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Abstract Recent experimental and numerical observations have shown the signif-
icance of the Basset–Boussinesq memory term on the dynamics of small spherical
rigid particles (or inertial particles) suspended in an ambient fluid flow. These observa-
tions suggest an algebraic decay to an asymptotic state, as opposed to the exponential
convergence in the absence of the memory term. Here, we prove that the observed
algebraic decay is a universal property of the Maxey–Riley equation. Specifically, the
particle velocity decays algebraically in time to a limit that is O(ϵ)-close to the fluid
velocity, where 0 < ϵ ≪ 1 is proportional to the square of the ratio of the particle
radius to the fluid characteristic length scale. These results follow from a sharp ana-
lytic upper bound that we derive for the particle velocity. For completeness, we also
present a first proof of the global existence and uniqueness of mild solutions to the
Maxey–Riley equation, a nonlinear system of fractional differential equations.
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1 Introduction

The motion of a solid body transported by an ambient Newtonian fluid flow can, in
principle, be determined by solving the Navier–Stokes equations with appropriate
moving boundary conditions (Galdi et al. 2008; Cartwright et al. 2010). The resulting
partial differential equations are, however, too complicated for mathematical analysis.
Their numerical solutions are computationally expensive and yield little insight.

For the motion of a small spherical rigid body (or inertial particle), however, one
can derive a reliable model by accounting for all the forces exerted on the particle due
to the solid–fluid interaction. Stokes (1851) made the first attempt to obtain such a
model for the oscillatory motion of an inertial particle. Later, Basset (1888), Boussi-
nesq (1885) and Oseen (1927) studied the settling of a solid sphere under gravity in
a quiescent fluid. The resulting equation is known as the BBO equation. To study the
motion of inertial particles in nonuniform unsteady flow, Tchen (1947) wrote the BBO
equation in a frame of reference moving with the fluid, accounting for various inertial
forces that arise in this frame.

The exact form of the forces exerted on the particle has been debated and corrected
by several authors (see, e.g., Corrsin and Lumley 1956). A widely accepted form of
the forces was derived by Maxey and Riley (1983) from first principles. The resulting
equation, with the later correction of Auton et al. (1988) to the added mass term, is
usually referred to as the Maxey–Riley (MR) equation.

To describe the MR equation, let u : D × R+ → Rn denote a known velocity
field describing the flow of a fluid in an open spatial domain D ⊆ Rn . Here, n = 2
or n = 3 for two- and three-dimensional flows, respectively. A fluid trajectory is
then the solution of the differential equation ẋ = u(x, t) with some initial condition
x(t0) = x0. An inertial particle, however, follows a different trajectory y(t) ∈ D. The
particle velocity v(t) = ẏ(t) satisfies the Maxey–Riley equation

ρp v̇ =ρ f
Du
Dt

(Force exerted by the undisturbed fluid)

+ (ρp − ρ f )g (Buoyancy force)

− 9νρ f

2a2

(

v − u − a2

6
$u

)

(Stokes drag)

− ρ f

2

[

v̇ − D
Dt

(

u+ a2

10
$u

)]

(Added mass term)

− 9ρ f

2a

√
ν

π

[∫ t

t0

ẇ(s)√
t − s

ds + w(t0)√
t − t0

]
(Basset−Boussinesq memory term),

(1)

where

w (t) = v (t) − u (y(t), t) − a2

6
$u(y(t), t).

Here, ρp and ρ f are, respectively, the particle and fluid densities; ν is the kinematic
viscosity of the fluid; and a is the particle radius, and g is the constant gravitational
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acceleration vector. The initial conditions for the inertial particle are given as y(t0) =
y0 and v(t0) = v0, for some t0 ∈ R+. The material derivative D

Dt
:= ∂t +u ·∇ denotes

the time derivative along a fluid trajectory.
The right-hand side in (1) contains the various forces exerted on the particle. These

forces have varying orders of magnitude. In particular, the Basset–Boussinesq mem-
ory term, accounting for the lagging boundary layer developed around the sphere, is
routinely neglected on the grounds that it is insignificant compared with the Stokes
drag and added mass (see, e.g., Maxey 1987; Balkovsky et al. 2001). Recent exper-
imental and numerical studies, however, show that the memory term influences the
dynamics of inertial particles significantly and hence cannot be generally neglected
(Candelier et al. 2004; Toegel et al. 2006; Garbin et al. 2009; Daitche and Tél 2011;
Guseva et al. 2013; Daitche and Tél 2014). This is the case even for heavy particles,
for which the memory term becomes very small (Daitche and Tél 2011).

The numerical simulations of Daitche and Tél (2011) and Guseva et al. (2013),
in particular, show the position of the particle to converge to its asymptotic limit
algebraically. This is fundamentally different from the exponential convergence arising
in the absence of the memory term (Rubin et al. 1995; Mograbi and Bar-Ziv 2006;
Haller and Sapsis 2008). In the present paper, we prove that the observations ofDaitche
and Tél (2011) and Guseva et al. (2013) are a universal and generic property of the
MR equation with memory, irrespective of the fluid flow carrying the particles.

The MR equation was originally derived under the assumption w(t0) = 0.
Later, Maxey (1993) modified the original formulation to lift this unphysical restric-
tion, obtaining Eq. (1) above. This equation can be written as a system of nonlinear
fractional differential equations (Kobayashi and Coimbra 2005; Farazmand andHaller
2014) in terms of the particle position y and relative velocity w [see Eq. (7) below].
While there exist fundamental results for special classes of fractional differential equa-
tions (see, e.g., Podlubny 1998), the MR equation does not fit in any of these classes
and requires separate treatment.

Even the existence and uniqueness of solutions to the MR equation is unclear. Only
recently have Farazmand and Haller (2014) proved the existence, uniqueness and
regularity of its local mild solutions. They also showed that only under the unphysical
assumption w(t0) = 0 does the MR equation admit strong solutions. Here, we prove
global existence and uniqueness of mild solutions to the MR equation.

We start by rewriting the MR equation in dimensionless form as a system of non-
linear fractional differential equations [see Eq. (7)] in terms of the particle position
y and the function w, as defined by (1). After rescaling time, we compute the solu-
tion of the MR equation in the limit of infinitesimally small particles and then get
integral equations for the MR equation for arbitrary particle sizes. We then use these
integral equations to prove an analytic upper bound for the velocity v of a small par-
ticle of radius a. Next, we show that v decays algebraically to an asymptotic state
that is O( a

2

L2 )-close to the fluid velocity u, where L is a characteristic length scale of
the fluid flow. We demonstrate these properties numerically on the double gyre flow
model of Shadden et al. (2005). Finally, we construct a specific continuation method
to prove global existence and uniqueness of mild solutions for the Maxey–Riley
equation.
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2 Preliminaries

2.1 The MR Equation in Dimensionless Variables

We rewrite the Maxey–Riley Eq. (1) in a form more appropriate for mathematical
analysis. First, we rescale space, velocities and time using the characteristic length
scale L , the characteristic velocity U and the characteristic time scale T = L/U .
Using the resulting dimensionless variables y )→ y/L , u )→ u/U, v )→ v/U and
t )→ t/T and rearranging various terms, wewrite (1) as a system of first-order integro-
differential equations

dy
dt

= w + Au(y, t),

dw
dt

+ κµ1/2 d
dt

(
1√
π

∫ t

t0

w(s)√
t − s

ds
)
+ µw = −Mu(y, t)w + Bu(y, t),

y(t0) = y0, w(t0) = w0, (2)

with

w(t) = v(t) − u(y(t), t) − γ

6
µ−1$u(y(t), t), (3a)

Au = u+ γ

6
µ−1$u,

Bu =
(
3R
2

− 1
)(

Du
Dt

− g
)
+
(

R
20

− 1
6

)
γµ−1 D

Dt
$u (3b)

− γ

6
µ−1
[
∇u+ γ

6
µ−1∇$u

]
$u,

Mu = ∇u+ γ

6
µ−1∇$u.

In deriving (2), we used the identity

d
dt

∫ t

t0

w(s)√
t − s

ds =
∫ t

t0

ẇ(s)√
t − s

ds + w(t0)√
t − t0

,

obtained from carrying out the differentiation and then integrating by parts [see, e.g.,
(Podlubny 1998, Chapter 2)].

The dimensionless parameters in (3) are defined as

R = 2ρ f

ρ f + 2ρp
, µ = R

St
, κ =

√
9R
2
, γ = 9R

2Re
, (4)

where the Stokes (St) and the fluid Reynolds (Re) numbers are defined as

St = 2
9

( a
L

)2
Re, Re = UL

ν
. (5)

Note that the vector fieldsAu,Bu : D×R+ → Rn and the tensor fieldMu : D×R+ →
Rn×n are known functions of the fluid velocity field u.
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Equation (3a) defines a simple one-to-one correspondence between the particle
velocity v and the variable w. Once a solution (y,w) of (2) is known, the particle
velocity can readily be obtained as v(t) = w(t)+ u(y(t), t)+ (γµ−1/6)$u(y(t), t).
In the absence of the Faxén correction term (γµ−1/6)$u, the variable w = v − u is
the relative velocity between the particle and the fluid.

The integral term in (2) is proportional to the Riemann–Liouville fractional deriv-
ative of order 1/2, which is defined as

d1/2w
dt1/2

= d
dt

(
1√
π

∫ t

t0

w(s)√
t − s

ds
)
, (6)

with t ≥ t0 (Podlubny 1998). Using this notation, we write the initial value problem
(2) in the more compact form

dy
dt

= w + Au(y, t),

dw
dt

+ κµ1/2 d
1/2w
dt1/2

+ µw = −Mu(y, t)w + Bu(y, t),

y(t0) = y0, w(t0) = w0. (7)

2.2 Setup and Assumptions

Weuse |·| to denote the Euclidean norm onRm withm ∈ {n, 2n}. The induced operator
norm of a square matrix acting on Rm is denoted by ∥·∥. We denote the supremum
norm of functions by ∥·∥∞.

For future use, we also define the function space

Xt,h
K =

{
f ∈ C

(
[t, t + h] ;Rm) : ∥ f ∥∞ ≤ K

}
. (8)

Since Xt,h
K is a closed subset of C([t, t + h];Rm), the metric space (Xt,h

K , ∥·∥∞) is a
complete metric space.

For the MR Eq. (2) [or its original form (1)] to make sense, the partial derivatives
of the fluid velocity ∂α

x u(x, t) and ∂t∂
β
x u(x, t), with |α| ≤ 3 and |β| ≤ 2 must exist.

The Faxén corrections (the terms involving $u) are routinely neglected in prac-
tice (Maxey 1987; Balkovsky et al. 2001). Upon neglecting the Faxén terms, the
regularity assumption for the fluid velocity relaxes to the existence of the first-order
partial derivative with respect to space and time, that is, |α| ≤ 1 and β = 0. In the
analysis presented here, we do not neglect the Faxén terms.

For proving the global existence and uniqueness of solutions of theMRequation,we
need the above partial derivatives to be uniformly bounded and Lipschitz continuous
in space and time. In particular, we assume the following.

(H1) The velocity field u(x, t) is smooth enough such that the partial derivatives ∂α
x u

with |α| ≤ 3 and the mixed partial derivatives ∂t∂
β
x u with |β| ≤ 2 defined over

the domain D × R+ are uniformly bounded.
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(H2) The velocity field u(x, t) is smooth enough such that the partial derivatives ∂α
x u

with |α| ≤ 3 and the mixed partial derivatives ∂t∂
β
x u with |β| ≤ 2 defined over

the domain D × R+ are uniformly Lipschitz continuous.

Remark Neglecting the Faxén terms, assumptions (H1) and (H2) relax, respectively,
to the uniform boundedness and uniform Lipschitz continuity of the fluid velocity u
and acceleration Du

Dt
.

Assumption (H1) implies the existence of constants LA, LB, LM > 0 such that

∥Au∥∞ ≤ L A, ∥Bu∥∞ ≤ LB, ∥Mu∥∞ ≤ LM . (9)

Assumption (H2), on the other hand, implies the existence of a constant Lc>0 such that

|Au(y1, τ ) − Au(y2, τ )| ≤ Lc|y1 − y2|,
|Bu(y1, τ ) − Bu(y2, τ )| ≤ Lc|y1 − y2|,

∥Mu(y1, τ ) − Mu(y2, τ )∥ ≤ Lc|y1 − y2|,
(10)

for all y1, y2 ∈ D and all τ ∈ R+. The supremum norms in (9) are taken over all
(y, τ ) ∈ D × R+.

Farazmand and Haller (2014) proved the following local existence and uniqueness
result.

Theorem 1 (Farazmand and Haller 2014) Assume that (H1) and (H2) hold. For any
(y0,w0) ∈ D × Rn, there exists a time increment δt > 0 such that, over the time
interval [t0, t0 + δt), the Maxey–Riley equation (7) has a unique solution (y(t),w(t))
satisfying (y(t0),w(t0)) = (y0,w0).

2.3 The MR Equation Does Not Generate a Dynamical System

For ordinarydifferential equations, onemayconstruct global solutions by continuation.
In particular, given a local solution (y(t),w(t)) existing on a time interval [t0, t0+$1),
one shows that the solution does not blow up at t = t0 + $1. Then initializing the
ordinary differential equation from time t = t0 + $1 with initial condition (y(t0 +
$1),w(t0 + $1)), the local existence and uniqueness result is reapplied to show that
the solution can be extended to an interval [t0, t0 + $1 + $2). Repeating the above
steps, the solution can be extended to a time interval [t0, t0 + $1 + $2 + $3 + · · · ).
Finally, one shows that the infinite series $1 + $2 + $3 + · · · diverges and infers
global existence and uniqueness.

This continuation argument assumes that the flow map Ft
t0 : (y0,w0) )→

(y(t),w(t)) has the semigroup property Ft
t0 = Ft

t1 ◦ Ft1
t0 for all t0 < t1 < t . Due to the

fractional derivative, however, the flow map of the MR Eq. (7) is not a semigroup.
To see this, consider the solution (y(t),w(t)) starting from (y0,w0) at time t0.

Due to the Basset history force (that is, the fractional derivative in (7)), the trajectory
(y(t),w(t)) for t > t1 is influenced by its entire past history. A trajectory initialized
from (y(t1),w(t1)) is, however, ignorant of this history and therefore will follow a
different path (see Fig. 1 for an illustration).
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Fig. 1 A trajectory (y(t),w(t))
of the MR equation (7)
initialized from (y0,w0) and
passing through (y(t1),w(t1)) at
time t1 (green curve). A
trajectory initialized from
(y(t1),w(t1)) at time t1 (red
curve) does not follow the
trajectory (y(t),w(t)) (Color
figure online)

As a result, the usual continuation methods for ordinary differential equations do
not apply here. In Sect. 4.1, we construct a specific continuation suitable for the MR
equation.

2.4 Rescaling Time

We introduce a rescaling of time that further simplifies the forthcoming analysis.
Dividing the w component of Eq. (2) by µ and letting ϵ := 1

µ , we get

dy
dt

= w + Au(y, t),

ϵ
dw
dt

+ ϵ1/2κ
d1/2w
dt1/2

+ w = −ϵMu(y, t)w + ϵBu(y, t),

y(t0) = y0, w(t0) = w0. (11)

Note that by (5), ϵ = St
R = 2

9R

( a
L

)2 Re. Since the MR equation holds for small
particles (a ≪ L), ϵ is necessarily a small and positive parameter: 0 < ϵ ≪ 1. Thus
the limit ϵ → 0 (a → 0) describes the limit of infinitesimally small particles.

Rescaling time as t = t0 + ϵτ , we have

dỹ
dτ

= ϵ
[
w̃ + Ãu(ỹ, τ )

]
,

dw̃
dτ

+ κ
d1/2w̃
dτ 1/2

+ w̃ = ϵ
[
−M̃u(ỹ, τ )w̃ + B̃u(ỹ, τ )

]
,

ỹ(0) = y0, w̃(0) = w0, (12)

where

ỹ(τ ) = y(t0 + ϵτ ), w̃(τ ) = w(t0 + ϵτ ),

Ãu(ỹ, τ ) = Au(y, t0 + ϵτ ), B̃u(ỹ, τ ) = Bu(y, t0 + ϵτ ), M̃u(ỹ, τ )
= Mu(y, t0 + ϵτ ),

and

d1/2w̃
dτ 1/2

= d
dτ

(
1√
π

∫ τ

0

w̃(s)√
τ − s

ds
)
.
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The above rescaling of time has been previously used (Rubin et al. 1995; Mograbi
and Bar-Ziv 2006; Haller and Sapsis 2008) for the asymptotic analysis of the MR
equation without memory. It allows us to treat Eq. (12) as a regular perturbation
problem with respect to ϵ, as opposed to treating Eq. (11) as a singular perturbation
problem with respect to ϵ. To see the singular nature of the perturbation, divide the
w(t) equation of (11) by ϵ and take the limit ϵ → 0: The limit will be unbounded. The
regularized ϵ → 0 limit of (12) is unphysical, corresponding to an inertial particle of
zero radius. However, Eq. (12) is physically meaningful for any ϵ > 0.

Note that a unique solution of the initial value problem (IVP) (12) over the time
interval [0, δ) exists if and only if the unscaled IVP (7) has a unique solution over the
time interval [t0, t0+ ϵδ). Therefore, in the following, we study the IVP (12). We will
first analyze the solution of the IVP (12) in the limit ϵ = 0 and then use this solution
to study the IVP (12) for ϵ > 0. For notational simplicity, we omit the tilde signs from
all the variables.

3 Asymptotic Behavior

3.1 ϵ = 0 Limit

We start with the limit ϵ = 0 of Eq. (12), which as discussed in Sect. 2.4 is unphysical.
In this limit, y(τ ) = y0 remains constant for all times, and w(τ ) becomes

dw
dτ

+ κ
d1/2w
dτ 1/2

+ w = 0, w(0) = w0, (13)

where κ is the dimensionless parameter defined by (4). Equation (13) is a linear
equation tractable by Laplace transforms (Gorenflo and Mainardi 1997; Podlubny
1998). This leads to the following result.

Theorem 2 The general solution of (13) is given byw(τ ;w0) = ψκ(τ )w0, where the
positive, scalar function ψκ : [0,∞) → R+ has the following properties.

1. ψκ is given by the inverse Laplace transform

ψκ(τ ) = L−1

[
1(√

s + λ+
) (√

s + λ−
)
]

(τ ), (14)

where

λ± = κ ±
√

κ2 − 4
2

.

2. ψκ obeys the asymptotic decay rate

ψκ(τ ) ∼ κ

2
√

π
τ−3/2 +O

(
τ−5/2

)
as τ → ∞. (15)

3. There is a differentiable function φκ : [0,∞) → R+ such that ψκ = −φ′
κ .
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Fig. 2 Functions φκ and ψκ = −φ′
κ . The functions are evaluated for κ = 0.5 (blue), κ = 1 (green),

κ = 1.5 (red), κ = 2 (cyan) and κ = 2.5 (magenta) (Color figure online)

4. The functions ψκ and φκ are smooth over ∈ (0,∞) and completely monotonic
decreasing, i.e.,

(−1) jψ ( j)
κ (τ ) ≥ 0, (−1) jφ( j)

κ (τ ) ≥ 0, j = 0, 1, 2, . . . , ∀τ > 0

5. ψκ(0) = 1 and φκ(0) = 1.

Proof See “Appendix 1” for the proof of 1 and 2 and the explicit calculation of ψκ .
For the proof of 3, 4 and 5, see the properties demonstrated for uδ(t)(ψκ(τ )) and
u0(t)(φκ(τ )) in Gorenflo and Mainardi (1997, Section 4). ⊓3

Figure 2 shows the functions φκ and ψκ computed by numerically inverting their
Laplace transforms. It follows from properties 2 and 3 from Theorem 2 that φκ decays
asymptotically as τ−1/2, as confirmed by the numerics.

Since the properties of Theorem 2 hold for any κ > 0, we omit the dependence of
ψκ and φκ on κ and write ψ and φ, respectively.

3.2 ϵ > 0 Case

Now we analyze the general case of ϵ > 0, i.e.,

dy
dτ

= ϵ
[
w + Au(y, τ )

]

dw
dτ

+ κ
d1/2w
dτ 1/2

+ w = ϵ
[
−Mu(y, τ )w + Bu(y, τ )

]
,

y(0) = y0, w(0) = w0, (16)

which is Eq. (12) with tilde signs omitted. Solutions of (16) satisfy the integral equa-
tions
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y(τ ) = y0 + ϵ

∫ τ

0
w(s)+ Au(y(s), s) ds,

w(τ ) = ψ(τ )w0 + ϵ

∫ τ

0
ψ(τ − s)

[
−Mu(y(s), s)w(s)+ Bu(y(s), s)

]
ds,

(17)

where ψ(τ ) is given by (14) and satisfies the properties listed in Theorem 2.
This integral equation is essentially a variation-of-constants formula. The y-

equation in (17) is obtained by formal integration of the dy/dτ equation of (16). For
the w-equation, let W(s) denote the Laplace transform of w(τ ). Taking the Laplace
transform of (16) yields

W(s) = w0(√
s + λ+

) (√
s + λ−

) + L
[
−Mu(y(τ ), τ )w(τ )+ Bu(y(τ ), τ )

]
(s)

(√
s + λ+

) (√
s + λ−

) .

Taking the inverse Laplace transform, we obtain the w-component of Eq. (17) where
ψ(τ ) is given by (14).

Definition 1 A mild solution of the IVP (16) is a function (y,w) : [0, δ) → R2n that
solves the integral equation (17). The existence time δ > 0 may be infinite.

Using the integral equation (17), we find an upper bound for |w(τ ; y0,w0)| and its
asymptotic limit.

Theorem 3 Assume that (H1) holds and ϵ < 1/LM. Let (y,w) : [0, δ) → R2n be a
mild solution of (16)where [0, δ) is themaximal interval of existence of such solutions.
(i) An explicit envelope for |w(τ ; y0,w0)| is given by

|w(τ ; y0,w0)| ≤ |w0|

⎡

⎣
∞∑

j=1

(ϵLM ) j−1ψ∗ j (τ )

⎤

⎦+ ϵLB (1 − φ(τ ))+ ϵ2LMLB

1 − ϵLM
,

(18)
where ψ∗ j is the j-fold convolution of ψ . Moreover, the series converges uni-
formly and is bounded for all τ .

(ii) |w(τ ; y0,w0)| is bounded for all τ ∈ [0, δ). Specifically,

sup
0≤τ<δ

|w(τ ; y0,w0)| ≤ |w0| + ϵLB

1 − ϵLM
. (19)

(iii) If δ = ∞, the asymptotic limit of w satisfies

lim sup
τ→∞

|w(τ ; y0,w0)| ≤ ϵLB

1 − ϵLM
. (20)

Proof See “Appendix 2”.

In deriving the upper envelope (18) and the subsequent upper bounds (19) and (20),
we have made several upper estimates. The natural question arising is how sharp these
estimates are. In the following section, among other things, we show with a numerical
example that these bounds are sharp by showing that they can be saturated.
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3.3 Numerical Verification

We illustrate the results of Theorem 3 with an example. For the fluid flow, we use the
double gyre model of Shadden et al. (2005). It is a two-dimensional velocity field with
the stream function

H(x, y, t) = A sin(π f (x, t)) sin(πy), (21)

where

f (x, t) = α sin(ωt)x2 + (1 − 2α sin(ωt))x .

We let A = 0.1, ω = π and α = 0.01.
The HamiltonianH defines the velocity field u = (−∂yH, ∂xH)⊤ which we use to

solve the initial value problem (7) using the numerical scheme developed by Daitche
(2013). We will neglect the Faxén corrections, such that Au = u, Bu =

( 3R
2 − 1

) Du
Dt

and Mu = ∇u (recall, however, that our main results also hold in the presence of the
Faxén corrections).

For the parameters of the inertial particle, we let St = R/100 resulting in µ =
100 (or ϵ = 0.01). This corresponds to a small inertial particle (with respect to the
underlying flow) since by Eq. (5) the Stokes number is proportional to the square of the
particle’s radius. Three values of R are considered here: R = 2/3 (neutrally buoyant
particle,ρ f = ρp), R = 1/3 (aerosol,ρ f < ρp) and R = 1 (bubble,ρ f > ρp). In each
case, we release 15 trajectories with initial conditions y0 uniformly distributed in the
domain [0.2, 1.8]× [0.2, 0.8] (i.e., y0 ∈ {0.2, 0.6, 1.0, 1.4, 1.8}× {0.2, 0.5, 0.8}) and
identical initial relative velocities w0 = (10, 10)⊤. We picked large initial velocities
in this example to show the algebraic decay of |w| more clearly.

We take the most conservative choices of the upper bounds LB and LM , i.e., LB =
∥Bu∥∞ and LM = ∥Mu∥∞. For the neutrally buoyant particle, i.e., R = 2/3, Bu
vanishes identically, resulting in LB = 0. The norm ∥Mu∥∞ is, however, independent
of R, and we have LM ≃ 1.4237. Theorem 3 therefore implies that for a neutrally
buoyant particle, |w(t)| must decay to zero asymptotically, which agrees with our
numerical result (see Fig. 3a). Physically, this implies that the inertial particle trajectory
converges to a fluid trajectory. In the case of neutrally buoyant particles, the theoretical
envelope and the numerical solutions almost coincide. This is because for R = 2/3,
the two terms proportional to LB vanish in the estimate (18), apparently making the
upper bound close to optimal. A close-up view is shown in the inset of Fig. 3a.

Interestingly, for the neutrally buoyant particle, the evolution of the relative velocity
magnitude |w| seems to be independent of the initial positions y0 as all 15 curves
coincide in Fig. 3a.

For the bubble (R = 1) and the aerosol (R = 1/3), we have LB ≃ 0.1207
and LM ≃ 1.4237. The resulting envelope (18) and the asymptotic upper bound
ϵLB/(1 − ϵLM ) are also shown (red and black dashed curves, respectively) which
shows a perfect agreementwith the numerical results. In plotting the envelopes,O(ϵ2)-
terms are neglected. The numerical solutions come very close to the analytic envelope
of Theorem 3 (part (i)), indicating the tightness of the estimates.
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(a) (b)

(c)

Fig. 3 Decay of the relative velocity magnitude |w(t)| for R = 2/3 (a), R = 1/3 (b) and R = 1 (c).
The dashed red lines mark the analytic envelope from Theorem 3 part (i). The dashed black lines mark the
asymptotic upper bound of |w|, i.e., ϵLB/(1 − ϵLM ). The initial value of |w(t)| is 10

√
2 in all cases. In

order to focus on the asymptotics, we only plot the graphs for t ≥ 10−2 (Color figure online)

The upper envelope (18) depends on functions φ and ψ which in turn depend on
the parameter κ = √

9R/2. The parameter R is governed by the ratio between the
particle density ρp and the fluid density ρ f . As this ratio varies, the upper envelope
also changes. Owing to the algebraic transient decay of φ andψ (see Fig. 2), however,
the envelope exhibits an algebraic decay regardless of the value of R. Figure 4 shows
the behavior of the upper envelope (neglectingO(ϵ2)-terms) for the double gyre para-
meters and various values of R. For neutrally buoyant particle (R = 2/3), there is a
monotonic decay with the algebraic rate t−3/2. For other values of R, the envelope
decays to the asymptotic upper bound. There is still a transient algebraic decay whose
rate varies, depending on the parameter R, between t−1.7 and t−1.2.

4 Global Existence and Uniqueness

In this section, we prove the global existence and uniqueness of mild solutions to the
full Maxey–Riley equation (1) with the Faxén correction terms. In particular, we show
that the equivalent reformulation (16) admits unique mild solutions for all times, that
is, the integral equations (17) have a unique solution over R+.
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Fig. 4 Upper envelope (18),
neglectingO(ϵ2)-terms, for
R = 1/10 (blue), R = 1/3
(black), R = 2/3 (red), R = 1
(magenta) and R = 19/10
(green) (Color figure online)

The existence of a unique local solution follows from Theorem 1. Specifically, the
integral equation (17) has a unique solution over the time interval [0, δt/ϵ), where δt
is the same time window as in Theorem 1, with the ϵ appearing due to the rescaling
t = t0 + ϵτ as introduced in Sect. 2.4. For notational convenience, we let δ = δt/ϵ.

As discussed in Sect. 2.3, the usual continuation methods used for ordinary dif-
ferential equations do not apply to fractional differential equations. Therefore, we
construct a specific continuation method suitable for the MR equation, which is based
on the continuation method presented in the work of Kou et al. (2012) for a different
class of fractional differential equations. We then show that this continuation can be
repeated indefinitely to extend the solutions to the time interval [0,∞). Our approach
can be summarized in the following steps.

Step 1. Showing that the local solution of the integral equation (17), defined on [0, δ),
is well defined at time τ = δ.

Step 2. Defining a suitable integral operator F over an appropriate complete metric
space whose fixed points extend the local solution of (17) from [0, δ) to
[0, δ + h), for a suitable constant h > 0.

Step 3. Showing that the operator F has at least one fixed point.
Step 4. Showing that this continuation is unique.
Step 5. Showing that one can repeat steps 1 to 4 indefinitelywith the samecontinuation

window h. That is, the local solution of (17) can be continued uniquely to
R+.

The above steps prove the following global existence and uniqueness theorem.

Theorem 4 Assume that (H1) and (H2) hold and ϵ < 1/LM. Then the MR equa-
tion has unique, continuous, mild solutions. That is, for any (y0,w0) ∈ R2n, there
exists a unique, continuous function (y,w) : [0,∞) → R2n satisfying (17) and
(y(0),w(0)) = (y0,w0).
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4.1 Continuation of the Local Solution

Let us denote the local solution of the MR equation, whose existence and uniqueness
is guaranteed by Theorem 1, by zloc = (yloc,wloc). We first begin by showing that this
local solution defined on [0, δ) is well defined at τ = δ.

Lemma 1 The local solution zloc : [0, δ) → R2n of the MR equation is well defined
at τ = δ and the limit limτ→δ− zloc(τ ) is given by

zloc(δ)

=
(
y0 + ϵ

∫ δ
0 wloc(s)+ Au(yloc(s), s) ds

ψ(δ)w0 + ϵ
∫ δ
0 ψ(δ − s)

[
−Mu(yloc(s), s)wloc(s)+ Bu(yloc(s), s)

]
ds

)

.

(22)

Proof See “Appendix 3”. ⊓3

Let (yloc,wloc) : [0, δ) → R2n be the local solution of (17) whose existence and
uniqueness is guaranteed by Theorem 1. Define

y(τ ) = 1[0,δ)(τ )yloc(τ )+ 1[δ,δ+h)(τ )ξξξ(τ ), (23a)

w(τ ) = 1[0,δ)(τ )wloc(τ )+ 1[δ,δ+h)(τ )ηηη(τ ), (23b)

where 1A : R → {0, 1} is the indicator function of the set A ⊂ R. Note that for
τ ∈ [0, δ), (y,w) coincides with the local solution (yloc,wloc). Assuming (y,w) is a
continuation of this local solution to [0, δ + h), upon substitution in (17), we have

ηηη(τ ) = y0 + ϵ

∫ δ

0
wloc(s)+ Au(yloc(s), s) ds + ϵ

∫ τ

δ
ηηη(s)+ Au(ξξξ(s), s) ds,

ξξξ(τ ) = ψ(τ )w0 + ϵ

∫ δ

0
ψ(τ − s)

[
−Mu(yloc(s), s)wloc(s)+ Bu(yloc(s), s)

]
ds

+ ϵ

∫ τ

δ
ψ(τ − s) [−Mu(ξξξ(s), s)ηηη(s)+ Bu(ξξξ(s), s)] ds,

(24)
for τ ∈ [δ, δ + h).

Therefore, (y,w) solves the integral equation (17) and hence is amild solution of the
MR equation if and only if the integral equation (24) has a solution. To show that such
a solution exists, we solve the following fixed point problem. Let " = (ξξξ ,ηηη) ∈ X δ,h

K .
Define the operator F : X δ,h

K → C([δ, δ + h);R2n) by

(F") (τ ) = "0 (τ )+
(

ϵ
∫ τ
δ ηηη(s)+ Au(ξξξ(s), s) ds

ϵ
∫ τ
δ ψ(τ − s) [−Mu(ξξξ(s), s)ηηη(s)+ Bu(ξξξ(s), s)] ds

)
,

(25)
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where

"0 (τ )

=
(
y0 + ϵ

∫ δ
0 wloc(s)+ Au(yloc(s), s) ds

ψ(τ )w0 + ϵ
∫ δ
0 ψ(τ − s)

[
−Mu(yloc(s), s)wloc(s)+ Bu(yloc(s), s)

]
ds

)

.

(26)

Note that "0 depends only on the local solution (yloc,wloc) of the Maxey–Riley
equation and hence is independent of ". We show that the operator F maps X δ,h

K to
itself (with K and h to be determined) and has a unique fixed point.

4.2 Existence of the Continuation

Proposition 1 Assume that (H1) holds. There exist constants h, K > 0 such that the
operator F defined in (25) maps X δ,h

K to itself and has at least one fixed point.

Proof For any h, K > 0 and " ∈ X δ,h
K the function F" : [δ, δ + h) → R2n is

clearly continuous, that is, F" ∈ C
(
[δ, δ + h);R2n). We choose h, K > 0 such that

F" ∈ X δ,h
K , i.e., ∥F"∥∞ ≤ K . To this end, note that for any h > 0 and τ ∈ [δ, δ+h),

we have

|(F")(τ )| ≤ |"0(τ )| + ϵ

∫ δ+h

δ
|ηηη(s)| + |Au(ξξξ(s), s)| ds

+ ϵ

∫ δ+h

δ
ψ(τ − s) [|Mu(ξξξ(s), s)ηηη(s)| + |Bu(ξξξ(s), s)|] ds.

Take the supremum over τ ∈ [δ, δ + h) and use the bounds on ∥Mu∥∞, ∥Bu∥∞,
∥Au∥∞, |w(τ )|, ∥ψ∥∞ and ∥ηηη∥∞ to get

∥F"∥∞ ≤ ∥"0∥∞ + ϵ

∫ δ+h

δ
∥ηηη∥∞ + ∥Au∥∞ ds

+ ϵ

∫ δ+h

δ

[
∥Mu∥∞∥ηηη∥∞ + ∥Bu∥∞

]
ds

≤ ∥"0∥∞ + ϵh (K + L A)+ ϵh (LMK + LB) .

For
h ≤ 1

2ϵ (LM + 1)
,

we have
∥F"∥∞ ≤ ∥"0∥∞ + K

2
+ LB + L A

2 (LM + 1)
.
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Since "0 : [0,∞) → R2n is a continuous function, there exists 0 < K ′ < ∞ such
that

∥"0∥∞ := sup
δ≤τ<δ+h

|"0(τ )| = K ′

Choosing

K ≥
[
K ′ + LB + L A

2 (LM + 1)

]
,

we have ∥F"∥∞ ≤ K .
In short, with any h, K > 0 satisfying

h ≤ 1
2ϵ (LM + 1)

, K = K ′ + LB + L A

2 (LM + 1)
, (27)

the operator F maps X δ,h
K to itself.

To prove the existence of a fixed point for the operator F : X δ,h
K → X δ,h

K , we use
Schauder’s fixed point theorem:

Theorem 5 (Schauder’s Fixed Point Theorem) Let X be a real space, D ⊂ X non-
empty, closed, bounded and convex. Let F : D → D be a continuous, compact
operator. Then F has a fixed point.

The space X δ,h
K is nonempty, closed, bounded and convex. Therefore, to apply

Schauder’s fixed point theorem, it remains to show thatF : X δ,h
K → X δ,h

K is continuous
and compact. For this, we need the following lemma.

Lemma 2 The operator F is continuous and maps X δ,h
K to a family of equicontinuous

functions in X δ,h
K .

Proof The proof of the continuity of F : X δ,h
K → X δ,h

K is straightforward and is
therefore omitted here. We prove the equicontinuity of its range in “Appendix 4”. ⊓3

By Arzela–Ascoli theorem, therefore, the operator F : X δ,h
K → X δ,h

K is compact.
Hence, F satisfies all the conditions of Schauder’s theorem and has at least one fixed
point. This concludes the proof of Proposition 1. ⊓3

4.3 Uniqueness of the Continuation

We now show that the continuation constructed in Sects. 4.1 and 4.2 is unique.

Proposition 2 Assume that (H1) and (H2) hold and ϵ < 1/LM. There exists h > 0
such that the continuation (24) of the local solution of the MR equation is unique.

Proof Suppose (y1,w1) and (y2,w2) are two different continuations of the local solu-
tion of (17) from [0, δ) to [δ, δ + h). That is

y1(τ ) = 1[0,δ)(τ )yloc(τ )+ 1[δ,δ+h)(τ )ξξξ1(τ ), w1(τ )

= 1[0,δ)(τ )wloc(τ )+ 1[δ,δ+h)(τ )ηηη1(τ ),

123

Author's personal copy



J Nonlinear Sci (2015) 25:1225–1255 1241

and

y2(τ ) = 1[0,δ)(τ )yloc(τ )+ 1[δ,δ+h)(τ )ξξξ2(τ ), w2(τ )

= 1[0,δ)(τ )wloc(τ )+ 1[δ,δ+h)(τ )ηηη2(τ ),

where, as discussed in Sect. 4.1, (ξξξ i ,ηηηi ) solves the integral equations

(
ξξξ i (τ )

ηηηi (τ )

)
= "0(τ )+ ϵ

(∫ τ
δ ηηηi (s)+ Au(ξξξ i (s), s) ds∫ τ
δ ψ(τ − s) [−Mu(ξξξ i (s), s)ηηηi (s)+ Bu(ξξξ i (s), s)] ds

)
,

(28)
for i ∈ {1, 2}.

Define "i = (ξξξ i ,ηηηi ) and bound |"1 − "2| by

|"1(τ ) − "2(τ )| ≤ ϵ

∫ δ+h

δ
|ηηη1(s) − ηηη2(s)| + |Au(ξξξ1(s), s) − Au(ξξξ2(s), s)| ds

+ ϵ

∫ δ+h

δ
|ψ(τ − s)| (|Mu(ξξξ1(s), s)(ηηη1(s) − ηηη2(s))|

+ |ηηη2(s)||Mu(ξξξ1(s), s) − Mu(ξξξ2(s), s)|) ds,

+ ϵ

∫ δ+h

δ
|ψ(τ − s)||Bu(ξξξ1(s), s) − Bu(ξξξ2(s), s)| ds,

(29)
where we wrote |Mu(ξξξ1(s), s)ηηη1(s) − Mu(ξξξ2(s), s)ηηη2(s)| as

|Mu(ξξξ1(s), s)(ηηη1(s) − ηηη2(s))+ (Mu(ξξξ1(s), s) − Mu(ξξξ2(s), s))ηηη2(s)|.

Since (yi ,wi ) solves the MR equation [0, δ + h), inequality (19) applies and we
have

∥ηηηi∥∞ := sup
δ≤τ<δ+h

|ηηηi (τ )| ≤ sup
0≤τ<δ+h

|wi (τ )| ≤ |w0| + ϵLB

1 − ϵLM
, i ∈ {0, 1}.

Taking the supremum over τ ∈ [δ, δ + h) on both sides of (29) and using the above
upper bound on ∥ηηηi∥∞, we get

∥"1 − "2∥∞ ≤ ϵh [Lc∥ηηη1 − ηηη2∥∞ + Lc∥ξξξ1 − ξξξ2∥∞]

+ ϵh [LM∥ηηη1 − ηηη2∥∞

+ Lc

( |w0| + ϵLB

1 − ϵLM

)
∥ξξξ1 − ξ2∥∞ + Lc∥ξξξ1 − ξξξ2∥∞

]
,

≤ 2hϵ

[
3Lc + LM + Lc

( |w0| + ϵLB

1 − ϵLM

)]
∥"1 − "2∥∞.

Taking h > 0 small enough, one obtains ∥"1 − "2∥∞ ≤ 1
2∥"1 − "2∥∞ which,

in turn, implies the uniqueness of the solution: "1 = "2. The time window h can for
instance be chosen as
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h = 1
2
min

⎛

⎝ 1
ϵ(LM + 1)

,
1

2ϵ
[
3Lc + LM + Lc

(
|w0|+ϵLB
1−ϵLM

)]

⎞

⎠ , (30)

which also respects the inequality (27). With this h, therefore, the continuation (24)
is unique. ⊓3

Remark The above analysis is a contraction mapping argument. It is, therefore, tempt-
ing to use the Banach fixed point theorem (instead of the Schauder’s fixed point
theorem) in order to obtain the existence and uniqueness of the continuation (24) at
once. TheBanach fixed point theorem, however, does not apply here. This is because in
proving the above contraction property, we made use of inequality (19) which applies
to the mild solutions of the MR equation. As a result, it was necessary to show the
existence of continuation (24) first. Otherwise, inequality (19) does not apply and the
estimates used in the above contraction argument fail.

So far we have proved the existence of a unique mild solution to the MR equation
over the time interval [0, δ + h) with h given in (30). The steps taken in Sects. 4.1,
4.2 and 4.3 can be applied to this extended local solution to prove the existence and
uniqueness of a mild solution over the time interval [0, δ + 2h). This is because the
continuation window h is independent of the constants K and δ from the complete
metric space X δ,h

K .
Applying this argument repeatedly extends the mild solution of the Maxey–Riley

equation from its local interval of existence and uniqueness [0, δ) to [0, δ+nh], for any
n ∈ N. Thus the solution can be extended uniquely to [0,∞). This proves Theorem 4.

5 Summary and Discussion

Motivated by the recent observations on the relevance of thememory effects on inertial
particle dynamics, we have derived global existence and asymptotic decay results for
the Maxey–Riley equation in the presence of the Basset–Boussinesq memory term.
This memory term, a fractional derivative of order 1/2 (Daitche (2013), Farazmand
and Haller (2014)), greatly complicates the analytical and numerical treatment of the
equation. While the behavior of the solutions has been well understood in the absence
of the memory term (Rubin et al. 1995; Mograbi and Bar-Ziv 2006; Haller and Sapsis
2008; Sapsis and Haller 2010), no global analytic results have been available for the
full equation with memory.

We have proved that the solutions converge asymptotically to a trapping region
where the particle velocity is O(ϵ)-close to the fluid velocity. Here, ϵ is proportional
to (a/L)2 where a is the particle radius and L is the characteristic length scale of the
fluid flow. This result holds for 0 < ϵ ≪ 1 small enough which translates into a ≪ L
(see Theorem 3 for the exact statement of the assumption). This assumption is not
restrictive since the MR equation is only valid under the very same condition a ≪ L
(Maxey and Riley 1983).

We also derived an upper envelope for the transient dynamics. This envelope
exhibits an algebraic decay to the asymptotic state, hence confirming the numeri-
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cal observations of Daitche and Tél (2011), Guseva et al. (2013) and Daitche and Tél
(2014) in a more general framework. We showed with an example that this envelope
can be saturated and therefore our upper estimates are sharp.

Upon neglecting the memory term, the convergence to the asymptotic limit is
exponential (Rubin et al. 1995; Mograbi and Bar-Ziv 2006; Haller and Sapsis 2008).
Therefore, the Basset–Boussinesq memory fundamentally alters the behavior of the
inertial particles and cannot be readily neglected. From a mathematical point of view,
the memory term also fundamentally changes the structure of the equation. In the
absence of memory, the Maxey–Riley equation is an ordinary differential equation,
generating a dynamical system. The memory term turns the equation into an integro-
differential equation that does not generate a dynamical system.

Our asymptotic results are only applicable if the Maxey–Riley equation possesses
global solutions. Because of the particular coupling and nonlinearity of the equation,
available results on fractional differential equations do not guarantee the existence
and uniqueness of global solutions to the Maxey–Riley equation. To this end, we have
included here the first proof of the existence and uniqueness of global solutions to the
Maxey–Riley equation. As already pointed out by Farazmand and Haller (2014), the
particle velocity is not differentiable at the initial time but is continuous for all times.

Acknowledgments We would like to thank Anton Daitche for his help with implementing the numerical
scheme of Daitche (2013).

Appendix 1: Proof of Theorem 2

Consider the fractional differential equation

dw
dτ

+ κ
d1/2w
dτ 1/2

+ w = 0, (31)

with w(0) = w0 as initial condition. Let W(s) = (L [w]) (s) denote the Laplace
transform of w (τ ). Since

(
L
[
dw
dτ

])
(s) = sW(s) − w0

and (
L
[

1√
τ

])
(s) =

√
π

s
,

the Laplace transform of the Riemann–Liouville derivative in (31) has the expression

(
L
[
d1/2w
dτ 1/2

])
(s) = 1√

π

(
L
[∫ τ

0

dw
dτ

1√
τ − ξ

dξ
])

(s)+ 1√
π

(
L
[
w0√

τ

])
(s),

= 1√
π

(
L
[
dw
dτ

])
(s)
(
L
[

1√
τ

])
(s)+ w0√

s
,

= (sW(s) − w0)
1√
s
+ w0√

s
,
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= √
sW(s),

where we used the identity

d
dτ

∫ τ

0

w(s)√
τ − s

ds =
∫ τ

0

ẇ(s)√
τ − s

ds + w(0)√
τ
.

Now we use the Laplace transform on (31) and solve for W(s) to get

W (s) = w0

s + κ
√
s + 1

.

The denominator can be factorized as

W (s) = w0(√
s + λ+

) (√
s + λ−

) ,

where

λ± =

(
κ ±

√
κ2 − 4

)

2
.

Hence the general solution of (31) is

w(τ ;w0) = w0

(

L−1

[
1(√

s + λ+
) (√

s + λ−
)
])

(τ ) (32)

The function w(τ ;w0) is proportional to the Mittag-Leffler function of order 1/2,
which is defined as

E1/2 (−z) = ez
2
erfc z (33)

for any complex number z ∈ C (see, e.g., Bateman et al. 1955, Section 18.1). The
Laplace transform of E1/2 is given by (see Haubold et al. 2011, Eq. 11.13):

(
L
[
E1/2
(
−a

√
z
)])

(s) = 1√
s
(√

s + a
) (34)

for any a ∈ C.
To study the behavior of E1/2 (−z) as z → ∞, we will make use of the asymptotic

expansion of the complementary error function (Abramowitz and Stegun 1972, Eq.
7.1.23):

erfc z ∼ e−z2

z
√

π

(
1 − 1

2z2
+ 3

4z4
+O
(
1
z6

))
. (35)

Substituting in (33), we obtain

E1/2 (−z) ∼ 1
z
√

π

(
1 − 1

2z2
+ 3

4z4
+O
(
1
z6

))
. (36)

123

Author's personal copy



J Nonlinear Sci (2015) 25:1225–1255 1245

The asymptotic expansion of erfc z is valid only if |arg (z)| < 3π
4 (Abramowitz and

Stegun 1972). It also diverges for any finite value of z; its sole purpose is to give the
rate of decay as z → ∞.

The general solution will depend on whether the discriminant of λ±, i.e., κ2 − 4,
is positive, zero, or negative.

Case 1: κ > 2 (R > 16/9)

We have
W (s) = w0(√

s + λ+
) (√

s + λ−
)

or, after some algebra,

W (s) = w0

λ+ − λ−

[
λ+√

s
(√

s + λ+
) − λ−√

s
(√

s + λ−
)
]

.

Invert the two terms in the above expression with the rule (34) to get

w(τ ;w0) =
w0

λ+ − λ−

[
λ+E1/2

(
−λ+

√
τ
)
− λ−E1/2

(
−λ−

√
τ
)]
. (37)

Since κ−
√

κ2 − 4 is always greater than zero, we can use the asymptotic expansion
(36) to find that in the limit τ → ∞,

w(τ ;w0) ∼ w0

λ+ − λ−

[
1√
πτ

(

1 − 1

2λ2+τ

)

− 1√
πτ

(

1 − 1

2λ2−τ

)

+O
(
τ−5/2

)]

,

∼ w0

2
√

π (λ+ − λ−)

(
λ2+ − λ2−
λ2+λ2−

)

τ−3/2 +O
(
τ−5/2

)
,

∼
(

κw0

2
√

π

)
τ−3/2 +O

(
τ−5/2

)
,

(38)

where we used that λ+ + λ− = κ and λ+λ− = 1.

Case 2: κ = 2 (R = 16/9)

We have
W(s) = w0

(√
s + 1

)2 (39)
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or, after a bit of algebra,

W(s) = w0

(
1√

s
(√

s + 1
) − 1

√
s
(√

s + 1
)2

)

= w0

(
1√

s
(√

s + 1
) + 2

d
ds

(
1√
s + 1

))

.

(40)

We can invert the first term in (40) with (34). The second term can be inverted by
using the Laplace transforms (Gorenflo and Mainardi 1997, Equations A.27, A.28
and A.35.) (

L
[

1√
πτ

− E1/2
(
−√

τ
)])

(s) = 1√
s + 1

(41)

and

(L [−τ f (τ )]) (s) = d
ds

(L [ f (τ )])(s). (42)

Thus the inverse Laplace transform of (39) is

w(τ ;w0) = w0

[
E1/2
(
−√

τ
)
(1+ 2τ ) − 2

√
τ√
π

]
. (43)

With the asymptotic expansion (36), we find that in the limit τ → ∞,

w(τ ;w0) ∼ w0

[
1√
πτ

(
1 − 1

2τ
+ 3

4τ 2
+O
(
τ−3
))

+ 2
√

τ√
π

(
1 − 1

2τ
+ 3

4τ 2
+O
(
τ−3
))

− 2
√

τ√
π

]

∼
(
w0√
π

)
τ−3/2 +O

(
τ−5/2

)

(44)

Case 3: 0 < κ < 2 (R < 16/9)

We have
W (s) = w0(√

s + λ+
) (√

s + λ−
)

This is the same Laplace transform as in the case κ > 2, except that λ+ and λ− are
now complex conjugate numbers. The inverse Laplace transform is the same as (37):

w(τ ;w0) =
w0

λ+ − λ−

[
λ+E1/2

(
−λ+

√
τ
)
− λ−E1/2

(
−λ−

√
τ
)]
. (45)

The quotients
λ+

λ+ − λ−
= 1

2

(
1 − i

κ√
4 − κ2

)
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and

− λ−
λ+ − λ−

= 1
2

(
1+ i

κ√
4 − κ2

)

in (45) are also complex conjugates. Since
(
ew
)
= (ew) and erfcw = erfcw for every

w ∈ C, it follows also that E1/2 (w) = E1/2 (w). Thus

w(τ ;w0) = w0

[(
λ+

λ+ − λ−
E1/2
(
−λ+

√
τ
))

+
(

λ+
λ+ − λ−

E1/2
(
−λ+

√
τ
))
]

or simply twice the real part of w(τ ;w0).

w(τ ;w0) = 2w0 Re
(

λ+
λ+ − λ−

E1/2(−λ+
√

τ )

)
,

= 2w0

[
Re
(

λ+
λ+ − λ−

)
Re
(
E1/2
(
−λ+

√
τ
))

+ Im
(

λ+
λ+ − λ−

)
Im
(
E1/2
(
−λ+

√
τ
))]

.

(46)

It is possible to further simplify (45). It turns out that the Mittag-Leffler function
E1/2 (−z) may be written as (DLMF, Section 7.19)

E1/2 (−z) =
√
4t
π

[U (x, t)+ iV (x, t)] , (47)

where

U (x, t) = 1√
4π t

∫ ∞

−∞

e−(x+s)2/(4t)

1+ s2
ds, (48)

V (x, t) = 1√
4π t

∫ ∞

−∞

se−(x+s)2/(4t)

1+ s2
ds, (49)

z = 1−i x
2
√
t
, x ∈ R, and t > 0. The functions U (x, t) and V (x, t) are known as the

Voigt functions (DLMF, Section 7.19; Olver et al. 2010). If we set

z = 1 − i x

2
√
t

= λ+
√

τ =
(

κ

2
+ i

√
4 − κ2

2

)
√

τ ,

then we can solve for x and t to get

t = 1
κ2τ
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and

x = −
√
4 − κ2

κ
.

Thus

E1/2
(
−λ+

√
τ
)
= 2

κ
√

πτ

[

U

(

−
√
4 − κ2

κ
,

1
κ2τ

)

− iV

(

−
√
4 − κ2

κ
,

1
κ2τ

)]

.

(50)

Hence (46) can be written as

w (τ ;w0) =
2w0

κ
√

πτ

[

U

(

−
√
4 − κ2

a
,

1
κ2τ

)

− κ√
4 − κ2

V

(

−
√
4 − κ2

κ
,

1
κ2τ

)]

.

(51)

For the asymptotic behavior of w(τ ;w0) as τ → ∞, we can repeat the steps as in
the case κ > 2 and obtain

w(τ ;w0) ∼
(

κw0

2
√

π

)
τ−3/2 +O

(
τ−5/2

)
. (52)

This asymptotic expansion, however, is justifiedonly if |arg
(
λ+

√
τ
)
| and |arg

(
λ+

√
τ
)
|

are smaller than 3π
4 . Since λ± =

(
κ ± i

√
4 − κ2

)
/2, we see that this will be the case

whenever κ > 0, since then 0 < arg
(
λ+

√
τ
)
< π

2 and −π
2 < arg

(
λ−

√
τ
)
< 0 (to

see this, note that the two complex numbers λ+ and λ− lie to the right of the imaginary
axis, so that the argument cannot be greater than π/2). Note that since κ = √

9R/2,
the required condition κ > 0 is always satisfied.

Appendix 2: Proof of Theorem 3

We will use the following Gronwall-type inequality.

Lemma 3 (Chu and Metcalf 1967) Let the functions α,β : R+ → R be continuous
and the function K (τ, s) be continuous and nonnegative for 0 ≤ s ≤ τ . If

α(τ ) ≤ β(τ )+
∫ τ

0
K (τ, s)α(s) ds,

then

α(τ ) ≤ β(τ )+
∫ τ

0
H(τ, s)β(s) ds,
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where H(τ, s) =∑∞
j=1 K j (τ, s), K1(τ, s) = K (τ, s) and

K j (τ, s) =
∫ τ

s
K j−1(τ, ξ)K (ξ, s) dξ, j ≥ 2.

Corollary 1 If K (τ, s) = k(τ − s), then one can show that K j (τ, s) = k j (τ − s)
where

k j (τ ) = (k ∗ k ∗ · · · ∗ k)(τ ),

where the convolution is j-fold. As a result, H(τ, s) = h(τ − s) where

h(τ ) =
∞∑

j=1

k j (τ ).

Proof We prove K2(τ, s) = k ∗ k(τ − s). The rest follows similarly by induction.

K2(τ, s) :=
∫ τ

s
K (τ, ξ)K (ξ, s) dξ

=
∫ τ

s
k(τ − ξ)k(ξ − s) dξ

=
∫ τ−s

0
k(τ − s − η)k(η) dη

= k ∗ k(τ − s) =: k2(τ − s),

where we used the change of variable η = ξ − s. ⊓3

Proof of Theorem 3 It follows from the integral equation (17) that

|w(τ ; y0,w0)| ≤ ψ(τ )|w0| + ϵLB (1 − φ(τ ))+ ϵLM

∫ τ

0
ψ(τ − s)|w(s; y0,w0)| ds

(53)
where τ ∈ [0, δ). Using Lemma 3 with α(τ ) = |w(τ ; y0,w0)|, β(τ ) = ψ(τ )|w0| +
ϵLB (1 − φ(τ )) and K (τ, s) = ϵLMψ(τ − s), we get

|w(τ ; y0,w0)| ≤ ψ(τ )|w0| + ϵLB (1 − φ(τ ))

+
∫ τ

0
h(τ − s) [ψ(s)|w0| + ϵLB (1 − φ(τ ))] ds

=
[
ψ(τ )+

∫ τ

0
h(τ − s)ψ(s) ds

]
|w0| + ϵLB (1 − φ(τ ))

+ ϵLB

∫ τ

0
h(τ − s) (1 − φ(s)) ds, (54)
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where h(τ ; ϵ) = ∑∞
j=1 k j (τ ) with k1 = ϵLMψ and k j = k j−1 ∗ k1. Induction on j

leads to the expression

k j = (ϵLM ) jψ∗ j .

Therefore we have the identity

ψ(τ )+
∫ τ

0
h(τ − s)ψ(s) ds = k1(τ )

ϵLM
+
∫ τ

0

∞∑

j=1

k j (τ − s)
k1(s)
ϵLM

ds

= k1(τ )
ϵLM

+ 1
ϵLM

∞∑

j=1

∫ τ

0
k j (τ − s)k1(s) ds

= k1(τ )
ϵLM

+ 1
ϵLM

∞∑

j=1

k j+1(τ )

= 1
ϵLM

∞∑

j=1

k j (τ )

= 1
ϵLM

h(τ ),

where we omitted the dependence of h on the parameter ϵ for notational simplicity.
This shows that

|w(τ ; y0,w0)| ≤ |w0|
ϵLM

h(τ )+ ϵLB (1 − φ(τ ))+ ϵLB

∫ τ

0
h(τ − s) (1 − φ(s)) ds.

(55)
Since 0 ≤ φ(τ ) ≤ 1, we have that (1− φ(τ )) ≤ 1 and therefore the inequality can be
further simplified to

|w(τ ; y0,w0)| ≤ |w0|
ϵLM

h(τ )+ ϵLB [1 − φ(τ )]+ ϵLB

∫ τ

0
h(s) ds. (56)

So far we have assumed that the series
∑∞

j=1 k j =
∑∞

j=1(ϵLM ) jψ∗ j converges
uniformly to a limit h. To prove this, we first show that for any j and τ ≥ 0, 0 ≤
ψ∗ j (τ ) ≤ 1. For j = 1, this property holds since 0 ≤ ψ ≤ 1. For j = 2, we have

0 ≤ ψ∗2(τ ) :=
∫ τ

0
ψ(τ − s)ψ(s) ds ≤

∫ τ

0
ψ(s) ds = 1 − φ(τ ) ≤ 1.

By induction on j , we get 0 ≤ ψ∗ j (τ ) ≤ 1. As a result, (ϵLM ) jψ∗ j ≤ (ϵLM ) j . Since
ϵLM < 1, the series

∑∞
j=1(ϵLM ) j converges. It follows that

|h(τ )| ≤
∞∑

j=1

(ϵLM ) j = ϵLM

1 − ϵLM
(57)
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by summing up the geometric series. By the dominated convergence theorem, the
sequence

∑n
j=1(ϵLM ) jψ∗ j converges uniformly to a function h as n → ∞. Since

for any n, the series
∑n

j=1(ϵLM ) jψ∗ j is continuous, so is the limiting function h.
This shows that h : [0,∞) → R is continuous and h ≥ 0.

Now, observe that

∫ τ

0
h(ξ) dξ =

∫ τ

0

∞∑

j=1

(ϵLM ) jψ∗ j (ξ) dξ

=
∞∑

j=1

(ϵLM ) j
∫ τ

0
ψ∗ j (ξ) dξ

≤
∞∑

j=1

(ϵLM ) j = ϵLM

1 − ϵLM
,

(58)

where we used the uniform convergence of the series and the fact that, for any j ,

0 ≤
∫ τ

0
ψ∗ j (ξ) dξ ≤

(∫ τ

0
ψ∗( j−1)(ξ) dξ

)(∫ τ

0
ψ(ξ) dξ

)

≤ · · · ≤
(∫ τ

0
ψ(ξ) dξ

) j

= (1 − φ(τ )) j ≤ 1,

by repeated application of Young’s inequality for convolutions. This also shows that
h(τ ) → 0 as τ → ∞, since |h|1 < ∞ and h is uniformly continuous.

Using inequality (58) in (56) and the definition of h, we get

|w(τ ; y0,w0)| ≤ |w0|
ϵLM

h(τ )+ ϵLB (1 − φ(τ ))+ ϵ2LMLB

1 − ϵLM
(59)

= |w0|

⎡

⎣
∞∑

j=1

(ϵLM ) j−1ψ∗ j (τ )

⎤

⎦+ ϵLB (1 − φ(τ ))+ ϵ2LMLB

1 − ϵLM
.

(60)

This proves part (i) of the theorem.
Taking the sup of |w(τ ; y0,w0)| over [0, δ), we get

sup
0≤τ<δ

|w(τ ; y0,w0)| ≤ |w0| + ϵLB

1 − ϵLM
, (61)

which proves part (ii) of Theorem 3.
If δ = ∞, then we can take the limitsup of |w|. Using inequality (59), we get the

asymptotic estimate

lim sup
τ→∞

|w(τ ; y0,w0)| ≤ ϵLB

1 − ϵLM
, (62)
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which proves part (iii) of Theorem 3. Here, we used the fact that limτ→∞ h(τ ) = 0
and limτ→∞ φ(τ ) = 0. ⊓3

Appendix 3: Proof of Lemma 1

Let τ1, τ2 ∈ [0, δ). Bound |zloc(τ2) − zloc(τ1)| by

|zloc(τ2) − zloc(τ1)| ≤ |yloc(τ2) − yloc(τ1)| + |wloc(τ2) − wloc(τ1)|

≤ |w0||ψ(τ2) − ψ(τ1)| + ϵ

∫ τ2

τ1

|wloc(s)| + |Au(yloc(s), s)| ds

+ ϵ

∫ τ2

τ1

ψ(τ2 − s)
[
|Mu(yloc(s), s)||wloc(s)|

+ |Bu(yloc(s), s)|
]
ds

+ ϵ

∫ τ1

0
|ψ(τ2 − s) − ψ(τ1 − s)|

[
|Mu(yloc(s), s)||wloc(s)|

+ |Bu(yloc(s), s)|
]
ds

Without loss of generality, suppose τ1 ≤ τ2, so that |ψ(τ2 − s) − ψ(τ1 − s)| =
ψ(τ2−s)−ψ(τ1−s). Taking the infinity normover [0, δ) to bound ∥Mu(yloc(s), s)∥∞,
∥Bu(yloc(s), s)∥∞, ∥Au(yloc(s), s)∥∞ and |wloc(s)| by Theorem 3, we get

|zloc(τ2) − zloc(τ1)| ≤ |w0||ψ(τ2) − ψ(τ1)| + ϵ

(
L A + |w0| + ϵLB

1 − ϵLM

)
|τ2 − τ1|

+ ϵ

[
LM |w0| + LB

1 − ϵLM

](
|τ2 − τ1| +

∫ τ1

0
ψ(τ1 − s) − ψ(τ2 − s) ds

)
.

By the results of Theorem 2, ψ(τ1 − s) − ψ(τ2 − s) = φ′(τ2 − s) − φ′(τ1 − s) ≥ 0.
Integrate and rearrange to obtain

|zloc(τ2) − zloc(τ1)| ≤ |w0||ψ(τ2) − ψ(τ1)| + ϵ

(
L A + |w0| + ϵLB

1 − ϵLM

)
|τ2 − τ1|

+ ϵ

[
LM |w0| + LB

1 − ϵLM

]
(|τ2 − τ1| + φ(τ2) − φ(τ1))

+ ϵ

[
L1|w0| + L2

1 − ϵL1

]
(φ(0) − φ(τ2 − τ1)) .

Since both ψ and φ are uniformly continuous over [0,∞) by Theorem 2, each of
|ψ(τ2) − ψ(τ1)|, |φ(τ2) − φ(τ1)| and |φ(0) − φ(τ2 − τ1)| → 0 as |τ2 − τ1| → 0.
Hence |zloc(τ2) − zloc(τ1)| → 0 as τ1, τ2 → δ−.

Now, ifwe take a sequence {tn} tn ∈ [0, δ) such that limn→∞ tn → δ, then it follows
that {zloc(tn)} is a Cauchy sequence. The sequence is convergent in R2n since R2n is
a complete metric space. The limit is given by the integral equation (16) evaluated at
τ = δ:

123

Author's personal copy



J Nonlinear Sci (2015) 25:1225–1255 1253

zloc(δ)=
(
y0+ϵ

∫ δ
0 wloc(s)+ Au(yloc(s), s) ds

ψ(δ)w0+ϵ
∫ δ
0 ψ(τ − s)

[
−Mu(yloc(s), s)wloc(s)+ Bu(yloc(s), s)

]
ds

)

.

This ends the proof.

Appendix 4: Proof of Lemma 2

Let " = (ξξξ ,ηηη) ∈ X δ,h
K , and τ1, τ2 ∈ [δ, δ + h). Bound |(F")(τ2) − (F")(τ1)| by

|(F")(τ2) − (F")(τ1)| ≤ |"0(τ2) − "0(τ1)| + ϵ

∫ τ2

τ1

|ηηη(s)| + |Au(ξξξ(s), s)| ds

+ ϵ

∫ τ2

τ1

ψ(τ2 − s) [|Mu(ξξξ(s), s)||ηηη(s)| + |Bu(ξξξ(s), s)|] ds

+ ϵ

∫ τ1

δ
(ψ(τ2 − s) − ψ(τ1 − s)) [|Mu(ξξξ(s), s)||ηηη(s)|

+ |Bu(ξξξ(s), s)|] ds,

where

|"0(τ2) − "0(τ1)| ≤ |w0||ψ(τ2) − ψ(τ1)|

+ ϵ

∫ δ

0
|ψ(τ2 − s) − ψ(τ1 − s)|

[
|Mu(yloc(s), s)||wloc(s)|

+ |Bu(yloc(s), s)|
]
ds.

Without loss of generality, suppose τ1 ≤ τ2, so that |ψ(τ2−s)−ψ(τ1−s)| = ψ(τ2−
s) − ψ(τ1 − s). Taking the infinity norm over [δ, δ + h) to bound ∥Mu(ξξξ(s), s)∥∞,
∥Bu(ξξξ(s), s)∥∞, ∥Au(ξξξ(s), s)∥∞, ∥ηηη(s)∥∞ and |wloc(s)| by inequality (19), we get

|(F")(τ2) − (F")(τ1)| ≤ |w0||ψ(τ2) − ψ(τ1)|

+ ϵ

(
LM |w0| + LB

1 − ϵLM

)∫ δ

0
ψ(τ1 − s) − ψ(τ2 − s) ds

+ ϵ(K + LA)|τ2 − τ1| + ϵ (LMK + LB) |τ2 − τ1|

+ ϵ (LMK + LB)

∫ τ1

δ
ψ(τ1 − s) − ψ(τ2 − s) ds.

By the results of Theorem 2, ψ(τ1 − s) − ψ(τ2 − s) = φ′(τ2 − s) − φ′(τ1 − s) ≥ 0.
Finally, integrate and rearrange to obtain

|(F")(τ2) − (F")(τ1)| ≤ |w0||ψ(τ2) − ψ(τ1)|

+ ϵ

(
LM |w0| + LB

1 − ϵLM

)
[(φ(τ1 − δ) − φ(τ2 − δ))

+ (φ(τ2) − φ(τ1))]
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+ ϵ(K + L A)|τ2 − τ1| + ϵ (LMK + LB) |τ2 − τ1|
+ ϵ (LMK + LB) [(φ(0) − φ(τ2 − τ1))

+ (φ(τ2 − δ) − φ(τ1 − δ))] .

Since both ψ and φ are uniformly continuous over [0,∞) by Theorem 2, each of
|ψ(τ2)−ψ(τ1)|, |φ(τ2)−φ(τ1)|, |φ(τ1−δ)−φ(τ2−δ)| and |φ(0)−φ(τ2−τ1)| → 0
as |τ2−τ1| → 0. Hence |(F")(τ2)−(F")(τ1)| → 0 as |τ2−τ1| → 0. This shows that
Fmaps X δ,h

K to a family of uniformly equicontinuous functions inC([δ, δ + h) ;R2n).
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