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a b s t r a c t

The Maxey–Riley equation describes the motion of an inertial (i.e., finite-size) spherical
particle in an ambient fluid flow. The equation is a second-order, implicit integro-
differential equation with a singular kernel, and with a forcing term that blows up at the
initial time. Despite thewidespread use of the equation in applications, the basic properties
of its solutions have remained unexplored. Here we fill this gap by proving local existence
and uniqueness of mild solutions. For certain initial velocities between the particle and
the fluid, the results extend to strong solutions. We also prove continuous differentiability
of the mild and strong solutions with respect to their initial conditions. This justifies the
search for coherent structures in inertial flows using the Cauchy–Green strain tensor.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

TheMaxey–Riley equation [1–3] describes themotion of a small but finite-sized rigid sphere through a fluid. The equation
is widely used to study the motion of a finite-size (or inertial) particle immersed in a non-uniform fluid. The behavior of
such particles is of interest in various environmental and engineering problems, e.g., clustering of garbage patches in the
oceans [4] and dispersion of airborne pollutants [5].

A first attempt to derive the equation of motion of an inertial particle in a non-uniform flow appears in [1]. Tchen [1]
wrote the Basset–Boussinesq–Oseen equation (governing the motion of a small spherical particle in a quiescent fluid [6–8])
in a frame co-moving with a fluid parcel in an unsteady flow, accounting for various forces that arise in such non-inertial
frames. Later, the exact form of the forces exerted on the particle were debated and corrected by several authors (see, e.g.,
[2,3,9]). Today, the most widely accepted form of the equations is the Maxey–Riley (MR) equation [3] with the corrections
due to Auton et al. [9] and Maxey [10].

To recall the exact form of the MR equation, we let u : D ⇥ R+ ! Rn denote the velocity field describing the flow of a
fluid in an open spatial domain D ✓ Rn, where n = 2 or n = 3 for two- or three-dimensional flows, respectively. A fluid
trajectory is then the solution of the differential equation ẋ = u(x, t) with some initial condition x(t0) = x0. A spherical
inertial particle, however, follows a different trajectory y(t) 2 D , which satisfies the MR equation
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where

w(t) = ẏ(t) � u(y(t), t) � �

6
µ�11u(y(t), t). (2)

The initial conditions for the inertial particle are given as y(t0) = y0 and ẏ(t0) = v0. The material derivative D
Dt

.= @t + u · r
denotes the time derivative along a fluid trajectory.

All the variables and parameters in Eqs. (1) and (2) are dimensionless, nondimensionalized by characteristic length scale
L, characteristic velocity U and characteristic time scale T = L/U of the fluid flow. The dimensionless parameters are

R = 2⇢f
⇢f + 2⇢p

, µ = R
St

,  =
r

9R
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, � = 9R
2Re

, (3)

where ⇢f and ⇢p are the density of the fluid and the particle, respectively. The constant, dimensionless vector of gravity is
denoted by g . The Stokes (St) and Reynolds (Re) numbers are defined as

St = 2
9

⇣a
L

⌘2
Re, Re = UL

⌫
, (4)

where a is the radius of the particle and ⌫ denotes the kinematic viscosity of the fluid.
Eq. (1) is a system of nonlinear, fractional-order differential equations. The fractional order is due to thememory term

d
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where the identity is obtained by subsequent differentiation and integration-by-part (see, e.g., [11]). The memory term is
a fractional derivative of order 1/2 in the Riemann–Liouville sense [11,12]. Physically, it represents the Basset–Boussinesq
force [6,7,13] resulting from the lagging boundary layer development around the particle, as it moves through the fluid [3].

In the original derivation of the MR equation [3], it is implicitly assumed that the initial velocity of the particle v0 is such
thatw(t0) = 0 holds. Eq. (1), however, is the most general form of the MR equation which was derived later [10] and allows
for a general initial particle velocity v0.

Without the memory term and for w(t0) = 0, the MR equation is an ordinary differential equation, whose solutions are
well known to be regular for any smooth ambient velocity fieldu(x, t). Thememory term, however, introduces complications
in the analysis and numerical solution of the equation. It contains an implicit term through the integral with an integrand
depending on the particle acceleration ÿ. Because of its implicit nature, it is not a priori clear if the MR differential equation
defines a dynamical system, i.e., a process with a well-defined flow map.

Furthermore, when nonzero, the unbounded term w(t0)/
p
t � t0 further complicates Eq. (1), imparting an instanta-

neously infinite force at the initial time. This term is often ignored for convenience, even though its omission imposes a
special constraint on the initial particle velocity that is hard to justify physically [10].

For the above reasons, the memory term has routinely been neglected in studies of inertial particle dynamics (see, e.g.,
Maxey [14], Babiano et al. [15], Haller and Sapsis [16]), until recent studies demonstrated convincingly the quantitative and
qualitative importance of the memory term (see, e.g., [17–19] for experimental and [20–22] for numerical studies).

In addition to theoretical difficulties, thememory term also complicates the numerical treatment of the full MR equation.
This equation is certainly not solvable with standard numerical schemes such as Runge–Kutta algorithms. To this end,
involved schemes have been developed for numerical treatment of the memory term (see Daitche [12] and references
therein).

All these numerical schemes implicitly assume the existence and uniqueness of solutions of the MR equation. The
solutions can indeed be found explicitly for certain simple velocity fields [17,23]. To the best of our knowledge, however,
general existence and uniqueness results have not been proven, and cannot be directly concluded from existing results on
broader classes of evolution equations (see [11,24–26] for related but not applicable results on integro- and fractional-order
differential equations). In the absence of such results, the existence and regularity of solutions for a nonlinear system of
fractional-order differential equation, such as the MR equation, is far from obvious.

Here, we present the first proof of local existence and uniqueness of mild solutions to the full MR equation. The solutions
become classical (strong) solutions to (1) for initial conditions satisfying w(t0) = 0. Moreover, we show that both the mild
and the strong solutions are continuously differentiable with respect to their initial conditions. As a consequence, coherent-
structure detection methods utilizing the derivative of the flow map in the absence of the memory term [27] can also be
employed in the present, more general context.

We startwith re-writing theMRequation as a systemof differential equations (see Eq. (8)) in terms of the particle position
y and the function w defined in (2). Multi-dimensional reformulations of the MR equation have appeared before [12,23,28]
but remained inaccessible to general mathematical analysis due to the implicit dependence of their right-hand sides on ẏ.

Our formulation turns the MR equation into a nonlinear system of fractional-order differential equations in terms of y
and w. The standard techniques for the proof of existence and uniqueness of solutions of such equations assume Lipschitz
continuity of the right hand side with respect to the (y, w) variable [11,26]. This assumption fails for the MR equation (see
the termMu(y, t)w in Eq. (8)). Therefore, as discussed in Section 3, modifications to the standard function spaces, estimates
and assumptions are required.
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2. Preliminaries

We start by letting the velocity of the inertial particle be v : R+ ! Rn, and use this notation to rewrite (1) as a first-order
system of equations
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with the function w(t) defined as in (2). The memory term is written as a fractional-order derivative through identity (5).
As earlier, the material derivative D

Dt
.= @t + u · r denotes a time derivative along a fluid trajectory. Also d

dt
.= @t + v · r

denotes temporal differentiation along the inertial trajectory y(t). The two derivatives are related by the identity

d
dt

= D
Dt

+ (v � u) · r. (7)

For notational simplicity, we will also use the dot symbol for the derivative d
dt .

We rewrite (6) in the more compact form
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ẇ = �µ w � Mu(y, t)w � µ1/2 d
dt

Z t

t0

w(s)p
t � s

ds + Bu(y, t), (8)

where

Au = u + �

6
µ�11u,

Bu =
✓

3R
2

� 1
◆ ✓

Du
Dt

� g
◆

+
✓

R
20

� 1
6

◆

�µ�1 D
Dt
1u � �

6
µ�1

h

ru + �

6
µ�1r1u

i

1u,

Mu = ru + �

6
µ�1r1u,

are known functions in terms of the fluid velocity u. The terms Au, Bu : D ⇥ R+ ! Rn represent vector fields while Mu :
D ⇥ R+ ! Rn⇥n is a tensor field. Note that Eq. (8) is linear in w and, for a typical fluid velocity field u, non-linear in y. The
corresponding initial conditions for (8) are y(t0) = y0 and w(t0) = w0 := v0 � u(y0, t0) � �

6 µ�11u(y0, t0).

3. Local existence and uniqueness

3.1. Approach

This section is devoted to proving the local existence and uniqueness of solutions of (8) under certain smoothness
assumptions on the fluid velocity field u.

Integrating equation (8) formally, one obtains
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where, for notational simplicity, we have omitted the dependence of y andw on y0 andw0. Amild solution of theMR equation
is a function (y(t), w(t)) that satisfies the integral equation (9). The same solution is also a strong solution if it is smooth
enough to also satisfy the differential form (8) of the MR equation.

Eq. (9) can be viewed as a fixed point problem for the map
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where � = (⇠ , ⌘) 2 R2n. We will establish the existence of mild solutions to the MR equations by showing that P has a
unique fixed point on an appropriate function space under general regularity assumptions on the fluid velocity u.
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3.2. Set-up

We will use | · | to denote the Euclidean norm on Rm with m 2 {n, 2n}. The induced operator norm of a square matrix
acting on Rm is denoted by k · k. For continuous functions defined on Rm, we denote the supremum norm by k · k1.

Let XT ,K denote the set of continuous functionsmapping from the interval [t0, t0+T ] into Rm that are uniformly bounded
by the constant K > 0:

XT ,K := {f 2 C([t0, t0 + T ]; Rm) : kf k1  K}. (11)

Since (C([t0, t0 + T ]; Rm), k · k1) is a Banach space, the space (XT ,K , k · k1) is a complete metric space, for XT ,K is a closed
subset of C([t0, t0 + T ]; Rm).

First, we would like to show that P defined in (10) maps XT ,K into itself. To this end, we need the following assumption.

(H1) The velocity field u(x, t) is three times continuously differentiable in its arguments over the domain D ⇥ R+, and its
partial derivatives (including mixed partials) are uniformly bounded and Lipschitz continuous up to order three.

3.3. Existence and uniqueness of solutions

Under assumption (H1), we obtain the following result:

Lemma 1. Assume that (H1) holds. Then for any y0 2 D and w0 2 Rn, there exist K > 0 large enough and � > 0 small enough,
such that, for any T 2 [0, �], we have P : XT ,K ! XT ,K .

Proof. Under assumption (H1), the vector fields Au, Bu : D ⇥ R+ ! Rn and the tensor field Mu : D ⇥ R+ ! Rn⇥n are
continuous and uniformly bounded. Specifically, there exists a constant Lb > 0 such that

kAuk1, kBuk1, kMuk1  Lb.

Then, based on Eq. (10), the quantity P� satisfies the estimate
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Then, for any T 2 [0, �], kP�k1  K given that � 2 XT ,K . The continuity of P� : [t0, t0 + T ] ! R2n follows from
assumption (H1) after one notes that, for ⌘ 2 XT ,K , the term

R t
t0

⌘(s)p
t�sds in (10) is continuous in t . ⇤

We establish the existence of a unique solution to (9) by proving that P is a contraction mapping on XT ,K and hence has
a unique fixed point.

Lemma 2. Assume that (H1) holds. Then there exists � > 0 such that, for any T 2 [0, �] and�1,�2 2 XT ,K ,

kP�1 � P�2k1  1
2
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Proof. Note that as a direct consequence of assumption (H1), themaps Au(·, t), Bu(·, t) : D ! Rn andMu(·, t) : D ! Rn⇥n

are Lipschitz continuous, uniformly in time, i.e., there is a constant Lc > 0 such that, for any t 2 [t0, t0 + T ] and y1, y2 2 D ,

|Au(y1, t) � Au(y2, t)|  Lc |y1 � y2|,
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kMu(y1, t) � Mu(y2, t)k  Lc |y1 � y2|. (12)

Let�1,�2 2 XT ,K , where�i = (⇠i, ⌘i). Using the above inequalities, we have
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+ |Mu(⇠1(s), s)⌘1(s) � Mu(⇠2(s), s)⌘2(s)| + |Bu(⇠1(s), s) � Bu(⇠2(s), s)|
i
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Therefore, one can take � > 0 small enough such that, for any t 2 [t0, t0 + �],

|(P�1)(t) � (P�2)(t)|  1
4

(k⇠1 � ⇠2k1 + k⌘1 � ⌘2k1)
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Here, for the last inequality, we have used the fact that k⇠k1 +k⌘k1 < 2k�k1. Hence, we obtain the contraction property

kP�1 � P�2k1  1
2
k�1 � �2k1,

as claimed. ⇤

Lemma 2 leads to our main existence result.

Theorem 1 (Local Existence of Mild Solutions). Assume that (H1) holds. Then for any initial condition (y0, w0) 2 D ⇥ Rn,
there exists � > 0 such that over the time interval [t0, t0 + �], the integral equation (9) has a unique solution (y(t), w(t)) with
(y(t0), w(t0)) = (y0, w0). As a consequence, the function y(t) is a mild solution of the original form (1) of the Maxey–Riley
equation.

Proof. By Lemma 2, for any y0 2 D and w0 2 Rn, there exist K > 0 and � > 0 such that for any T 2 [0, �], the map
P : XT ,K ! XT ,K is a contraction on the complete metric space XT ,K . As a consequence, the mapping P has a unique fixed
point (y, w) : [t0, t0 + �] ! D ⇥ Rn. By the definition of P , this fixed point solves the integral equation (9), and hence is a
mild solution of (8), or equivalently, of (1). ⇤

Remark 1. The solution y(t) is, in general, not a strong solution of (1), because it is only once continuously differentiable at
t = t0, and hence only satisfies the integrated form of w(t). The following example demonstrates the lack of existence of
strong solutions in a simple case where the w-equation in (8) can be solved explicitly.

Example 1. For a uniform fluid at rest (i.e., u ⌘ 0), if we neglect the effect of gravity (i.e., set g = 0), Au, Bu andMu in Eq. (8)
vanish. Then, the equation for w reduces to

ẇ + µ1/2 d
dt

Z t

0

w(s)p
t � s

ds + µw = 0,

with the initial time t0 = 0 and an arbitrary initial condition w(0) = w0. Taking the Laplace transform of this equation, we
obtain

W (p) = 1
p + Gp1/2 + µ

w0,
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where G = p
9Rµ/2 andW denotes the Laplace transform ofw. For R < 8/9, the inverse Laplace transform yields the exact

solution

w(t) = w0

n

e�↵t cos(�t) + G2

2�
e�↵t sin(�t) � Gp

⇡
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ds
o

,

with ↵ = µ(1 � 9R/4) and � = G
p

µ(1 � 9R/8). Defining

c(s) = e�↵s cos(�s) � (↵/�)e�↵s sin(�s),

and taking the derivative of w with respect to time t , we obtain

ẇ(t) = w0

n

✓
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✓
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2�
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e�↵t sin(�t) � Gp
⇡

Z t
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ċ(s)p
t � s

ds � Gp
⇡ t

o

.

For any T > 0, the first three terms in ẇ are continuous over the time interval [0, T ]. The last term Gp
⇡ t , however, is dis-

continuous at t = 0. This concludes our example showing that, in general, the MR equation with non-zero initial condition
w0 only admits mild solutions. ⌅

As mentioned in the Introduction, the original form of the MR equation [3] assumes the initial velocity w(t0) = 0. This
assumption is mathematically convenient, as it removes the unbounded term from (1). Physically, however, the assumption
is artificial, and cannot be enforced at the release of an inertial particle.

Nevertheless, w(t0) = 0 has been routinely assumed in various studies of the MR equation (see, e.g., Babiano et al. [15],
Candelier et al. [17], Daitche and Tél [20]) as an important special case. We now show that under this special assumption,
the MR equation in fact has strong solutions.

Theorem 2. Assume that (H1) holds. Then for any y0 2 D , there exists � > 0 such that, over the time interval [t0, t0 + �], the
Maxey–Riley equation (1) has a unique solution satisfying y(t0) = y0 and w(t0) = 0.

Proof. See Appendix. ⇤

3.4. Regularity of solutions

Here we show the differentiability of the solutions of (8) with respect to the initial condition (y0, w0). Assume that a
solution (y(t), w(t)) is differentiable at (y0, w0) and denote the derivative of y and w with respect to (y0, w0) by Dy and
Dw, respectively.

Differentiating (8) formally and integrating in time, we obtain that Dy,Dw : R+ ! Rn⇥2n must satisfy

Dy(t) =
�

In|On
�

+
Z t

t0
[Dw(s) + rAu(y(s), s)Dy(s)] ds,

Dw(t) =
�

On|In
�

+
Z t

t0

h

�µDw(s) � L(y(s), w(s), s)Dy(s) � Mu(y(s), s)Dw(s)

� µ1/2 Dw(s)p
t � s

+ rBu(y(s), s)Dy(s)
i

ds, (13)

where L denotes the n ⇥ n matrix given by

Lij(y(s), w(s), s) =
X

k

@Mik

@yj

�

�

�

�

(y(s),s)
wk(s).

The matrices In and On denote the identity and null matrices on Rn⇥n.
The differentiability of the solution (y, w) with respect to the initial condition (y0, w0), therefore, is equivalent to the

existence and uniqueness of solutions to Eqs. (13). We show that under further regularity assumptions on the fluid velocity
u, a unique solution to these equations does exist. In particular, we need the following assumption:

(H2) The velocity field u(x, t) is four times continuously differentiable in its arguments over the domain D ⇥ R+. Its partial
derivatives (including mixed partials) are uniformly bounded and Lipschitz continuous up to order three.

Theorem 3. Assume that (H2) holds. Then for any y0 2 D and w0 2 Rn, there exists � > 0 small enough such that, a unique
mild solution (y(t), w(t)) of (8) exists over the time interval [t0, t0 + �], and is continuously differentiable with respect to its
initial condition (y0, w0).

Proof. Note that themapP defined by the right hand side of (13) is linear inDy andDw. It follows fromassumption (H2) that
P maps C([t0, t0 + �]; R2n⇥2n) into itself for any � 2 R+. Furthermore, for � > 0 small enough, the map P is a contraction
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C([t0, t0 +�]; R2n⇥2n) by an argument similar to Lemma 2 (omitted here for brevity). Therefore, there are unique derivatives
Dy,Dw : [t0, t0 + �] ! Rn⇥2n that belong to the function space C([t0, t0 + �]; Rn⇥2n) and solve Eqs. (13). ⇤

Remark 2. For the special casew(t0) = 0, one can similarly show that the strong solution (y(t), w(t)) is differentiable with
respect to the initial position y0.

4. Conclusion

We have proved the local existence and uniqueness of solutions of the Maxey–Riley (MR) equation. In the most general
case, the solutions exist only in a weak sense. This is consistent with the physics of the problem, because an initial velocity
mismatch between the ambient fluid and the particle creates a vorticity layer around the particle with high drag. This drag
force is modeled in the MR equation by a term proportional to 1/

p
t � t0, which is singular but integrable. As a result, the

solution of the MR equation is continuous but only differentiable for t > t0.
In theoretical and numerical investigations of the MR equation, it is routinely assumed that the relative velocity term

w(t) is chosen in a way that eliminates the infinitely large force at time t = t0. We have shown that under this assumption,
a unique strong solution exists to the MR equation. Moreover, both the mild and the strong solutions are differentiable with
respect to their initial conditions.

Remaining challenges for the MR equations include global existence and uniqueness and an asymptotic analysis of the
solutions, at least for small inertial particles.
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Appendix. Proof of Theorem 2

First, we slightly reformulate the MR equation. If continuously differentiable solutions to Eq. (8) exist, then the integral
term in the equation can be re-written as

d
dt

Z t

t0

w(s)p
t � s

ds =
Z t

t0

ẇ(s)p
t � s

ds,

since w(t0) = 0. As a consequence, the MR equation (8) can be written as

ẏ = w + Au(y, t),

ẇ = �µ w � Mu(y, t)w � µ1/2
Z t

t0

ẇ(s)p
t � s

ds + Bu(y, t). (14)

Now, we would like to show that this latter equation, in fact, admits continuously differentiable solutions satisfying
y(t0) = y0 and w(t0) = 0. Our proof will differ from the proof of Theorem 1. The main ideas follow those of Burton and
Purnaras [25], although the details are quite different. In particular, the results of [25] do not apply in our context.

We need to show that there are unique bounded continuous functions �, : [t0, t0 + T ] ! Rn such that the functions

y(t) = y0 +
Z t

t0
�(s)ds,

w(t) =
Z t

t0
 (s)ds, (15)

solve Eq. (14). For notational simplicity, we omit the dependence of y, w, � and  on the initial condition y0.
Substituting y(t) and w(t) in (14), we obtain

�(t) =
Z t

t0
 (s)ds + Au

✓

y0 +
Z t

t0
�(s)ds, t

◆

,

 (t) = �µ

Z t

t0
 (s)ds � Mu

✓

y0 +
Z t

t0
�(s)ds, t

◆

Z t

t0
 (s)ds

� µ1/2
Z t

t0

 (s)p
t � s

ds + Bu

✓

y0 +
Z t

t0
�(s)ds, t

◆

. (16)
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The right-hand sides of these equations define a mapping P as

(P�)(t) =

0

B

B

B

@

Z t

t0
 (s)ds + Au(y(t), t)

�
Z t

t0



µ + µ1/2
p
t � s

+ Mu(y(t), t)
�

 (s)ds + Bu(y(t), t)

1

C

C

C

A

, (17)

where� = (�, ) 2 R2n and y(t) = y0 +
R t
t0
�(s)ds.

We will show that the mapping P has a unique fixed point in XT ,K for some T , K > 0. Then the existence of the above
mentioned solution of (14) follows directly.

The following lemma shows that for an appropriate choice of T and K , P maps XT ,K into itself.

Lemma 3. Assume that (H1) holds. Then for K � 4Lb and any y0 2 D , there exists � > 0 such that, for any T 2 [0, �], we have
P : XT ,K ! XT ,K .

Proof. The continuity of P� : R+ ! R2n follows from assumption (H1). We also have

|P�(t)| 
�

�

�

�

Z t

t0
 (s)ds + Au(y(t), t)

�

�

�

�

1
+

�

�

�

�

�
Z t

t0



µ + µ1/2
p
t � s

+ Mu(y(t), t)
�

 (s)ds + Bu(y(t), t)
�

�

�

�

1
 k k1

�

(t � t0) + µ(t � t0) + 2µ1/2pt � t0 + Lb(t � t0)
�

+ 2Lb
 k�k1

�

(t � t0) + µ(t � t0) + 2µ1/2pt � t0 + Lb(t � t0)
�

+ 2Lb

 K
�

(t � t0) + µ(t � t0) + 2µ1/2pt � t0 + Lb(t � t0)
�

+ K
2

.

If � > 0 is small enough such that � + µ� + 2µ1/2
p
� + Lb�  1/2, we have kP�k1  K ; and hence P� 2 XT ,K for any

T 2 [0, �]. ⇤

We now fix the constant K = 4Lb in the following. We show that the map P is a contraction mapping on the space XT ,K .

Lemma 4. There is � > 0 such that, for any T 2 [0, �] and�1,�2 2 XT ,K ,

kP�1 � P�2k1  1
2
k�1 � �2k1

Proof. Let�1,�2 2 XT ,K where�i = (�i, i)
>. We have

|(P�1)(t) � (P�2)(t)| 
Z t

t0
| 1(s) �  2(s)|ds + |Au(y1(t), t) � Au(y2(t), t)|

+ µ

Z t

t0
| 1(s) �  2(s)|ds + µ1/2

Z t

t0

| 1(s) �  2(s)|p
t � s

ds

+
�

�

�

�

Mu(y1(t), t)
Z t

t0
 1(s)ds � Mu(y2(t), t)

Z t

t0
 2(s)ds

�

�

�

�

+ |Bu(y1(t), t) � Bu(y2(t), t)|


Z t

t0
| 1(s) �  2(s)|ds + Lc

Z t

t0
|�1(s) � �2(s)|ds

+ µ

Z t

t0
| 1(s) �  2(s)|ds + µ1/2

Z t

t0

| 1(s) �  2(s)|p
t � s

ds

+ Lb
Z t

t0
| 1(s) �  2(s)|ds + Lc

�

(t � t0)k 2k1
�

Z t

t0
|�1(s) � �2(s)|ds

+ Lc
Z t

t0
|�1(s) � �2(s)|ds,
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where we have used the Lipschitz continuity of Au(·, t), Bu(·, t) and Mu(·, t). We also used the fact that
�

�

�

Mu(y1, t)
Z t

t0
 1(s)ds � Mu(y2, t)

Z t

t0
 2(s)ds

�

�

�

=
�

�

�

Mu(y1, t)
Z t

t0
( 1(s) �  2(s))ds + (Mu(y1, t) � Mu(y2, t))

Z t

t0
 2(s)ds

�

�

�

 kMu(y1, t)k
Z t

t0
| 1(s) �  2(s)|ds + kMu(y1, t) � Mu(y2, t)k

Z t

t0
| 2(s)|ds.

As a result, we obtain

|(P�1)(t) � (P�2)(t)| 
⇣

(t � t0) + µ(t � t0) + 2µ1/2pt � t0 + Lb(t � t0)
⌘

k 1 �  2k1

+
⇣

2Lc(t � t0) + LcK(t � t0)2
⌘

k�1 � �2k1.

Therefore, one can take � > 0 small enough such that, for any t 2 [t0, t0 + �],

|(P�1)(t) � (P�2)(t)|  1
4

(k�1 � �2k1 + k 1 �  2k1)

 1
2
k�1 � �2k1.

Hence we get the contraction property

kP�1 � P�2k1  1
2
k�1 � �2k1. ⇤

Since P is a contraction mapping on the complete metric space XT ,K , it has a unique fixed point in XT ,K . Therefore, there
are unique continuous functions �, : [t0, t0 +�] ! Rn such that the functions y, w defined by (15) solve theMR equation
(14) and satisfy y(t0) = y0 and w(t0) = 0. This concludes the proof of Theorem 2.
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