (1, ¢)
are action-angle variables on the plane II in a vicinity of the resonant circle. The
existence of this smooth change of coordinates follows from the triviality of the
stable, unstable, and center subbundles of NC, as noted above.

In a neighborhood of C, the plane II satisfies the equations y = 0 and z = 0,
and equation (1.1) can be written locally as

=AMy +Y(y,z1 de),

2= Az+ Z(y, 2,1, ¢;¢),

I =cE(y,z1,¢;¢),

b= Fy(y,z,1,0) +eFe(y, 2,1, ¢:¢).

Here A = diag(—\,\) with A = 492 — 1, and A = M | E° has a purely
imaginary discrete spectrum. It follows from the definition of the operator M that
A has a dense domain Dy C H' with H? C D4, and by (2.5) we have

(2.12) HAZ”H}C72 < KA”Z

for an appropriate constant K 4 > 0.
Since (2.1) admits a (continuous) flow, the operator A necessarily generates a
CP-group on H'. The flow satisfies the linearized system of equations

2.11)

|

at'zl = Ozx22,
E)tzg = —Oggrl — 4922’1 .

If zé?(t) with k > 2 denotes the k"-order Fourier coefficient of the solution z;(t)
of this linear system, then we have

zZF(t)\ cos At 0 z¥(0)
z5(t)) — \—Apk?sin Mgt cos A\t ) \ 25(0)
with A\, = kv/k? — 4Q2. This formula gives

2

9

+Pﬂm2§(1+ 1-%?)&%@f<2&%®
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where we used (2.10) and the fact that £ > 2. This last inequality implies

o0

2@ = (012 + 2Ol = 5= > {2k

k=2

’2

2
+|25(0)] }
< LS 2l 0) = 21012
2T = L2
and

10:2(t)[[72 = 0221 (B) 172 + 10z22(t)]72
IR IR ST NI I INE:
— 3k {yzl(t)y + |z }
k=2
L o2 kml? 2
<o 20)] = 20,2032 .

which in turn yield
(2.13) 2@ |z = [ exp At - 2(0)][ g1 < Cal[2(0)]| g

with C4 = /2. Therefore, the C°-group generated by the operator A is uniformly
bounded.

2.4 Orbits Homoclinic to the Resonance

We have found that for the parameter range % < ) < 1, each fixed point on the
circle C admits one linearly unstable and one linearly stable direction. Béicklund
transformations can be used to show that along these unstable and stable directions
solutions leave and come back to the circle C (see, e.g., Ercolani and McLaughlin
[4]). This means that heteroclinic orbits exist in the phase space P that connect
different equilibria in C to one another. From any point on the resonant circle
there are precisely two heteroclinic connections to another point of the circle. The
heteroclinic solutions are of the form

. cos 2p — isin 2p tanh 7 &+ sin psech 7 cos x
ul (z,1) = Qe'do P P P

)

1 Fsinpsech7cosz

p=tan 1 /402 — 1,
(2.14) T =402 — 1(t + tp) .
The 4 index refers to two distinct families, which in turn are parametrized by

the phase variable ¢y and the initial time ¢yg. The two orbit families form two
2-dimensional homoclinic manifolds W;=(C) to the circle C.
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Formula (2.14) also gives the two limit points of the heteroclinic connections:
tiiljrnoo u}j[ (t) = Qeio (cos2p — isin2p) = Qet(00—=2p)
tEI—noo ult (t) = Qe (cos 2p + isin 2p) = Qe'(P0+2P)
There is a constant phase shift of

(2.15) Ap = —4p = —4tan 1 V402 — 1

between the two limit points of every heteroclinic orbit. The heteroclinic orbits
also have the property that after perturbation, the leading-order change of energy
along them is the same for all orbits. Using the notation G = (g, g) and the duality
pairing

<VH07G> = (vUH07g> + (vﬂH07g> )

we can write this change of energy as a Melnikov-type integral:

7= [m (VHy, G) |,y dt

00 2T
_ / /0 (VuHog + VaHog) |, ) do dt
(2.16) -

= —2Re /_o:o /027T (ﬂm + 2 [‘UF - QQ} ﬂ) Du!ui(t) dx dt

= —2Re /O:O /027T (ﬂm +2 [‘UF — 92} ﬂ) Du’a’i(t) dz dt

with @/ (t) = e~*®u/t (t). Formula (2.14) shows that @% (#) is independent of the
phase ¢q, and hence the integral Z is certainly the same for all orbits in W(;L (C) and
for all orbits in W (C). To see that Z is the same for both W (C) and W, (C),
note that u”? (z,t) = u" (z + ,t). Therefore, introducing the change of variables
T — x4 7 gives

(VHo, Gy () = (VHo, G) | 1y

and hence the integral Z is the same for all heteroclinic connections in I/VOJr C)uU
Wy (©).

3 Invariant Manifolds and Fenichel Coordinates

In our study of the perturbed NLS equation, we first recall two important invari-
ant manifold results from Li et al. [14]. The first theorem below is concerned with
the existence of a locally invariant center manifold for the circle C for € > 0. (We
recall that a manifold with boundary is locally invariant if solutions can only leave
the manifold through its boundary.) The center manifold turns out to be a normally
hyperbolic manifold that admits locally invariant stable and unstable manifolds.
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THEOREM 3.1 For € > 0 small, the invariant plane 11 is contained in a codimen-
sion-2, locally invariant manifold

M. ={(y,21,6) |y =1 (:,1,9), (:,1,6) €V C H' xR x §'} C P,

where the function y*(z, I, ¢) is of class C" in its arguments as well as in €, and
y¢(0,1,¢) = 0. Furthermore, for any v > 1, M. admits codimension-1 local
stable and unstable manifolds of class C", denoted W (M) and W (M.),
which depend on € in a C" fashion.

The next theorem of Li et at. [14] gives the existence of invariant foliations for
the local stable and unstable manifolds of M.

THEOREM 3.2 The local unstable manifold Wi (M) is foliated by a negatively
invariant family F* = U,e . f"(p) of C"-curves f*(p), i.e, F* = Wil (M)
and F~t (f“(p)) C f“(F~'(p)) foranyt > 0 and p € M. C H' (here F*
denotes the flow generated by system (1.1)). Moreover, the fibers f*(p) are of
class C" in € and p, and f*(p) N f*(p") = & unless p = p'. Finally, there exist
Cuy Ay > 0 such that if ¢ € f*“(p), then

IE=(q) = F~"(p)l| g < Cue™™!

for any t > 0 as long as F~'(p) € M. The local stable manifold W .(M.)
admits a positively invariant foliation F* = Upe pq, [f* (p) with similar properties.

REMARK 3.3 We note that the plane II is a subset of H°°, so there exist fibers
f%(p) and f*(p) for any p € II in any Sobolev space H*. Since H**! ¢ H* and
the fibers emanating from a given base point p are unique in any H*-space, we
obtain a unique, 2m-parameter family of fibers f*(p) and f*(p) emanating from
points in II. The union of these stable and unstable fibers immediately provides us
with H*° local stable and unstable manifolds WS (II) and W% _(II) for the plane
I1.

To study the dynamics near M., we will use a normal form that is an infinite-
dimensional version of the one first suggested by Fenichel [5] (see also Jones and
Kopell [9]). This normal form can be obtained through local changes of coordi-
nates that “straighten out” the stable and unstable manifolds of M. as well as their
foliations.

As a preliminary step, we introduce the scaling

(3.1) I=1Iy++en

to blow up a neighborhood of the circle of equilibria C. In terms of the coordinates
(y, z,m, @), we obtain the following result:

LEMMA 3.4 There exists g > 0 such that for 0 < ¢ < g, a C" local change of
coordinates 1 : (y,z,n,¢) — (w,(, p,v) (with a C"-inverse) transforms system
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(2.1) to the form
Wy = [=A+ (Y1,w) + (Y2, Q) + VeYs]u,
g = A+ (Y, w) + (Y5, () + VeVg|wa,
(3.2) Gt = AC+ (Z1€, Q) + VeZal + Zzwiwa,
p= ek,

¥ = (F(, Q) + Vel + Fywiws.
Here (-,-) denotes the Euclidean inner product. The functions Y1,Yy : P X
[0,e0] — R?, Ya,Y5:P x[0,60] = H™', Y3,Y5:P x[0,60] = R, E, Fy, F3:
P x[0,e0] = R, Z1: P x [0,e0) — (H)??, Z3 : P x [0,20] — H', and
the three-tensors (Z1-,-) and (Fy-,-) are all of class C"* in (y,z,1n,¢) and ¢.
Moreover,

(3.3) DwZi =0, DyZy=0, DuF =0, DyF=0.

PROOF: The proof of the theorem closely follows the steps outlined in Fenichel
[5] for finite-dimensional systems. Namely, we introduce the change of coordinates
y — w near the manifold M. in which M. is described by w; = we = 0, and
W#(M,) and W*(M,) satisfy we = 0 and w; = 0, respectively. Next, we
change the (z,n, ¢)-coordinates appropriately to ((, p, 1)-coordinates so that the
stable and unstable fibers described in Theorem 3.2 satisfy { = const, p = const,
and ¢ = const. The details of this construction can be found, e.g., in Tin [20] or
Jones [10].

The only subtle point that arises in the infinite-dimensional case is the follow-
ing: The changes of coordinates depend on the H '-variable z; hence all compo-
nents of the transformed equations will have terms arising from z; on their right-
hand sides. As a result, the unbounded term Az is not confined to the z equations
anymore as in (2.11), and the system appears to become less tractable. However,
the apparently unbounded terms are in fact always bounded due to cancellations.
We show this for the first change of coordinates only, since later coordinate changes
can be dealt with similarly.

Based on (3.1), we can rewrite (2.11) as

y=Ay+Y(y,2,n,¢;Ve),

2= Az +Z(y,2,n,$;Ve)

0= veE(y,zn,$;Ve),

¢ = Fo(y, z,m) + VeF:(y, z,m, 63 Ve) ,

where Y, Z, F, Fy, and F are of class C" nonlinear functions. The blowup
construction implies that this system has a plane of equilibria for e = 0 that satisfies
y = 0and z = 0. As aresult,

Y(0707777¢a0):07 Z(0707777¢a0):07 FO(Ovovn):Ov

(3.4)
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must hold, which imply
Y = fiy+ (fo.2) + Ve fs, Z = fay+ fsz +Vefs,
Fo = fry+ (fs,2) +Vefo,

for appropriate C"~!-functions fi, ..., fo. Since the linearized flow of (3.4) at any
point of II leaves the y, 2z, and  — ¢ subspaces invariant, the functions in (3.5) can
be rewritten as

(3.5)

Y = (fioy)y + (fuy, 2) + (fi2z,2) + Ve fs,
(3.6) Z = (fi3y,y) + (fre,9)2 + (f152,2) + Ve fo
Fo = (fisy)y + (firy, 2) + (fisz,2) + Vefo,
with appropriate C"~2-functions fig, ..., fis. Werecall that (-, -) denotes the usual

Euclidean scalar product of vectors, while (-, -) denotes the duality pairing between
H~'and H'. From Theorem 3.1 we know that M, must satisfy an equation of the
form

Yy = ys(zvna ¢) = yo(& Ip+ \/5777 ¢) + 591(27"77 ®; \/g) ) ‘77’ + ”ZHH1 <9,
where y° is a C"-function that depends on the parameter € in a C" fashion, and
0 > 0 is a sufficiently small number. We introduce the change of variables

(3.7) w=y—y(z,n,0).

For initial data z € H?, the solution is a C''-function of time. Then from equation
(3.4) we obtain that the w-component of the transformed equations is of the form

d 15 15
— D.y*(Az + Z) — Dyy°\/eE — Dyy°F .

As we indicated earlier, (3.8) suggests that in the new coordinates the right-hand
side of the w-component of the evolution equation may not be a differentiable
function any more. However, from the local invariance of M. we obtain that

Dy Az = Ny + Y (y°, z,m,¢;V/€) — Dy Z(y°, 2,m, ¢; V)
- \/gDnysE(ysv 2,1, (b) - D(byEF(yEv 2,1, (b)

for » € H3 and || + ||z]| g1 < . Substituting this last expression back into (3.8)
and making use of the structure of the right-hand side in (3.6), we see that for
z € H?,(3.8) can be written as

(3.10) %w = Aw + (f10w)w + (fuw, z> + <f122, z> + \/gfg

with a C"~2 right-hand side. This last expression shows that for z € H3, the func-
tion D,y Az is in fact of class C"~!. But the space H? is dense in H'; thus any
point z € H' can be approximated by a sequence {zk}oey CH 3 that converges to
z in the H'-norm. Then the continuity of the right-hand side of (3.9) implies that
in the limit z;, — 2z, equation (3.8) remains of the form (3.10). Therefore, equation

(3.9)
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(3.10) holds for any initial condition z € H' in the sense of distributions provided
2 is small enough in the H'-norm.

In the new coordinates the manifold M. satisfies w = 0. Consequently, by the
local invariance of M., (3.10) implies

(JE122, z) + Vefs = [(fwz, z) + \/Eﬁo]wy

where the matrix-valued functions flg and fgo are of class C"~3 in their arguments.
Therefore, in the new coordinate system, (3.4) can be rewritten as

%w = [A + (frow) + (fioz + fi1,2) + Vefalw,

z = Az + (fisw,w) + (fia,w)z + (fi52,2) + Ve fo

%77 = VeB(w, z,n,¢;: Ve),
d
dt

The remaining steps in the proof can be shown to yield bounded terms in the
same fashion. Enforcing the invariance conditions after each step leads to further

factorization of the right-hand side of (3.11), which finally gives the normal form
(3.2). O

3.11) ¢ = (flgw)w + <f17z, Z> + (flgz, Z> + \/Efg

4 Local Estimates

We want to use the normal form (3.2) to study the behavior of trajectories in a
neighborhood of the manifold M.. The trajectories we are interested in are con-
tained in the unstable manifold W*(II), and they do not intersect the local stable
manifold W}? (M) upon entering a small neighborhood of M.. Since M. is of
“saddle-type,” such trajectories pass near the manifold and leave its neighborhood.
We are interested in how the coordinates (w, ¢, p, 1) change during this passage.

For 0 < ¢ < gg, the normal form is related to the NLS equation (2.1) within
some fixed open set

S={(w,¢,p,¥) | lw| < Ku, lI¢lm < K¢, Velpl < K, v € ST},

where K., K¢, and K7 are fixed positive constants (see Figure 4.1). We consider
solutions u(t) = (w(t),(t), p(t),(t)) of the normal form that enter a small,
fixed “box”
Uo = {(y,2,p:) € S| [wil <o < V2K /4,
€1l < do < K¢, |pl < Ky < Kr/v/E}

with positive constants g and K,. Since the functions on the right-hand side of
(3.2) are of class C"~% on S for all 0 < ¢ < &y and for appropriate B > 0, we
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Uy

(E,n,)/

FIGURE 4.1. The sets Uy and S.

have

@1 Yal, 1Y3lles 12l ans 1EL ([FL] gy [E2] < B,

|DYil, DYl s (1D Zgllgr, |DEL [[DEy ||, |DE| < B,

fori =1,3,4,6,7=2,5,1=2,3,¢g=1,2,3,and 0 < & < gy. We want to follow
a solution wu(t) that enters the set Uy by intersecting its boundary 0U, within the
domain

81[]0 = {(U%Capﬂ/’) € an | ||C||H1 < 507 |p| < KP}

at time ¢ = T, as shown in Figure 4.1. For such a solution we have w;(0) = do,
and we assume that for 0 < ¢ < ¢, the rest of the coordinates of the entry point
u(0) obey the entry conditions

(613
(4.2) 1CO) | < c1e”,  —

o

for fixed positive constants cy, . . ., ¢4 and for some power % <pB <1

The first condition in (4.2) restricts the set of initial conditions to those with
small “oscillatory” components. These components give the fast-varying coordi-
nates of trajectories passing close to M. The second condition in (4.2) means that
the solution u(t) enters Uy close to the local stable manifold W}’ .(M.) and hence
stays near M for a long time. We cannot track the fast oscillatory components on
long time scales with great precision, but their norm turns out to remain small as
long as it was small at ¢ = 0. In particular, u(t) exits Uy through the domain 9, U
of its boundary (see Figure 4.2).

<|wa(0)] < ==, [p(0)] < ca < K,

LEMMA 4.1 Suppose that for a solution u(t) € H', the entry conditions in (4.2)
are satisfied. Then for any fixed constant (3 with % < (B < 1, there exist £1 > 0 and
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U,

FIGURE 4.2. The geometry of the entry conditions.

01 > 0 such that for all 0 < §y < 61 and 0 < gy < &1 there exists T* > 0 with
u(T*) € O1Uy. Moreover, the minimal such time T* obeys the estimate

. 2, 0%
(4.3) T < T, = —log—.
A Co¢E

PROOF: The main ideas in the proof are the same as in Haller [7], where the
same passage problem was addressed with finite-dimensional (-components. For
this reason, we only sketch the proof and refer the reader to Haller [7, 8] for details.

We fix the constants B¢ and o with B > ¢; > 0and 8 < a < 1. By the
continuity of the solution u(t) in ¢, (4.2) implies the existence of a time 7' > 0 such
that for all ¢ € [0, T), we have
@d  KOlm <Bee”, o) <K, |wi(t)wa(t)] < g—zea-
Clearly, (4.4) implies u(t) € S. For small enough ¢ > 0, it also implies u(t) €
Uy by the continuity of u(t) in ¢. It is also clear that T' can be slightly increased
and (4.4) will still hold. Let 7% > 0 denote the time when w(t) first intersects
the boundary OUp. One can easily see that 7% < 7. by assuming the contrary
and observing that in that case |wo(T:)| > |wao|exp(AT;/2) > &y, which is a
contradiction. We have to argue that 7" can in fact be increased up to T if we
choose B¢, K, and « properly and keep ¢ small enough. We proceed by assuming
that 7" cannot be increased to T* for any choice of the constants in (4.4) and show
that this leads to a contradiction.

Let us assume that for all fixed B¢, K,, and «, there exists a time Ty with
T < Ty < T* such that (4.4) holds for all t < Tp, but at least one of the inequalities
is violated at ¢t = Tp. We will consider these inequalities individually and argue
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that none of them can be violated at £ = Tj;. We note that since Ty < T, we have
|’LU | < \/550

Forall 0 <t < Tj, a Gronwall estimate on the third equation in (3.2) combined
with (2.13) and (4.1) gives

4.5) IO g < Ca c16P +B§—250‘T€ e2CaBBVET: 2ec1Cue?

which, by the continuity of ||{(¢)|| 51, yields
(4.6) IC(To) |z < 2ec1Cac® < Bee?

for B; = 7c1C4. Hence the first inequality in (4.4) cannot be violated at ¢ = Tp,.
A direct estimate on the normal form (3.2) shows that the p-component of the
solution obeys

2B %
(4.7) Ip(t)| <\p(0)1+\/EBt<c4+T\/Elog£<C4+1.
2

Thus, selecting K, = ¢4 + 2 and using the continuity of the function p(t), we
obtain that the second inequality in (4.4) cannot be violated either at t = 7.

As far as the last inequality in (4.4), the normal form (3.2) yields the differential
equation

d
@8)  —(wiwz) = [(Vi + Yo, w) + (Y2 +¥5,() + Ve(Ys + Yg)|wiws.

Then a simple Gronwall estimate shows that

|wi ()wa(t)| < ese exp {23 [2\/550 + Bee + \/5} TE}

< 05—5 exp 200B[vV2 + 1]T% ,
0

which implies that

9\ 4B[v2+1)%
(4.9) wy (Hws(t)] < = % S-ABV2HIE o B o
(50 C2 50

if we choose dp small enough. Again, by continuity with respect to ¢, (4.9) implies

c3e®
w1 (To)wa(To)| < ——;
%0
hence the last inequality in (4.4) cannot be violated at ¢ = Ty either. But this
contradicts our original assumption on the time 7j and proves the statement of the

lemma. O

We are now in the position to study how the coordinates of passing trajectories
change while they pass through the neighborhood Uj.
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LEMMA 4.2 Let us fix a constant % < B < 1 and assume that for 0 < € < gg
and 0 < 8y < &1, the entry conditions (4.2) hold for a solution u(t) € H' that
enters the set Uy att = 0 and leaves it att = T*. Let us introduce the notation

a = (w207 C07p07'¢0) and let Ug = ((5()7G) and u* = U(T*) = (QUT, 507 C*vp*vw*)
define the coordinates of the solution at entry and departure, respectively. Then
there exist constants K > 0,0 < u < %, and 03 > 0, and for any 0 < dg < d§
there exists € > 0 such that for all 0 < ¢ < &) the following estimates hold:
(1)
wil < K&, IC* = Golln < K&P,
* 3 * 3
0" —pol < KVE", " —hol < KVE.

(ii)
|Dqw}| < Ke, Do C* — (0,1,0,0)|| -1 < Ke*,
aP - s Uy Ly < IS a - y Uy Uy < S
D, p* —(0,0,1,0)] < Ke* D,v* —(0,0,0,1 Ket
(iii)
|Dowwi| < KeP, || DouC*|| g1 < Ke*,
‘Dgu p*] < Ket, ‘D5u¢*‘ < Ket.

PROOF: Again, most of the proof is similar to that of the analogous finite-
dimensional results in Haller [7], so we only outline the main steps. From the
normal form (3.2), we easily obtain the bounds

(4.10) T L 0% oo L
. = — log — = — log —
L= XN F36,B B 2T N "36,B By

for any solution obeying conditions in (4.2). The normal form also provides us
with the estimate
A—3869B

52\ 33308
(@11 wf] = |wi(T%)] < |wn(T1)] < Jwio| e O3B < 5, (‘) g
2
provided
A1l —B)
4.12 Op < —
12 0™ 3B(1+p)

Since we have shown in the proof of Lemma 4.1 that all the inequalities in (4.4)
hold for t € [0,T"], selecting B = 7c1C4 (as in the proof of that lemma) and
setting ¢t = T, we obtain

16l < Bee”.
This inequality and (4.2) imply that
(4.13) 16" = Gollmn < ¢ Nlar + ol < (Be +1)e”
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From the third equation of the normal form (3.2), we see that

2B
(4.14) Ip* = pol < VEBT < Ve
Finally, the last equation in (3.2), (4.1), and (4.4) yield the estimate

Be
% — | < {34352ﬂ+f3+ —2e Q}Tg
0

(4.15) < ? {BC + 24 1} Nz

where we used (4.3). But then (4.11), (4.13), (4.14), and (4.15) show that statement
(i) of the lemma is satisfied for a large enough constant K.

To prove statement (ii), we first need the variational equation associated with
the normal form (3.2). We shall only sketch the estimates in (ii) for the derivatives
of u* with respect to pg that satisfy the equations

(4.16)
@ (D) = [-A+ (¥i.w) + (¥5,0) + VEY3] Dy
+ [(DY1Dyyu, w) + (Y1, Dyyw) + (DY2 D u, C)
+ (Y2, DpyC) + VeDY3Dpu] w,
& (Dpyws) = [A+ (Vi) + (¥5, ) + VEYe] Dy

+ [(DY4Dpouvw) + (Ya, Dpow) + <DY:5Dpouv Q)

+ <Y27Dpog> + \/EDY:'SDpOU} ws ,
d
E (DPOC) = ADPOC + (DZleOUC, C) + (ZleoC7 C) + (Zlgvaog)
+ \/EDZQDPO’LLC + \/EZQ ‘DPO C + DZgDpouw1w2

+ ZgDpO (wlwg) )

4
dt
& (Dp) = (DR Dy, ¢) + {Fi Dy, ) + {FiG, Dy

(Dpyp) = VeDE3Dpu,

+ \/EDFQDpOU + DFgDpouwlwg + FgDpO (wlwg) .
We select constants «;, 7, i, and v with

1
4.17) 0<,u<1/<§<’y<ﬂ<a<1.
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Then, by the continuity of D,,,u(t) with respect to ¢, there exists a time 7y < 7
such that for all ¢ € [0, Tp) and for € > 0 sufficiently small,

HDPOC(t)HHl < ng’yv ‘Dpop(t) - 1‘ < Kpguv

4.18) /
‘Dpo¢(t)’ < Kq/ﬁﬂa
and
| Do lwn (Hwa (]| < Ko, [Dpown ()] < Ky,
(4.19) | Dpowa(t)] < Kpe ™, 1D pou(t) || < 2K 67,

with appropriate positive constants.

As in the proof of Lemma 4.1, we can show that none of the inequalities in
(4.18) and (4.19) can be violated at ¢ = Ty = T if we choose the constants
properly. In analogy with the finite-dimensional case, the necessary estimates can
be obtained by setting, e.g.,

1 2 1 1—
B Ly
and selecting g > 0 small enough (see Haller [7, 8] for details).

The proof of statement (iii) is based on similar estimates for the variational
equation for the derivatives of u(t) with respect to #. In particular, we can show
that the inequalities

(e

IDC(t)l -1 < Bee?,  |Dep(t)] < Kje,  |Detp(t)] < Kye,
and
IDcfwn (Hwa ()] < Koe®, | Deun(t)] < K,
|D.wsy(t)] < K, e, | Dow(t)|| -1 < 2K, e7".

continue to hold up to ¢ = T"*, which then imply statement (iii) of the lemma. [J

The last local estimate we need in our construction is concerned with the in-
tegral of the norm of the coordinates over the time of passage within the set Uy.
Such quantities will be essential in our later estimates for the change of the energy
of solutions.

LEMMA 4.3 Let us fix the constant % < B < 1 and assume that for 0 < & < &g
and 0y < 01, the entry conditions (4.2) hold for a solution u(t) that enters the set
Uy att = 0 and leaves it at t = T*. Then there exist constants L > 0 and o5 > 0,
and for any 0o < dy there exists € > 0 such that for all 0 < ¢ < e;; we have

*

T*
| 1@l dt < Lz, [ ool ar < oo,
0 0

T* T*
(4.20) / lwa ()] dt < Lo . / p(t)] dt < Le®,
0 0

where 1 = (1 — 3)/2.
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PROOF: From the normal form (3.2), (4.9), and (4.10) we obtain that for ¢t €
[0, 7],

6600 < [eo] + [ [AD ((216,0) + VEZG + Zwrn) |

1 o3
<Cy (B’ +B ¢ log —
A ( Cg + 03¢ A — 35030 08 626)

¢
4 / 256C.aBo |C(7)| dr
0
which, by Gronwall’s inequality, implies

0
()] < Ca <B§5ﬂ + Bycse® log _0) 26004 Bot

1
A— 3(5030 CoE
< 204 BgeP ¥oCabot

since o > (3. Consequently, we have

T B
[ el o< 2= exp (725001“30 log ﬁ) -1
0

5()B() A— 35030 Cco&
2B; p-Togppe _ 25
= 50Bo" s 50190\/E

for g, e > 0 small enough, which proves the first inequality in (4.20). The remain-
ing three estimates follow similarly from the normal form (3.2) (see Haller [7] for
more details). O

5 Local and Global Maps

Lemma 4.2 shows that the “local map” uy — u*(ug), as well as its partial
derivatives with values in H !, remain bounded as ¢ — 0. This enables us to
extend the local map to the limit ¢ = 0 so that the extension is differentiable in
et at e = 0. This extension will be useful later when we construct multi-pulse
orbits for the perturbed NLS equation using an implicit function theorem argument
near ¢ = 0. The smooth extension of the local map is needed as we will need
smoothness of the constructed solutions in €.

To elaborate on the above idea of extension, we introduce the set

‘CE = {(wv Cvpa ¢) € 81[]0 N WU(H) ’ ”U)l’ = (50 ’
CoE
£
Note that L. is a subset of the unstable manifold W*(II) whose points satisfy the
entry conditions in (4.2).
For positive e, L. is the disjoint union of two-dimensional manifolds, and these
manifolds degenerate into the single manifold

Lo = 01Ug N Wi (I1)

(5.1) ne
< fwa| < == ¢l < 1€, o] < e}
0
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FIGURE 5.1. The meaning of the extension L of the local map.

for e = 0. For € > 0, we define the local map L.: L. — 01Uy as
(5.2) L (60, w20, Co, po, Yo) = (wy, b0, ", p*,¥")

(see Lemma 4.2 for notation). The map L. is of class C ! with values in H~*. For
€ > 0 we now define the extension map Lg : L. — 01U as

LO((SOu w20, CO: £0, 7/}O) = (07 507 C(]y £0, ¢0) .

This map projects any point to the manifold W;?_(C) and then maps the projection
along an unstable fiber to the intersection of the fiber with 0; Uy, as shown in Figure
5.1. Clearly, Ly is a smooth map with values in H'. In addition, we have the
following result:

COROLLARY 5.1 For e > 0 small enough and for fixed % < B < 1in the entry
conditions (4.2), there exists 0 < p < % such that the local map can be written as
L. (ug) = Lo(ug) + "Ly (ug, "),

where Ly is Ct in its arguments with values in H~' and Li(up;0) = 0.
The statement of this corollary follows directly from Lemma 4.2, since the

manifold L. is finite-dimensional; hence the solution-dependent constants K and
1 appearing in the statement of the lemma can be chosen uniformly for ug € L..

REMARK 5.2 It is also easy to see from (5.2) that the map Lg is C! in &y in a
neighborhood of §y = 0. In this limit, the domain of Ly becomes Ly = II.



HOMOCLINIC JUMPING IN THE NLS 21

A0

FIGURE 5.2. The definition of the extension (G of the global map.

We also want to follow initial conditions as they leave the box Uy and then
return. To this end, we define the domain

(53) gs = {(w7C7p7w) € alUO N WU(H) | |w2| = 507 HCHHI S KEIB}
and the global map G.: G. — 01Uy as

(54) Gs(wfuéouc*up*7w*) = (507w207C07ﬂ07¢0)-
The constant K > 0 in the definition of G, is the same as in statement (i) of Lemma
4.2. An expression for the global map is given below.

LEMMA 5.3 For e > 0 and for all sufficiently small 5y > 0, the global map can
be written as

Ge(u*) = u* + Ad + 60G1(u*, 60) + VeGa(u*, e),

where G; are C in their arguments with values in H 1, and the phase shift A¢ is
defined in (2.15).

PROOF: Note that the map Gg : Gg — II remains well-defined in the limit
09 = 0 with domain Gy = II. This map maps the a-limit points of unperturbed
heteroclinic orbits in W*(C) = W?*(C) to their w-limit points. Therefore, for
0o = 0, we have Go(u*) = u* + A¢. For §y > 0, Gy maps the first intersections
of solutions in the homoclinic manifolds W (C) with AUy to their second inter-
sections with U, (see Figure 5.2). But these solutions are just the unperturbed
fibers in I/Vlf)cu (C), and fibers depend smoothly on their base points; thus we obtain
that

(55) Go(u*) =u* + A¢ + 50G1 (u*, 50) .

By the properties of the underlying flow, the global map G (u*) is smooth in the
initial condition u* and the parameter 1/ with values in H~!. We finally observe
that initial conditions in the domain of G, are at most O(sﬂ ) (with 5 > %) away
from Gy, and the magnitude of the perturbation in the normal (3.2) is of order
O(y/e). These facts together with (5.5) complete the proof of the lemma. O
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6 Energy Estimates

In this section we study how the value of the Hamiltonian H = Hy + ¢H;
changes on solutions as they repeatedly approach and leave a vicinity of the mani-
fold M.. Later we will use the “energy” H and the variables (ws, (, p, %) to track
solutions that visit the neighborhood Uy. This tracking of solutions will be the key
tool in constructing multipulse solutions homoclinic to M.. Since the Hamiltoni-
ans Hy and H; are defined for the original complex evolution equation (2.1), we
need to evaluate them at complex conjugate pairs of points. In our notation, we
only emphasize the dependence of these functions on v € H{; i.e., we use the
notation F'(u) = F(u,u) for functions of w and . Our notation for the derivative
and the gradient of such functions is, respectively,

DF = (D,F,DyF),  VF = (V,F,VaF).
Accordingly, for a vector A = (a,a) € HL x H{, we use the shorthand notation
(VF,A) = (V,F,a) + (VgF,a).

We now prove our main energy estimate for solutions that lie in the unstable
manifold W*(II) and obey the entry conditions (4.2).

LEMMA 6.1 Suppose that u(t) is a solution of the normal form (3.2) that lies in
the unstable manifold of the invariant plane 11. Let qq be the first intersection of
u(t) with the surface 01Uy, and let b. = by + (0, /en) € I with by = (¢o,0) € C
be the base point of the unstable fiber f"(b.) that contains the point qy. Suppose
that the solution returns to 01Uy N times to intersect it at the points p1, ..., PN
and to leave it again at the points q1,...,qN—1. Assume further that, for some
constants % < B <1,0<e<eq anddy < 1, the entry conditions (4.2) hold for
the solution u(t) at each entry point py. (For N = 1, co = 0 is allowed in (4.2).)
Then, for 6, > 0 sufficiently small, we have

H(pn) = Ho | C + ¢ [H(bo) + NI + O (do,€")],

where 0 < p < % and the quantity T is defined in (2.16). The “slow” Hamiltonian
H is the first-order term in the expansion of (Ho + eH1) | Il near the circle C, i.e.,

1
H = 5D%JLI(H(H)‘ '+ Hy|C
C

(6.1) = —> +2I'Qsin .
PROOF: We can write the energy H(py) as
N—1
H(pn) = H(be) + [H(qo) — H(b)] + Y H(q) — H(p)

(6.2)
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The first sum in this expression is the change in the energy of w(¢) during local
passages near M., while the second sum is the change of energy outside Uy. We
now estimate the four main terms in (6.2) separately.

The first term can be written as

(6.3) H(b.) = (Ho+cH1) |y, = Ho | C+ eH(bo) + O(%/?),

since VHy = 0 on the circle C for e = 0.

To estimate the second term in (6.2), we consider the “Hamiltonian” unstable
fiber f;((bc) (i.e., a fiber for the case of g = 0), which intersects the surface 01Uy
at a point gz . By the continuity of the Hamiltonian H, for zero dissipation, orbits
asymptoting to each other must have the same energy. As a result, by Theorem 3.2,
we must have H(qy) = H(be) for g = 0. If ¢. € C is the projection of the point
qm on the circle C, then we have V Hy(q.) = 0, and the mean value theorem gives

|H(qo) — H(b:)| = |H(q0) — H(gu)| = |DH(qx) - (90 — qn1)|
= [(DHo(g+) +eDH1(q4)) - (90 — qm)]
= |(DHo (g« — ¢c) + eDH1(qx)) - (g0 — qr)|
<|[DHo(gx — qc) + eDH1(q: )| g1 llg0 — qm |l

(6.4) < ((1+ Ko) lax — gelln + K ) lgo — qmrllan

where the point g, lies on the line connecting gy and gz, K "> Oisan upper bound
for ||DH|| 1 within the cylinder S, K¢; > 0 is an upper bound on || DHo1|| g1,
and we used the inequality (2.5). Since the unstable fibers are of class C” in the
parameter ¢, and the H'-distance of the point ¢, from the circle C is less than &,
we have the estimates

||QO_QH||H1 <K157 Hq*_QCHHl <507
for some constant K. Therefore, the inequality (6.4) can be rewritten as
(6.5) |H(q0) — H(b)| < (1+ Ko1 + K )K1pe .

To estimate the third term in (6.2), we recall that the solution u(t) is of class
C' in t for initial data p; € H, (%. For such initial values we can write

N-1
Hia) - Z [
=1 =1
N—
:Z/ H-(iJVH +G), 4 d
=1
N-1 T
=c /0 (VHy + eVHy, G, dt
=1
N-1 T 1
(6.6) =€ /0 (VHy, G u(t) dt+(9(5 log — )
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Here 77" denotes the time of flight for the solution w(t) from the point p; to ¢,
and hence it obeys the estimate (4.3). We also used the relation (VH,iJVH) =0
with the matrix J defined as

0-1
J= (1 0) |

Now observe that >7 ! H(q;) — H(p;) is a continuous function of the initial
conditions p;, and hence by the denseness of H(% in the phase space H(é, (6.6)
holds for any solution u(¢) with initial data in H¢ (see the proof of Lemma 3.4 for
the details of a similar argument).

We now estimate the terms in the integrand on the right-hand side of (6.6).
Noting that VHy | C = 0, we obtain that if (w, , p, 1) are the coordinates of a
point p € .S, then

VHO(p) = Al (w7 Cv P z7b)QU1 + A2 (’U), Ca P w)wQ + AB(wv Ca P w)C
+ A4(’U), Ca P w)P

for appropriate C"~! functions A;. Using (2.5), Lemma 4.3, and (6.7), we obtain

6.7)

(6.8) Z / (VHo, G),p dt = O(&) + O(").

This last equation and the energy expression (6.6) shows

(6.9) > H(a) — H(p) = O(edo,e ).

To complete the proof of the lemma, it remains to estimate the last sum in the
expression (6.2). Standard “finite-time-of-flight” Gronwall estimates imply that
outside the fixed neighborhood Uy of the manifold M., the perturbed solutions
remain close to a chain of unperturbed solutions u'(t), ! = 1,..., N, with

(6.10)  lim ul(t) = by, Jim ul=L(t) = lim ut(t), 1=2,...,N.

(The uniform upper bound for these flight times can be obtained by restricting
to compact subsets of W*(II).) Since the size of Uy is of order O(¢p), we can
compute the change in energy between the points g;—; and p; in the same way as
in equation (6.6) for initial conditions in Hé. ‘We then obtain

N N )
(611) ZH(pl) — H(qlfl) = EZ/ <VHO, G> ‘ul(t) dt + 0(8(5()) .
=1 =177

Again, the denseness of H(% in H((lj and the continuity of the above expression al-
lows us to conclude that (6.11) holds for arbitrary initial conditions. But (6.2),
(6.3), (6.9), and (6.11) together imply the statement of the lemma since 7 =
JZ% (VHo, G) |1y dt is independent of the choice of the solution ul(t), as we
observed after formula (2.16). O
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We now derive an estimate for the energy of a point sy € Wi _(M.) N Uy
that has the same ((, p, ¥)-coordinates as the point py on the incoming solution
u(t) (see Figure 6.1). This estimate will be important when we compute the en-

: u(t)

FIGURE 6.1. The definition of the points sy and c.

ergy difference between the entry point py and its projection sy on the unstable
manifold of M..

LEMMA 6.2 Suppose that u(t) is a solution of the normal form, and let the points
P1,-..,PN and qqo, . ..,qn—1 be defined as in Lemma 6.1. Suppose that the as-
sumptions of that lemma hold and c. € M is the base point of a stable fiber
f#(ce) such that for the point sy = f*(c.) N 01Uy,

(612) (CpvapN7¢pN) = (CSvaSvaSN)'

Then, for the energy of the point sy, we have the expression
6.13) H(sy) = Ho | C + H(by + NAG) + O(2dy, 51+§) ,
where A¢ is defined in (2.15) and H is defined in (6.1).

PROOF: Since the entry conditions (4.2) are assumed to hold for the incoming
solution u(t), equation (6.12) implies that for the stable fiber f*(c.) containing s
we have

(6.14) Cooll g < KreP.

Since sy lies at a distance of order O(dy) from the invariant manifold M., by the
smoothness of individual stable fibers we have

(6.15) (77657 QZSCE) = (nst quN) + 0(50) :



26 G. HALLER

We now relate the energy of the base point c. to the energy of the point s. Let the
point sz be the intersection of the “Hamiltonian™ fiber fg"’:o(cs) with the surface
01Up. Then, applying the mean value inequality as in (6.4) with some point s.
lying on the line connecting sy and sz, we can write

[H(sn) = H(co)| = |H(sn) — H(sm)l
— |[DH(s*) - (sy — sp)| < (14 Ko1 + K')doKze .
From this inequality we obtain that
(6.16) H(sy) = H(c:) + O(doe) -

Hence, to find an approximation for the energy of the point sy, we have to compute
the energy of the fiber base point c.. The restricted Hamiltonian H, = H | M. is
easily found to be of the form

(6.17) He=H | M. =Hy | C+eH + O(e|zlm, |23, 27)

with the slow Hamiltonian H defined in (6.1).

Since the solution u(¢) travels for an O(1) amount of time near the set of tra-
jectories described in (6.10), we know that the point gy is O(y/€)-close to the
unperturbed solution u!(t), and the point py is (’)(\/Eﬂ )-close to the unperturbed
solution u™ (¢). Since 1!V (t) locally coincides with an unperturbed stable fiber, the
smoothness of fibers implies that the base point c. of the fiber containing g is
H! O(\/Eﬂ )-close to the unperturbed fiber base point lim; ., u'¥ (t) (see Figure
6.1). As a result, we obtain

(6.18) e = bo+NA¢>+O(\/E’6>.
But equation (6.18) with (6.14) and (6.17) gives
H(ce) = Me(cc) = Ho | C+eM(by + NAG) + O(145,6%, %),

which implies the statement of the lemma. It remains to note that all the constants
in the above estimates can be chosen uniformly if we restrict to initial conditions
in a compact subset of the finite-dimensional manifold W*(IT). O

We are now in a position to strengthen Lemma 4.2 on the coordinates of the
solution w(t) upon its exit from the set Uy. The improvement is the fact that the
local map L. is actually CY O(g)-close to Lq if we just consider the w1- and (-
coordinates of the image.

LEMMA 6.3 If the solution u(t) is contained in the manifold W*(I1), then state-
ment (i) of Lemma 4.2 can be strengthened to

wi| < Ke, ¢ g < KeP,

0" — pol < KVED, |4t — ol < KvE".
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PROOF: Consider the point ¢* € W% (II) for which wig+ = 0, (= = 0, and
(Pg=sVq=) = (pu=,uy~) hold. By the first inequality in (i) of Lemma 4.2, the
points ¢* and u* are O(c”)-close. To determine the energy of the point ¢*, we
consider the unstable fiber f*(b*) that contains ¢*. For zero dissipation (g = 0),
the energy of the base point b* of the fiber f;' (b*) can be written in the form
H(b*) = Hy | C+ O(g), where we used the expression (6.17). Since the energy is
constant on fibers for ¢ = 0, we immediately obtain

(6.19) H(g*) = Hy | C+ O(e).

Equation (6.19) remains unchanged for nonzero dissipation, since unstable fibers
are perturbed by an amount of order O(e) when we add the dissipative terms. For
u* = ¢q, we obtain from Lemma 6.1 that

(6.20) H(u*) = Ho|C + O(e) .

Then (6.19) and (6.20) together with the mean value theorem give

g —u*
(6.21) = ’<VH(Q(U*7€))7E(U*75)>’ ”q* - U*HHl 5

Kioe > |H(q") — H(u")| = |DH(4(u",¢)) -

where §(u*, €) is a point on the line connecting the points ¢* and u*, and E(u*,¢)
= (e(u*,¢e),e(u*,e)) with e(u*,e) being a unit vector on that line. Since the
representation of F(u*,¢) in the (wq,we, ¢, p,1)-coordinates is just (0, 1,0,0),
using equation (1.1), we have

(VH(q), E(u*,e))| = [(—i (ut]s. — €9), E(u*,€))]
(6.22) > |l g — esup 9l 1

> |in]|g — Ky,

where K is an upper bound on g on the set Uy. Here we used the real coordinate
representation of u; from equation (3.2). From (3.2) we also have the estimate

[in lg = [|A = Bo(lwl + K]l + V)| [wrl] I

2
> A= By <50§+50+\/5> do

A
2505-

Therefore, we can find a uniform lower bound K7; > 0 such that (6.21) can be
rewritten as

K
(VH(G(u*,e), E(u*,€))| > K13 — 'K > % .
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This inequality and (6.21) show that

2Ky
(6.23) —ut| g < ——¢,
la* = u'lln < S
which in turn gives
(6.24) \wﬂ < Kise,

since wig+ = 0. The remaining inequalities are just restatements of the results
listed in Lemma 4.2. O

A solution u(t) € W*(II) is homoclinic to the manifold M. if the points
pn € W¥(II) and sy € W} (M) coincide. By construction, these points have
the same w; -, (-, p-, and Y-coordinates, so they coincide if their ws-coordinates
are equal. However, following the evolution of the ws-coordinate along solutions
is not possible since wo is only defined near M.. Instead, we show that the wo-
coordinate of pyy can be uniquely determined as a function of the other coordinates
and H (py ). This fact will enable us to find orbits by solving the equation

(6.25) H(pn) — H(sy) = 0.

LEMMA 6.4 Suppose that the conditions of Lemma 6.1 are satisfied. Then for
e > 0 small enough there exists a C'-function f. : H' x R x S x R + R such
that foranyl =1,..., N,

wap, = fe (Cpl7ppzv¢pl7H(pl)) :

PROOF: The surface {w; = dp} satisfies u = s.(ws,(,p, 1), where s. is
a C"-embedding into the phase space P. The intersection of the energy surface
{H (u,u) = h} with {w; = dp} satisfies the equation

H(SE(w%Cap?w)) —h=0

where S; = (s¢, S:). On this intersection set, the coordinate wy is a C _function
of the rest of the coordinates and the energy A provided

(626) <VH(S€(w27Cap7w))7DwQSE(w27Cap7w)> 7& 0

holds at the points of intersection. We want to see if this equation is satisfied at
the point p;. Since p; — s; as € — 0, and p; is contained in a compact subset of
W(II), it is enough to verify that

(627) |<VH0(81)7 D’wg SO(UJQSl ) Csl ) psl ) ¢sl)>| > (&)

for some constant ¢; > 0. But D, So(was,, (s, Ps,» ¥s,) lies in the tangent space
of 01Uy, so (6.27) follows from the same argument that we used to give a lower
bound for the expression in (6.21). O
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7 The Energy Function

As we noted in the previous section, a solution u(t) that approaches the plane I1
and the manifold M. in backward and forward time, respectively, must necessarily
satisfy the energy equation (6.25). Lemmas 6.1 and 6.2 show that at leading order,
the left-hand side of this equation is given by the N-order energy function

(7.1) ANH(¢) = H(n, ¢ + NAG) — H(n, ¢) — NI
= 20I'[sin (¢ + NA¢) —sin¢] — NT.

This function AV is C, which can be seen as follows: The solution u"(t) is
C" with respect to the ¢-coordinate of its backward limit point u. This follows by
picking the initial condition ult € AUy N WL (IT) so that u”*(0) = u} and recalling
the smoothness of unperturbed unstable fibers in W} _(II) with respect to their base
points. It remains to point out that V,, Hyo(-) is a linear map that is continuous with
values in H~'; hence it is C! with values in H~!. Since G is C'* with values in
H', we obtain that D, (V Hgg, G) is continuous; i.e., Z is of class C.

One expects that nondegenerate zeros of the energy function give rise to zeros
of the energy equation (6.25) and hence can be used to construct orbits homoclinic
to the manifold M.. To describe the properties of such homoclinic orbits, we now
introduce some definitions.

DEFINITION 7.1 Let us consider a point by € C, and let j = { jl}l]\il be a sequence
of +1’s and —1’s. An orbit u. of system (2.1) is called an N -pulse homoclinic orbit
with base point by and jump sequence j if for some ;. > 0 and for € > 0 sufficiently
small,
(i) wu intersects an unstable fiber f*(b.) with base point b. = by + O(e#) € I,
(ii) u. intersects a stable fiber f*(c.) with base point ¢ = b+ NA¢+ O(e#) €
M. such that dist ;1 (¢c., IT) = O(e), and
(iii) outside a small fixed neighborhood of the manifold M., the orbit u. is order
O(e") H'-close to a chain of unperturbed heteroclinic solutions u'(t), | =
1,..., N, such that

lim u'(t) = by, lim «''(t)= lim «!(t), 1=2,...,N,
t——00 t——+o0 t——o0
and

ity e {0 (©) =1
WO (C) lfjl = —1.

A three-pulse homoclinic orbit is shown in Figure 7.1.
Let us now consider a point p™ that is on the unperturbed stable manifold
Wit (Mo). Here the superscript + refers to the component of Wy (M) that

loc

contains points of the homoclinic manifold W' (C). Since Wi (M) is a hy-

persurface, it makes sense to define the vector n(p™) € H! as the unit normal to

W/If;g (M) that points in the direction of the other unperturbed homoclinic mani-

fold W (C). (See Figure 7.2 for a schematic picture.)
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FIGURE 7.1. 3-pulse homoclinic orbit with jump sequence {+1, —1,+1}.

This allows us to introduce the number
(7.2) o =sign (VHy,N(p™))
with N = (n, 7). Note that o is independent of the choice of the point p* by the
normal hyperbolicity of the unperturbed manifold M. Furthermore, o remains the
same if we interchange the roles of the homoclinic manifolds W (C) and Wy (C)

in this construction. Using the results in Haller and Wiggins [6] for the two-mode
truncation of the NLS equation, we find the value of ¢ to be

o=+1

(see Haller [8] for the details of the calculation). This means that the energy Hy is
locally higher on the side of WS (M) that contains W;; (C). This meaning of &
is clearly preserved under small perturbations.

Our next definition uses o to build sign sequences that will turn out to yield
jump sequences for multipulse orbits.

DEFINITION 7.2 For any value ¢g € S, the positive sign sequence x(¢g) =
{x;" (¢0) HY is defined as

XT(¢0) =+1, XlJYH(¢0) = JSign(AlH(¢0))Xl+(¢0)7 [=1,...,N -1

Wi(©)

Woe(M,)
p+
n(p*)

FIGURE 7.2. The definition of the vector n(p™).
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The negative sign sequence x ™ (¢o) = {x; (¢0) }¥, is defined as
X" (¢0) = —x" (¢o) -

The main result of this section is formulated in the following theorem, which
establishes a connection between the zeros of the energy function and N-pulse
homoclinic orbits:

THEOREM 7.3 Suppose that for some positive integer N > 1, ¢o € S is a trans-
verse zero of the function ANH: i.e., we have

ANH(¢o) =0,  DyANH(go) #0.

Suppose further that A"H(¢o) # 0 holds for all integers | =1,...,N — 1.
Then there exist constants 0 < p < % and Cy, > 0 such that for any small
enough € > 0, the NLS equation (2.1) admits two one-parameter families of N -

pulse homoclinic orbits ux (¢, no) with base points b (¢, no) € 11 such that

bgt(¢7770) = (¢0 + O(€u), \/5770) .

Here |no| < Cy is an arbitrary localized action value. The jump sequences of the
orbits are given by x*(¢q), respectively. Furthermore, the base points bX depend
on ¢ and " in a C' fashion.

PROOF: Consider a point b. = (¢o, /7o) on the plane II and the unstable
fiber f“(b.) based at b, that lies in the manifold W2 (II) . (Here W (IT) denotes
the connected component of W*(I1) that contains the homoclinic manifold W' (C)
for e = 0.) The fiber f*(b.) intersects the surface |wy| = &g at a point ¢, as shown
in Figure 7.3. Let us consider a solution w(t) with initial condition «(0) = go.
By Remark 3.3, we know that u(t) € H® for all ¢ € R. This solution leaves
the neighborhood Uy of the manifold M. and, by standard Gronwall estimates,
returns and intersects the face |wq| = d¢ of the surface 0,U at a point p; (see
Figure 7.3). Since the unstable fibers are straight in the (w, (, p, ¥)-coordinates,
we have ||(4|lz1 = 0, and hence g lies in the domain G, of the global map G.
(see (5.3)) and we can write p; = G¢(qo).

Since the manifold W51 (M.) is a graph over the variables (w1, ¢, p, %), there

loc

exists a unique point s; € I/Vlf;g (M) N 01Uy with

(Csl >y Ps1s wsl) = (Cpl s Pp1> ¢p1) )

as shown in Figure 7.3. According to Lemma 6.4, p; = s; holds if and only if
(7.3) H(p1) — H(s1(p1)) = 0,

where we view s; as a function of p;. Since p; € H® and the projection p; +— 1
clearly maps H* into H* for any k > 1, we know that s; € H* is a smooth
function of p;. As a result, the right-hand side of equation (7.3) is C'" in the variable
p1.

By standard Gronwall estimates, the point p; of the solution u(t) is O(¢) H'-
close to a stable fiber f*(by) with base point by = b. + A¢ € II (see Figure 7.3).
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FIGURE 7.3. The construction of the proof of Theorem 7.1.

As a result, it satisfies the entry conditions listed in (4.2) with 3 = 1 and ¢o = 0.
Consequently, Lemma 6.1 applies with n = 1 and gives

(7.4) H(pi(b:)) = Ho | C+e[H(bo) + NZ + O(dp, )]

for an appropriate constant 0 < p < % Furthermore, Lemma 6.2 with n = 1 gives
(1.5) H(s1(b.)) = Ho | C +eH(b + Ap) + O(edp, <2 ).

Since b. = by + O(v/€) = (¢o, v/eno), for any € > 0 we can use (7.4) and (7.5) to
rewrite the energy equation (7.3) as

(7.6) AYH (o) + doF1(p1(be); 80, ") + "Gy (p1(b2); 0, €) = 0

with p1 = (0, w2p,, Cpy» Pp1s ¥p1) = Ge(qo). The relationship between by and p;
is given by

(7.7) p1(bo) = Gz o P (bo)

where P* : W“H(II) N 9,Uy — 1 is the fiber projection map that maps the
intersection points of unstable fibers in I/Vféj (IT) with the surface 01Uy to their
base points. By Theorem 3.2, the function P* is a C"-map on H'. By Lemma

5.3, G. is a C'-map from G, to H'. As a result, equation (7.7) shows that p; is
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a C''-function of by € H* with values in H. This in turn implies that the right-
hand side of the energy equation (7.6) is of class C'! with respect to by because the
functions F; and G; are C' in p;, as we observed after formula (7.3), and A'H is
a C''-function.

Suppose that N = 1 in the statement of the theorem. Then, by assumption,
(¢0,m0) with any 0 < |n9| < C,, is a solution of equation (7.6) for g = ¢ = 0.
We want to apply the implicit function theorem to argue that this solution can be
continued for €,y > 0. Setting ¢ = 0 and differentiating (7.6) with respect to ¢
yields

(7.8) Dy [AlH(qbo) + doF1(p1(bo); do, 0)} =

(no,¢0)
where 7. is the normal form transformation constructed in Lemma 3.4. Now
DyAVH is a continuous function, and we have Dy A'H(¢g) # 0 by assumption.
Hence for sufficiently small 6y > 0, (7.8) is nonzero. (This follows by recalling
that the right-hand side of (7.8) continuous in (79, ¢o) and the term

(vpl}_7 DGODPéLDéo/ZE]_IH(

Dy A H(60) + 0o (Vi F, DGoD Py Doy Ty )

10,%0)

remains bounded as dg — 0 by Lemma 5.3.) Thus (7.6) admits a solution qg(no, )
= ¢o + O(dy) for 69 > 0 small and ¢ = 0. We fix § sufficiently small and
substitute the solution ¢ back into equation (7.6). We observe that the derivative of
the left-hand side of the resulting equation with respect to ¢ is given by

DyA'H (3) + 6 (¥, F1, DG.DP! Dy, T ")
+ & (Vy,G1, DG.DPI DT ).

By Lemma 5.3, this derivative is continuous at € = 0 and is also nonzero by
assumption. Thus equation (7.6) admits a solution qﬁ(no, d0,€) = ¢o + O(dp, ")
for ¢ > 0 sufficiently small. For any fixed ¢, the solution cannot depend on dy,
since dp is just an auxiliary parameter to measure the size of the neighborhood
Uy that we have worked in. Therefore, we must have d(i/déo = 0, implying
d(no,€) = ¢o + O(e™). This proves the existence of the orbit family uZ (1) for
N = 1. The smoothness of u_ (1) with respect to e* follows from Lemma 5.3.

Assume now that N > 1 in the statement of the theorem. Then, by the as-
sumptions of the theorem, for ¢ and g sufficiently small, the energy equation (7.6)
cannot be satisfied, so the solution u(t) does not intersect the local stable mani-
fold of M. upon its first return to the neighborhood Uy. Using (7.4), (7.5), and the
compactness of [—Cy,, C,)] x S, there exist positive constants K 9) and K. él)such
that

(7.9) KWe < |H(py) — H(s1)| < Be.
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Now the mean value theorem implies that

* p1—Ss
|H@o—H@nw=KVH@m——L—i—>Mm—ﬂmm
lp1 — s1l|

1
(7.10) > C|lpr — sl
where pj is a point on the line connecting p; and s1, and the existence of 02(1) >0

follows from an argument similar to that leading to estimate (6.27). At the same
time, the mean value theorem and (2.5) imply that

(7.11) |H(p1) = H(s1)| < C{V|lp1 = sillm
for some constant Cfl) > 0, so it follows from (7.9)—(7.11) that
KW KW
(7.12) % <|lp1 = s1llm1 < %
Ch &

This last expression in (7.12) immediately shows that the coordinates (wap, , (p,»
Pp1> Up, ) satisfy the entry conditions in (4.2) (because the normal form coordinates
of the point s; satisfy wis, = do, was, = 0, and ||(s, || 1 = O(e)). Consequently,
the point p; is contained in the domain L. of the local map L_, and we can write
q1 = L<(p1) where ¢; is the next intersection of the solution u(¢) with the surface
o Up.

Let py denote the intersection of the solution u(t) with the surface 0; Uy upon
its second return to the neighborhood Uj. (The existence of py is guaranteed by
the usual Gronwall estimates for € > 0 small enough.) We again have a point
sp € WS .(M¢) N 01Uy such that

(CSQ sy Psas ¢52) = (CPQ y Ppas ¢p2) .

Again, the solution u(t) gives rise to a 2-pulse homoclinic orbit if

H(p2) — H(s2(p2)) =0
or, alternatively,

(7.13) A*H(¢o) + S0 F2(pa(be); 8o, ) + e#Ga(pa(be); o, ) = 0,

where we used Lemmas 6.1 and 6.2. As in equation (7.6), the functions F5 and Go
are C'! in their arguments. Since

pQ(bs) = GEOLEOGEOPEU(bE)7

we see that for ¢ > 0, po is a C'-function of b, and * by Corollary 5.1 and
Lemma 5.3 with values in H° (recall that u(t) € H). Then, just as in the case
of N = 1, the implicit function theorem applied to (7.13) implies the existence of
the orbit family u (ng) for N = 2.

The proof for any N > 2 is identical to the case of N = 2, and the existence of
the other NV-pulse homoclinic orbit family u_ (1) for any N > 1 can be obtained
from an identical construction for solutions contained in W*~(II). Therefore, it



HOMOCLINIC JUMPING IN THE NLS 35

remains to show that the jump sequences of the two families uZ (o) are indeed
given by the sign sequences x¥(¢), respectively. We sketch the argument only
for ut since the argument for u_ is identical.

Consider an N-pulse homoclinic orbit ut. By construction, it makes its first
pulse in the vicinity of the unperturbed manifold W (C); hence the first element
of its jump sequence is indeed x; (¢9) = +1. For small €,5y > 0, at the first
re-entry point p; we have

sign(H (s1) — H(p1))
= sign[e(AYH(¢o + O(80, ")) + doFn (pn (0T ); 6o, )
+ "G (p (b2 ); 60, €))]
(7.14) = sign(A H(¢o)) -

If this quantity is positive, then at the point p; the solution w(¢) has higher en-
ergy than nearby points in the hypersurface W/I‘ZJCF(ME) Recalling the meaning
of the constant o (see (7.2)), we can conclude that o sign(A'H(¢g)) = +1 im-
plies that the solution w(t) stays near the homoclinic manifold W, (C), whereas
osign(A'H(¢g)) = —1 causes the solution to perform its second jump in the
vicinity of the manifold W (C). Therefore, the second element in the jump se-
quence of uZ is given by x5 (¢o) as defined in Definition 7.2. The remaining ele-
ments of the jump sequence of uJ are constructed recursively in the same fashion;
hence they coincide with the corresponding elements of the sign sequence x ™ (¢g)
in Definition 7.2. This completes the proof of the theorem. O

The above theorem gives the basic tool for constructing multipulse orbits that
backward-asymptote to the plane II and intersect the locally invariant manifold
Wy (M) in forward time. To find the asymptotic behavior of multipulse or-
bits, one has to have some approximate knowledge of the dynamics on the two-
dimensional plane II. A Taylor expansion shows that near the resonant circle C,
the flow on II satisfies the equations

Qﬁ = \/EDan(n, ¢) +O(e),

(7.15)
with
6 .
Hy(0.0) = Hin0) = [ (Durle(u) du
o .
(7.16) — 42T Qsing — / (Du)le(u) du
0

where (ﬁu) 1 is the T-component of the perturbation term Du in equation (2.1).
As seen from (7.15), for finite times solutions on the manifold II are approximated
with an error of order O(4/c) by the level curves of the function H,. In general,
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the flow generated by H,, is only locally Hamiltonian since H, is not necessarily
periodic in ¢.

8 Homoclinic Tree in the Forced NLS Equation

Without the dissipative term Du, equation (2.1) is a near-integrable Hamil-
tonian system. We are interested in finding multipulse orbits for this system that
exhibit jumping behavior around the plane II of spatially independent solutions.
These solutions may ultimately leave W} (M) through its boundary, but they
remain O(¢) H!-close to II on time scales of order O(1/+/€). As a result, in nu-
merical simulations they appear as solutions homoclinic to 11.

For D = 0, the constant Z computed in (2.16) vanishes, and hence the energy
function studied in the previous section simplifies to

8.1 ANH(p) = 20T [sin (¢ + NAg) —sin @] .

If we use the nondimensionalized variables, we find that the energy function ob-
tained in (8.1) for the partial differential equation is the same as that obtained for
its modal truncation in Haller and Wiggins [6]. Since the existence of multipulse
homoclinic orbits is fully determined by the energy function, we can directly use
the finite-dimensional study carried out in Haller and Wiggins [6] to construct mul-
tipulse solutions for the full, forced NLS equation.

Although the sign constants 0F'P¥ = +1 and o™ = —1 differ in sign, the
angular variable ¢ used in Haller and Wiggins [6] also differs in sign from that used
in this paper. Therefore, if ¢ is a transverse zero of AN then ¢y = —dg
is a transverse zero for AV HPPE (given in (8.1)), and

Utrunc [AkHtrunc (¢0)} _ (_UPDE) |:_Ak‘HtruHC(_¢0):|
_ (_O,PDE> {_AkHPDE(QBO)}
_ ,PDE [AkHPDE(QBO)} .

Consequently, any N-pulse orbit for the modal truncation yields an N -pulse orbit
for the forced NLS equation with the same jump sequence. Since the flow on the
plane II is close to the pendulum flow generated by the slow Hamiltonian H, any
zero line ¢ = ¢ will intersect families of slow periodic orbits that are created near
the resonance by the perturbation. As a result, for any transverse zero of ANH,
there exist two families of multipulse orbits that are backward-asymptotic to a slow
periodic orbit on II. (These orbits are quasi-periodic in the original coordinates
used in (1.1)). Since equation (8.1) gives the transverse zeros

T NA¢ () N _ 31 NA¢(Q)
27 2 0 BT T g

a direct application of Theorem 7.3 yields the following result:

(8.2) ¢ =
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THEOREM 8.1 Let us fix the forcing frequency % < Q < 1, and consider any
integer N > 1 for which NA@(QY) # 25w for all integers j.
Then, for € > O sufficiently small,

(1) The forced NLS equation admits four 1-parameter families of N-pulse ho-
moclinic orbits, which are backward-asymptotic to slow periodic solutions
on the invariant plane 11. The coordinates of the base points of the N -pulse
homoclinic orbits are of the form

ubt = (Q + O(\/E)) o1 +O(VE)) , =12

(i) For N > 1, the jump sequences of the orbit families are given by the recur-
sive formula

j,lc’i[l = +sign {I‘ {sin ((blN + kA(b) — sin qﬁlNH j,i’i,
k=1,...,.N—1, 1=1,2,

where ji’i = +1. Furthermore, for any ly,lo € {+1,—1}, 1y # lo, the
following holds: Every time the jump sequence j'-F changes sign, the jump
sequence j'>F with 1 # Iy will not change sign.

The multipulse orbits described above necessarily exhibit the same type of ho-
moclinic bifurcations as the analogous orbits for the modal truncation, since their
appearance and disappearance is governed by the same equation. As discussed in
detail in Haller and Wiggins [6], we can classify the slow periodic orbits created in
the resonance band into layers. Crossing the boundaries of these layers, the homo-
clinic orbit with the lowest number of pulses undergoes a bifurcation that changes
its pulse number. As a result, slow periodic orbits in different layers have different
types of “primary” homoclinic orbits, all of which were shown in [6] to be alternat-
ing in terms of their jump sequences. Plotting the half-widths of the above layers
as a function of the phase shift A¢, we obtain the homoclinic tree shown in Figure
8.1. This diagram shows how the width of the layers containing slow periodic or-
bits with the same type of primary homoclinic orbits changes as the phase shift is
varied. Any fixed A¢ = const slice of the diagram therefore gives the widths of
the layers that exist for that value of A¢. The primary pulse numbers correspond-
ing to these layers are shown in Figure 8.2. This diagram indicates that homoclinic
orbits with higher pulse numbers are easier to destroy by a change in the system
parameters. It is highly surprising that such a complicated structure can be shown
to exist in a partial differential equation. The construction of these diagrams is
entirely based on the analysis of the zeros of the one-variable real function ANH
and can be found in Haller and Wiggins [6].
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FIGURE 8.1. The homoclinic tree.

9 N-Pulse Jumping Orbits in the Damped-Forced NLS Equation

The numerical experiments of Bishop et al. [2] on the perturbed NLS equation
were performed with the mode-independent damping term

©.1) g(u, @) = Du= —au

with damping coefficient o > 0. The irregular jumping of solutions in the time
domain was already noted for this simple damping term.
According to Theorem 7.3, the existence of multipulse orbits is determined by
the zeros of the energy function
ANH(¢) = H(1, ¢ + NAG) = H(n,¢) — NI
9.2) = 20T [sin (¢ + NA¢) — sin ¢] — aQQNZ,(Q)
=QI'cos (¢ + NA@/2)sin (NAP/2) — aQANZ, ()

FIGURE 8.2. The pulse numbers as a function of the phase shift.
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where

1 o0
T.(Q) = 5/,00 (VHy, G) [, ) it
9.3)
dz dt .

- %Re/_o:o /027T (uﬂm« +2ul? [|“|2 - QQD ult (¢)

Note that Z,,(£2) only depends on the forcing frequency 2. From (9.2) we obtain
that if

9
©4) Ap# ST, jet,
N
and
9.5) e
‘ Xo = 1"NZL(9)
holds with x, = a/T’, then the zeros of the function ANH(¢) are given by
N_T_NAo() 1 NXaZa()
o = 5 5 cos in NA¢(Q) ,
3n NA¢ (D) _1 Nx I (Q)
N_2 _T=rvY 1 Aazal™?)
Py = > > cos . NAg(Q) .

These zeros are also easily seen to be transverse; thus each gives rise to a multipulse
homoclinic orbit in the sense of Definition 7.1.
The flow on the invariant plane obeys the equations

=—ven+0(e),

9.6
(9.6) N = —e (ZFQ cos ¢ + 20492) + O(e),

which, as described in (7.15) and (7.16), are locally Hamiltonian at leading order
with the Hamiltonian

(9.7) Hy(n, ¢) = —n? + 2T'Qsin ¢ + 2a0%¢ .

For |xo (2| < 1, this local Hamiltonian has two critical points: a saddle so(x,) and
a center co(xq) given by

98) so(xa) = (0,7 +cos  (—xa®)),  colxa) = (0,05 (~xa®)) -

The level curves of ‘H, are shown in Figure 9.1(a), and the corresponding phase
portrait of (9.6) is shown in Figure 9.1(b). Note that the unstable manifold of the
saddle point is intersected transversely by any ¢ = const line and hence by the
lines ¢ = const. This is also true for the stable manifold of the actual saddle
point sc(xq) of equation (9.6). Therefore, a direct application of Theorem 7.3
leads to the following result:
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THEOREM 9.1 Let us fix the forcing frequency % < Q < 1 and consider any inte-
ger N > 1 for which conditions (9.4) and (9.5) hold. Then, for € > 0 sufficiently
small,

(1) The perturbed NLS equation (2.1) admits four one-parameter families of
N-pulse homoclinic orbits, which are backward-asymptotic to the invari-
ant plane 11 and forward-asymptotic to a codimension-2 invariant manifold
M that contains 11. In each orbit family, at least one orbit is backward-
asymptotic to a saddle fixed point of the plane 11. The coordinates of the base
points of the N -pulse homoclinic orbits are of the form

= (Q+0(vE) @OV =12,

(i) For N > 1, the jump sequences of the orbit families are given by the recur-
sive formula

j,i’fl = +sign [ { (qbl + kAgZ)) —sin ¢y } — akIa(Q)] j,ii,
k=1,. —1, 1=1,2,

where ji’i = +1. For a > O sufficiently small and for anyly,ly € {+1, -1},
li # lo, the following holds: Every time the jump sequence j''-* changes
sign, the jump sequence 7% with 1 # lo will not change sign.

10 N-Pulse Silnikov-Type Orbits
in the Damped-Forced NLS Equation

In a series of papers by McLaughlin et al. (see the introduction), the NLS equa-
tion is considered with the dissipative term

(10.1) g(u, u) = Du=—au+ Bku,

where the operator By is the smoothed diffusion operator: It acts as the operator
0?2 for low wave numbers but vanishes on higher Fourier modes of the function

u(x). If b(k) denotes the Fourier transform of Byu(x) and (k) is the Fourier

|
|
5

a) b)

FIGURE 9.1. The levels of H, and the flow on the plane II.
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transform of u(x), then

- —k2a(k) ifk< K
b(k) = (k) ifk <K,
0 ifk > K,

with some fixed, large integer K > 0. Using this dissipative term, Kovaci¢ and
Wiggins [11] found orbits homoclinic to a saddle point in the two-mode truncation
of the NLS. These Silnikov-type orbits exist for a codimension-1 set of the (cv, 3)-
parameter plane. Similar results were recently obtained by Li et al. [14] for the full
PDE (see also McLaughlin and Shatah [18]).

However, the set of parameter values for gilnikov—type orbits is rather small, so
one cannot expect to observe chaos for generic parameter values. In this section
we show that multipulse analogs of the gilnikov—type orbits also exist for the full
partial differential equation, and their domain of existence in the parameter space
is a fairly large set. Consequently, complicated dynamics exists for much larger
sets of parameter values than those obtained from Melnikov-type calculations for
single-pulse homoclinic orbits.

For the dissipative term (10.1), the energy function takes the form
(102) ANH(¢) = 20T [sin (¢ + NAg) — sin ¢]
. - NQ [aIa(Q) _ﬁzﬁ(QvK)] )

with 75 defined as

T5(0,K) = —%Re/oo /0% (0w + 2 [|u* - 02| @) Biu , t
—c0 ul

Since the homoclinic solutions u/% (¢) are given by H>°-functions, the duality pair-
ing

)dxdt.

2B m 2 2] -
(VHy, Bugy) ’ui(t) =-q Re/o (um 42 [\u! —-Q } u) Uga A dx
is bounded, and we have
(10.3) [}im Z5(Q%, K) = Zp(2)
with
_ 25 00 21 B 9 91
(104) Ty(Q2) = — 7 Re Lm/() (0w + 2 [|uf* = 02| @) g e Bt

Since the integrand in this expression is an analytic function of z, its Fourier coef-
ficients decay exponentially with the wave number k. This fact enables us to write

Z5(Q, K) = To(Q) + O(e )

for an appropriate constant v > 0 and K sufficiently large.

In the vicinity of the resonant circle C, trajectories are still close to those of the
restricted system (9.6). We would like to construct orbits homoclinic to the saddle
point s¢(Xa). As shown in Li et al. [14], s.(xo) has infinitely many eigenvalues
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with negative real parts that perturb from the purely imaginary eigenvalues on the
linearized equation. Li et al. also showed the existence of a codimension-1 stable
manifold W} (s:(xa)) for € > 0 small enough. The intersection of this stable
manifold with M. is a codimension-1 submanifold of M. whose tangent space at
se(Xa) is close to the product of the center subspace E° with the stable subspace of
the saddle so(xq). Furthermore, the “height” of this stable manifold W*(sz(xq))
is O(3/4).

In our construction, first we want to ensure that the energy-difference function
(10.2) has a transverse zero ¢g. This always holds if

sin

2 r
(10.5) A¢¢j€w JEL,  |aZa(Q) - BT5(QK)| < &

NAﬂ
-

As in the proof of Theorem 7.3, this means that the equation

ANH($: Xa) + 00FN (PN (9); 0, ", Xa) + "GN (DN (9); 00, ", Xa) = 0
has a solution @(xa,€) = ¢o(Xa) + O(e#). By the C*-dependence of ¢ on £ (cf.

Theorem 7.3), the curve {¢ = ¢(xq,€)} intersects the unstable manifold of the
fixed point s.(x, ) transversely in a point

P(Xar€) = (Mo(Xa) + O(e"), do(xa) + O(e")) € II.

This means that there exists an N-pulse homoclinic orbit in the sense of Definition
7.1 with base point p(x, €). This orbit intersects a stable fiber f*(p(xq, <)) whose
base point has the (y, z, 7, ¢)-coordinates

P(Xa,€) = (0,0(g),m0(Xa) + O(e"), do(Xa) + Ad(Xa) + O("))
€ M..

We would like to find conditions under which this base point lies in the stable
manifold of the fixed point s.(x), and hence the N-pulse orbit is homoclinic to
Se (Xa)'

In a vicinity of the invariant plane II, the stable manifold of s.(x.) can be
written as a graph over either the (¢, z)- or the (7, z)-variables. Considering the
former case (the latter can be dealt with in the same way), we obtain that a compact
subset of W*(s.(xo)) satisfies an equation of the form

(10.7) N =mi(P, Xa) + 2ma(®, 2, Xa, €)

where m; are of class C" and 7 = m1(¢, x) defines locally the stable manifold
of sg on the plane II. As shown in Li et al. [14], the “height” of the manifold
W*(s:(xa)) is O(3/%); i.e., the representation (10.7) is valid for ||z|| 1 < Ce3/4.
But from (10.6) we see that

dist ;1 (ﬁ(xma),ﬂ) = 0(5) ;

therefore for & > 0 small enough, p(xa,€) lies in a domain where the represen-
tation (10.7) is valid. Then by (10.6) and (10.7), p(xa,€) € W?*(sz(Xxa)) holds

(10.6)



HOMOCLINIC JUMPING IN THE NLS 43

if
(10.8)
M0 (Xa) + " hy(Xas€) —m1(Po(xa) + Ad(Xa) +&"hy(Xas€); Xa)
— ehz(Xa, €)ma2(¢o(Xa) + Ad(Xa) + e*hg(Xas€), €2 (Xa, €)s Xas€) =0,

where the functions h,,, h¢, and h, are C' in y, and *. Assume now that the
approximate projection (0,0, 70(Xa), P0(Xa) + A¢(Xa)) of P(Xa,c) crosses the
stable manifold of sq transversely for a parameter value y, = x2 . Then, using
(10.7), we can write

mo(xa) — m1(¢o(xa) + Ad(xa), xa) =0,
Dy, [m0(Xa) — m1(Po(Xa) + Ad(Xa), Xoc)]Xa:Xg #0;

thus the implicit function theorem guarantees a solution Y, (¢) = x2 + O(e#) to
equation (10.8). Consequently, for the parameter value Y, (¢), the perturbed NLS
equation admits an N-pulse homoclinic orbit that connects the fixed point s.(x4)
to itself.

It remains to find parameter values x° for which (19, ¢g + A¢) does cross
the one-dimensional stable manifold of the saddle so(x,) transversely. If such a
crossing occurs, then both (79, ¢g) and (19, o + (NA¢) mod 27) must lie on the
same level curve of the slow Hamiltonian H,. (We have to take the modulus of
the angle difference between the two points, since H,, is only a local Hamiltonian
that is not globally constant on the unstable manifold of so(x) for ¢ € R.) We
therefore require

(10.10) Hy(no, do + NAG) = Hy(no, do) + 4mLaQ?

for some integer L. This condition is obtained from (9.7) by observing that for
¢ € R, the values of the Hamiltonian on the infinitely many copies of the saddle
s0(xa) differ by integer multiples of 2002 - 27. Since ¢y is a zero of the energy-
difference function (10.2), equation (10.10) can be rewritten in the form

(10.9)

o L
(10.11) 8= 7,00, K) 20 A0(Q) + Z,(2) 47rQN .

For any fixed NV and (2, I, o, K), this last expression defines the set of 3-values
for which the first equation in (10.9) is satisfied. Since the expression is linear in
a, the derivative d3/da is nonzero whenever the condition gives a nonzero 3. As a
result, the crossing is transversal, and hence the second crossing condition in (10.9)
is also satisfied. For fixed (2, T", o, K'), we obtain a 3-value from equation (10.11)
for each value of the integer L. However, only those L-values give meaningful
results for which the condition

NAp(Q) r NAp(Q2)

27 ‘ < 4mrafd 2 }

holds. This last inequality is obtained by combining the second inequality in (10.5)
with equation (10.11). Using formula (10.3), we obtain the following result:

(10.12) L—

sin
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THEOREM 10.1 Let N be an arbitrary but fixed positive integer, and let the forcing
frequency ) with % < Q < 1 be such that condition (9.4) is satisfied. Assume that
L is an integer satisfying (10.12) and
o
10.13) Mg = r =
( ) 0 {(avﬁa 75)‘ﬂ I()(Q)
is a nonempty, codimension-1 surface of the (o, 3,1",€) parameter space.
Then there exists g > 0, Ko > 0, v > 0, and for all 0 < ¢ < g9 and K > K,
there exist two codimension-1 surfaces ML+ € R* with the following properties:

(i) ME*E is O(et, e~ "K) CO-close to the surface ME* in the (o, 5,T,€) pa-
rameter space for an appropriate constant 0 < p < %

(ii) For every (o, 3,T',e) € M™%, system (2.1) admits an N -pulse homoclinic
orbit that is doubly asymptotic to the fixed point

se(Xa) = (M0(Xa) + O("), do(xa) + O(e")) €11
The jump sequence of the orbits in ]\4ELi is given by

., = Esign[[[sin(¢o(xa) + EAG(Xa)) — sin do(Xa)]
—akT,(Q)jE, k=1,...,N -1,

where jli = +1.

[29 A+ Ta() — 47@% }

11 Disintegration of the Unstable Manifold of 11

The previous sections were concerned with the existence of multipulse homo-
clinic orbits that are doubly asymptotic to the manifold M.. Individual multipulse
orbits are in general difficult to observe, so they cannot fully account for the jump-
ing behavior of the perturbed NLS equation. Yet the significance of homoclinic or-
bits is great: They separate open sets in the manifold W*(II) that exhibit different
behaviors. Namely, every time an /N-pulse homoclinic orbit returns to the manifold
M., the unstable manifold WW*(II) is intersected transversely by the stable mani-
fold W#(M.). As a result, W*(II) is divided into subsets in which solutions will
perform jumps near different components of the unperturbed homoclinic structure.
This implies observable, irregular, transient behavior near the broken homoclinic
structure, even if there are no chaotic invariant sets created by the perturbation (see
Rom-Kedar et al. [19] for related numerical results).

The methods we developed in earlier sections can in fact be used to follow
any solution in the unstable manifold W*(II) on time scales that are of order
O(log 1/4/€). This fact enables us to “track” pieces of the unstable manifold of
IT as they depart from each other and perform different “jumps.” We use the fol-
lowing definition to distinguish between different types of jumping orbits within
the unstable manifold of II:

DEFINITION 11.1 Letus consider a point by € C and let j = {j;}), be a sequence
of +1’s and —1’s. An orbit u. of system (2.1) is called an N-pulse orbit with base
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point by and jump sequence j if for some 0 < p < % and for ¢ > 0 sufficiently
small,
(i) we intersects an unstable fiber f*(b.) with base point b, = by + O(e*) € II,
and
(i1) outside a small fixed neighborhood of the manifold M., the orbit u, is order
O(y/2) H'-close to a chain of unperturbed heteroclinic solutions u!(t), | =
1,..., N, such that

tli{n ul(t) = by, tli$ u7Ht) = lim W!(t), 1=2,...,N.

t——o0
Furthermore, for [ = 1,..., N and for all £ € R, we have
ul(t) WOJF(C) if jy = +1
Wy (C) ifj=—1.

We have the following result for the existence of such [N-pulse orbits:

THEOREM 11.2 Suppose that for some positive integer N and for some ¢y €
St we have

20 [sin (¢o + 1AP) —sin do] — I [aZa () — BLZ(2% K)] # 0,
l=1,...,N—1.

Then, for € > 0 sufficiently small, there exist constants 0 < p < % and C;) > 0
such that for any 0 < |no| < C,, the system (2.1) admits two N-pulse orbits uZ
with base point b, € 11 such that ¢, = ¢o + O(e*) and my, = no. The jump
sequences of the orbits are given by

jki_H = +sign[[[sin (¢ + kA@) — sin ¢g] — akIa(Q)]jki ,
k=1,... N—1,

where jf[ = =1. In particular, if N is an integer satisfying the assumptions of
Theorem 9.1, then for e > 0 small, both W¥*(IT) and W*~ (II) disintegrate into
at least 2N disjoint components, all of which have different jump sequences.

PROOF: Using the assumption of the theorem and the arguments from the proof
of Theorem 7.3, we immediately conclude that for € > 0 small enough, the inequal-
ities

A'H (o) + doFi(pr(be); 00, €") + € Gi(pu(be); do, ) # 0

hold for/ = 1,..., N — 1. As aresult, the unstable manifold W*(II) contains two
N-pulse orbits. The jump sequences of these orbits can be found in exactly the
same way as in the proof of Theorem 7.3. U
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