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We propose here the use of the variational level set methodology to capture Lagrangian vortex

boundaries in 2D unsteady velocity fields. This method reformulates earlier approaches that seek

material vortex boundaries as extremum solutions of variational problems. We demonstrate the

performance of this technique for two different variational formulations built upon different

notions of coherence. The first formulation uses an energy functional that penalizes the deviation

of a closed material line from piecewise uniform stretching [Haller and Beron-Vera, J. Fluid Mech.

731, R4 (2013)]. The second energy function is derived for a graph-based approach to vortex

boundary detection [Hadjighasem et al., Phys. Rev. E 93, 063107 (2016)]. Our level-set formula-

tion captures an a priori unknown number of vortices simultaneously at relatively low computa-

tional cost. We illustrate the approach by identifying vortices from different coherence principles

in several examples. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964103]

Lagrangian Coherent structures (LCSs) such as eddies,

jet streams, and fronts play a vital role in various physi-

cal flows such as the atmosphere and ocean. These coher-

ent structures are time-evolving material surfaces that

split the phase-space into regions with distinct mixing

and transport properties. Recent dynamical systems tech-

niques seek such coherent structure boundaries as sta-

tionary solution of variational problems. Here, we show

how these coherent structure detection methods can be

reformulated such that they can be solved via the varia-

tional level set methodology.

I. INTRODUCTION

It has long been recognized that even temporally aperi-

odic flows admit emergent tracer patterns.3 Generally

referred to as Lagrangian coherent structures (or LCSs),

these patterns are often vortex-type (or elliptic) spatial fea-

tures that remain recognizable over times exceeding typical

time scales in the flow. Such elliptic LCSs arise in a number

of natural phenomena, ranging from Jupiter’s mysterious

Great Red Spot (GRS) to mesoscale eddies that populate

nearly all parts of the global ocean.

Lagrangian (i.e., trajectory-based) vortex detection

approaches can roughly be divided into three categories:

geometric, set-based, and diagnostic methods. Geometric

methods identify vortex boundaries as either outermost non-

filamenting, closed material surfaces1,3,4 or as outermost,

closed material surfaces of equal material rotation.5,6 In con-

trast, set-based approaches aim to detect the interiors of

coherent flow regions, as opposed to the boundaries encom-

passing these regions. Examples include probabilistic

methods for detecting almost-invariant and finite-time coher-

ent sets;7 ergodicity-based methods for time-periodic flows;8

braid-theoretical methods for flows with recurrent trajecto-

ries;9 and trajectory clustering approaches2,10 for aperiodic

flows. Finally, diagnostic approaches propose Lagrangian

scalar fields whose distribution is expected to reflect coher-

ent features of the flow.11,12 Unlike the first two categories,

diagnostic methods offer no well-defined boundaries for their

vortical features. The level-set approach developed here falls

in the first category, focusing on the precise identification of

Lagrangian vortex boundaries from variational principles.

Since its introduction, the level set method has widely

been applied within different fields of science. These include

optimal-time path planning,13 image processing,14–16 two

phase flow simulation,17 fluid-interface problems,18 finite-

time Lyapunov exponent (FTLE) calculation,19 limit cycle

detection,20 and ergodic partitioning of continuous dynami-

cal systems.21 In some of the these applications, level set

functions are used to partition a domain into qualitatively

different regions. The dynamic interfaces separating those

regions are marked by zero sets of a level set function. The

interface motion is often determined by partial differential

equations derived from physical principles, e.g., the propaga-

tion of a flame front in a combusting gas.22 In other cases,

however, the evolution equation of the dynamic interface is

derived from the problem of minimizing a certain energy

functional defined on level sets. These types of level set

methods are known as variational level set methods.23

In this paper, we apply the variational level-set method-

ology to partition fluid domains into coherent and incoherent

regions. Specifically, we present two variational formula-

tions that force the level sets to evolve toward vortex bound-

aries in the flow. Our first formulation seeks boundaries of

coherent Lagrangian vortices as closed material lines that

exhibit nearly uniform stretching. This formulation builds on

the geodesic LCS principle1 that identifies vortex boundaries
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as outermost members of uniformly stretching closed mate-

rial curve families. Our second formulation seeks coherent

vortices as patches of Lagrangian particles that evolve most

tightly under the action of the fluid flow in space-time.2 Both

approaches lead to energy functionals whose minima

describe coherent vortex boundary curves. Using calculus of

variations, we then derive a gradient flow that minimizes

each energy functional over a space of level-set functions.

This gradient flow in turn drives the motion of an arbitrary

closed initial curve, defined implicitly as a zero level set of a

function, toward vortex boundaries.

The variational level set methodology proposed here has

three main advantages. First, it captures an a priori unknown

number of vortices for automated vortex census and tracking

(see also Refs. 2, 5, and 24). Second, the method carries out

the computation over a limited number of pixels; hence, its

computational cost does not scale up drastically with the res-

olution of the computational domain. This feature renders

the level set method a viable approach for tackling high-

resolution data sets. Finally, the methodology can be adapted

to any other variational coherent structure detection princi-

ple. Here, we specifically demonstrate a stretching- and a

graph-based energy functional, but applications to other

coherence principles are equally possible.

The rest of this paper is organized as follows. Section II

briefly reviews the necessary background on the standard

level set method. In Section III, we develop two new formu-

lations for identifying coherent Lagrangian vortices within

the variational level set framework. In Appendix A, we dis-

cuss the numerical aspects of our proposed method along

with a detailed numerical implementation. Finally, we illus-

trate our results on several examples, ranging from analytic

velocity fields to time-dependent two-dimensional observa-

tional data in Section IV.

II. BACKGROUND

A. Implicit boundary representation

We begin by reviewing the standard level set method, as

devised by Osher and Sethian.25 Consider a closed moving

interface as a curve CðsÞ in R2, with s denoting the time of

evolution. Let xðsÞ be the open region that CðsÞ encloses in

the domain X (see Fig. 1). The main idea of the level set

methodology is to embed CðsÞ as the zero-level set of a

higher-dimensional function /ð�; sÞ : X! R, called the
level set function, which is assumed Lipschitz continuous

and satisfies the following conditions:

/ðx; sÞ > 0 for x 2 xðsÞ;
/ðx; sÞ < 0 for x 2 X� ðxðsÞ [ CðsÞÞ;
/ðx; sÞ ¼ 0 for x 2 CðsÞ:

Conversely, if we know /ðx; sÞ, we may locate the interface

by finding the zero level set of CðsÞ ¼ fx : /ðx; sÞ ¼ 0g.
Evolving the interface CðsÞ in s is equivalent to updating

/ðx; sÞ.
A typical example of a level set function is given

by the Signed Distance Function (SDF) measured from

a curve. The SDF computed for CðsÞ gives the distance of

a given point x from the interface CðsÞ, with the sign

determined by whether x is inside or outside xðsÞ. The SDF

has positive values inside CðsÞ, decreases to zero as x
approaches CðsÞ, and takes negative values outside of CðsÞ.
Signed distance functions share all the properties of implicit

functions, such as supporting Boolean operations (union,

intersection, and difference), in addition to the identity

jr/j ¼ 1 (cf. Ref. 26).

B. Front evolution and level set theory

Given an interface CðsÞ, our goal is to produce an equa-

tion for evolving /ðx; sÞ, as the embedding of CðsÞ, through

space and time such that the interface CðsÞ advances toward

the vortex boundaries. The variational level set approach

obtains the equations governing the evolution of CðsÞ by

minimizing a certain energy functional E defined on the level

set function /ðx; sÞ. The energy functional E can depend on

the intrinsic geometric properties of the interface (e.g., cur-

vature) or on extrinsic quantities (e.g., velocity of the fluid

flow). The spatio-temporal partial differential equation

describing the evolution of the level set function is given by

@/
@s
¼ � @E

@/
: (1)

Equation (1) is a gradient flow27 that minimizes the func-

tional E and simultaneously governs the evolution of the

FIG. 1. (a) Level set function and its

zero level contour (red). (b) A curve C,

implicitly represented by the zero level

set of the function /, is the boundary

between the regions fðx; yÞ : /ðx; yÞ >
0g and fðx; yÞ : /ðx; yÞ < 0g.
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interface CðsÞ. There are several advantages associated with

this perspective:

(1) Although /ðx; sÞ remains a smooth function, the level

surface /ðx; sÞ ¼ 0 corresponding to the propagating

interface may develop sharp corners, break apart, or

merge. No elaborate numerical mechanism is required to

handle such topological changes.

(2) The level set function always remains a function on a

fixed grid, which allows for efficient numerical schemes.

(3) Intrinsic geometric properties of the interface CðsÞ are

obtained directly from the level set function /. For

instance, the outward unit normal vector to CðsÞ is given

by n ¼ r/
jr/j, and the mean curvature of each level set is

j ¼ r � r/
jr/j. Other geometric quantities, such as the

arclength jCj and the enclosed area jxj of x, can be

expressed respectively as26,28

jCj ¼
ð

X
dð/ðx; sÞÞjr/ðx; sÞj dx;

jxj ¼
ð

X
Hð/ðx; sÞÞ dx; (2)

where Hð/Þ is the Heaviside function and dð/Þ is its

derivative, the Dirac delta function.

We shall omit the dependence of / on the spatial vari-

able x and the evolution time s for notational simplicity.

III. VARIATIONAL LEVEL-SET-BASED VORTEX
DETECTION

In Section II B, we discussed how to represent a curve

implicitly and advect it with a gradient flow using the level

set method. We have not yet discussed, however, how the

energy function can be constructed to ensure that an arbitrary

closed curve moves towards vortex boundaries. As we shall

see below, such an energy functional should have local min-

ima that mark the desired vortex boundaries. We work out

the derivations of two energy functionals for detecting

vortex boundaries. Our first derivation relies on the uniform

stretching properties of Lagrangian vortex boundaries. Our

second functional characterizes vortex boundaries based on

the sustained proximity of Lagrangian particles in the spatio-

temporal domain these boundaries enclose.

A. Stretching-based formulation

We start with an unsteady velocity field

_x ¼ vðx; tÞ; x 2 U � R2; t 2 ½t0; t1�; (3)

which defines a two-dimensional flow over the finite time

interval ½t0; t1� in the spatial domain U. The flow map

Ft1
t0ðx0Þ : x0 7! xt1 of (3) then maps the initial condition x0 at

time t0 to its evolved position xt1 at time t1. The right

Cauchy–Green (CG) strain tensor associated with (3) is

defined as

Ct1
t0
ðx0Þ ¼ ðrFt1

t0
Þ>rFt1

t0
; (4)

where rFt1
t0 denotes the gradient of the flow map, and

the symbol > indicates matrix transposition. We shall sup-

press the dependence of CG on t0 and t1 for notational

simplicity.

We seek a Lagrangian vortex boundary as an excep-

tional closed material line C around which Oð�Þ-thick coher-

ent belts show minimal variation in the length-averaged

Lagrangian strain over the time interval ½t0; t1�. This view is

motivated by Ref. 1, where the authors seek a perfectly

coherent boundary as a material line exhibiting no leading

order variation in material strain across the Oð�Þ-thick coher-

ent belts. Solutions to this variational problem turn out to be

closed material lines that are infinitesimally uniformly

stretching, i.e., all their subsets stretch by the same amount

between the times t0 and t1. Compared to Ref. 1, we do not

explicitly enforce such uniform stretching but require the

vortex boundary to have as little nonuniformity in its stretch-

ing as possible. In Section IV B, we will apply both the origi-

nal coherence principle1 and its present relaxed version to

identify the boundary of the Great Red Spot (GRS) in

Jupiter’s atmosphere.

To express our stretching-based energy functional math-

ematically, we select a parametrization r(s) with s 2 ½0; r�
for the closed C. We let lt0ðsÞ denote the length of a tangent

vector r0ðsÞ at initial time t0 and lt1ðsÞ denote the length of

the corresponding tangent vector at final time t. These two

tangent lengths can be calculated as29

lt0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr0ðsÞ; r0ðsÞi

p
;

lt1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr0ðsÞ;CðrðsÞÞr0ðsÞi

p
: (5)

The quadratic variation of tangential strain along C is then

given by

E C; c0ð Þ ¼
ð

C

lt1 sð Þ
lt0 sð Þ

� c0

� �2

ds; (6)

where c0 is an unknown constant to be determined.

Expressing the interface C implicitly as the zero level set of

a function /, we obtain

Eð/; c0Þ ¼
ð

X
f ð/;r/; c0Þ dx; (7)

where

f /;r/; c0ð Þ ¼ 1

jr/j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr/; ~Cr/i

q
� c0

� �2

d /ð Þ; (8)

and ~C ¼ R>p=2CRp=2, with Rp=2 referring to a counter-

clockwise rotation by p/2.

Equation (7) is a multivariable functional that can be

minimized via the alternative optimization30 procedure as

follows. First, we fix / to optimize for c0 and then fix c0

for optimizing over /. When / is fixed, we obtain the

optimum

c0 ¼
1

r

ð
X

1

jr/j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr/; ~Cr/i

q
d /ð Þ dx � 1

r

ð
C

lt1 sð Þ
lt0 sð Þ

ds; (9)
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which is just the average relative stretching along the curve C. Keeping this c0 fixed and formally optimizing the energy with

respect to /, we obtain the Euler-Lagrange equation

@E

@/
¼ @f

@/
�r � @f

@r/
¼ 0;

@E

@/
¼ �2d /ð Þr � c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r/
jr/j ;

~Cr/
jr/j

�s

jr/j �

�
r/
jr/j ;

~Cr/
jr/j

�
jr/j

0
BB@

1
CCA r/
jr/j þ 1� c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

r/
jr/j ;

~Cr/
jr/j

�s0
B@

1
CA

~Cr/

jr/j2

2
6666664

3
7777775; (10)

with the Neumann boundary conditions27 imposed on the

domain boundaries.

To find the minimum of E with respect to / numerically,

we parameterize the descent direction by an artificial time

s� 0 and solve the gradient descent eq. (1). The total energy

(7) is then minimized by iterating the contour evolution (1)

in alternation with the update (9) of the average stretching

parameter.

B. Graph-based formulation

In this section, we describe an alternative approach to vor-

tex identification that relies on spectral graph theory31 and a

localized level set model.32 Within this framework, the contour

moves based on the localized energies obtained directly from

nearby particle trajectories. To compute these local energies, we

form small regions around each point along the evolving curve

such that each region is split into a local interior and a local exte-

rior by the curve (see Fig. 2). We then obtain the level-set evolu-

tion equation by optimizing a functional that incorporates these

local energies. Below we describe this approach in more detail

using related concepts from Refs. 2 and 32.

We start by defining a second spatial variable y that also

labels points in X. We then define a mask function B(x, y),

that acts as an indicator function for points x and y within a

distance R32

Bðx; yÞ ¼ 1; if kx� yk < R

0; otherwise:

(

The function B(x, y) is, therefore, equal to 1, when the point

y is within a ball of radius R centered at x, and is equal to 0

otherwise.

The associated localized energy along an evolving curve

C is then given by

Eð/Þ ¼
ð

Xx

dð/ðxÞÞ
ð

Xy

Bðx; yÞ � Fð/ðyÞÞ dy dx; (11)

where F is a function designed to detect the presence of vor-

tex boundaries within a B(x, y) neighborhood of a point on

the evolving curve C. We then optimize the energy func-

tional (11) by taking its first variation with respect to / as

follows (see Ref. 32 for more details)

@E

@/
¼ d / xð Þð Þ

ð
Xy

B x; yð Þ � r/ yð ÞF / yð Þ
� �

dy: (12)

Here, we propose F to be the normalized cut or Ncut33 value

obtained from bi-partitioning of a similarity graph G built

locally in a B(x, y) neighborhood of each point on the evolv-

ing curve C (see Fig. 2). To construct the similarity graph G,

we follow the procedure specified in Ref. 2.

In short, we define the similarity graph G¼ (V, E, W)

through the set of its nodes V ¼ fv1;…; vng, the set of its

edges E � V 	 V between nodes, and a similarity matrix

W 2 Rn	n which associates weight wij to the edge eij

between the nodes vi and vj. In our context, we interpret the

graph nodes V as a set of Lagrangian particles released

within B(x, y), and the associated similarity weights wij as

the inverse of the average Euclidean distance between parti-

cle trajectories. We compute this average Euclidean distance

using the dynamic distance metric.2

The Ncut graph-clustering algorithm seeks to partition

the nodes V into a set A and its complement �A, such that both

of the following hold:

FIG. 2. The optimality of the

Normalized Cut value for three differ-

ent scenarios. (a) Localized graph is

centered in the vicinity of a vortex

boundary (orange). (b) Localized

graph is centered far away from the

vortex boundary. (c) Localized graph

is centered inside the vortex. The

evolving zero level set is illustrated in

dark blue.
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Within-cluster similarity: Nodes in the same cluster are

similar to each other, i.e., particles in a coherent structure

have mutually short dynamical distances.

Between-cluster dissimilarity: Nodes in a cluster are dis-

similar from those in the complementary cluster, i.e., par-

ticles in a coherent structure are expected to have long

dynamical distances from the rest of the particles.

The normalized cut that directly implements the above

(dis)similarity conditions can be formulated mathematically as

Ncut A; �A
� �

¼ cut A; �A
� �

cut A;Vð Þ þ
cut A; �A
� �

cut �A;V
� � ;

cut A; �A
� �

¼
X

u2A;v2 �A

w u; vð Þ: (13)

Additional minor details for implementing the graph cut

algorithm such as sampling trajectories over discrete times

and sparsifying the similarity graph are discussed in detail in

Ref. 2.

With this definition, we now argue that the value of

Ncut is locally minimum when the localized graph is cen-

tered in the vicinity of a vortex boundary. To clarify this fur-

ther, we discuss the optimality of Ncut value for three

plausible scenarios: localized graph is centered in the vicin-

ity of a vortex boundary, inside the mixing region, and inside

a vortex (see Fig. 2). In the first scenario, the value of Ncut

is small since the graph can be split into a cluster A and its

complement �A such that the edges between A and �A have

low weights and the edges within A have high weights. In

contrast, the Ncut value will be large inside the mixing

region since the edges within A will have low weights. We

also expect that the value of Ncut will be large inside the

vortex as well because all nodes are strongly connected. This

means that the evolving level set function / becomes trapped

at vortex boundaries, given that the energy functional (11) is

locally minimal.

IV. NUMERICAL RESULTS

We now summarize our algorithms for detecting coher-

ent Lagrangian vortices using stretching- and graph-based

formulations in the tables entitled Algorithm 1 and

Algorithm 2 below.

ALGORITHM 1: Stretching-Based Level Set Method

1. Initialization:

(a) Generate a sufficiently large closed curve and initialize the level set

function / as a signed distance function /0 measured from this curve.

(b) Construct the active set L0 and populate the neighbor layers Li by

determining the distance of a neighborhood point from the nearest

active point (see Appendix B).

2. Update the zero level set:

(a) Compute the gradient flow using (10) for the active set L0.

(b) Evolve the active set with (1) to time skþ1 ¼ sk þ Ds such that Ds sat-

isfies the Courant-Friedrichs-Lewy (CFL) condition (cf. Appendix A).

3. Update the sparse band: Update the level set location and the correspond-

ing neighboring layers Li.

4. Convergence: Check whether the iterations have converged. If yes, stop;

otherwise go to step 2.

ALGORITHM 2: Graph-Based Level Set Method

1. Initialization:

(a) Generate a sufficiently large closed curve and initialize the level set

function / as an SDF.

(b) Construct the active set L0 and populate the neighbor layers Li.

2. Update the zero level set:

(a) Construct a localized graph for the active set

(b) Calculate the Ncut for each localized graph G such that the graph will

be partitioned into a local interior and a local exterior by the curve.

(c) Compute the gradient flow using (12) for the active set L0.

(d) Evolve the active set to time skþ1 ¼ sk þ Ds such that Ds satisfies the

CFL condition, and the total energy decreases.

3. Update the sparse band: Update the level set location and the correspond-

ing neighboring layers Li.

4. Convergence: Check whether the iterations have converged. If yes, stop;

otherwise go to step 2.

The computational cost of our implementation is primar-

ily due to step 2, i.e., the construction of the Cauchy–Green

strain tensor or the localized graph for the active set. This

accounts for about 75%–95% of the total execution time,

depending on the perimeter length of the zero level set and

the resolution of the grid.

We demonstrate the implementation of Algorithms 1

and 2 on three examples to detect coherent Lagrangian

vortices. In the first example, we consider a periodically

forced pendulum for which we can explicitly confirm our

results using an appropriately defined Poincar�e map. Our

second example, Jupiter’s unsteady wind-velocity field has a

higher-level temporal complexity. In this example, we use a

time-resolved velocity field reconstructed from an enhanced

video footage of Jupiter, capturing Jupiter’s Great Red

Spot (GRS).4 In the third example, we detect coherent

Lagrangian vortices in a quasigeostrophic ocean surface flow

derived from satellite-based sea-surface height (SSH)

observations.34

To implement Algorithms 1 and 2 in the forthcoming

examples, we use a variable-order Adams-Bashforth-Moulton

solver (ODE113 in MATLAB) to advect fluid particles with

the differential equation (3). The absolute and relative toleran-

ces of the ODE solver are chosen as 10�6. In Sections IV C

and IV B, we obtain the velocity field at any given point by

interpolating the velocity data set using bilinear interpolation.

To evolve the level set function, we use an explicit

time-marching scheme governed by the CFL condition (see

Appendix A). We choose the corresponding CFL number

l¼ 0.5 and the regularization parameter e ¼ 10�4, unless

stated otherwise. Moreover, we initiate the level set evolu-

tion with a large enough closed curve that is expected to

encircle all coherent Lagrangian vortices. We then evolve

the level set function inward so as to capture the coherent

vortices individually.

A. Periodically forced pendulum

Consider the periodically forced pendulum

_x1 ¼ x2

_x2 ¼ �sin x1 þ � cos t:

103102-5 A. Hadjighasem and G. Haller Chaos 26, 103102 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  5.78.164.76 On: Wed, 05 Oct 2016

17:27:08



For �¼ 0, the system is integrable and has chains of

alternating elliptic and hyperbolic fixed points, with periodic

orbits encircling the elliptic fixed points, and heteroclinic

orbits connecting adjacent hyperbolic fixed points. These

orbits form invariant sets on the Poincar�e map P :¼ F2p
0 .

For 0 < �
 1, however, the closed invariant sets for P
generally break up. We set the perturbation strength to

�¼ 0.4 and reveal the surviving Kolmogorov–Arnold–Moser

(KAM) regions by constructing the Poincar�e map P for 800

iterations. A similar parameter setting was also studied in

Ref. 2 using a spectral clustering approach. Here, we would

like to capture the surviving KAM regions as coherent struc-

tures using the level set method, as described in Algorithm 1.

To identify these coherent regions, we construct the

level set function / over a uniform grid of 300	 300 points.

The spatial domain ranges from �2.6 to �0.3 in the x1 direc-

tion and from �1.2 to 1.2 in the x2 direction. We compute

the Cauchy–Green strain tensor Ct
t0, with t0 ¼ 0 and

t1 ¼ 800	 2p, over the active set as the level set function

evolves. Hence, the Cauchy–Green strain tensor is just com-

puted for those grid nodes that are visited by the zero level

set over its evolution.

In Fig. 3 (Multimedia view), we show the evolution of

the zero level set toward KAM region boundaries. This

example highlights how the level set method can be used for

detecting multiple structures automatically.

Although Fig. 3(c) shows a good correspondence

between KAM region boundaries and the zero level set,

some minor discrepancies can be observed. Mainly present

in the sharp corners areas, these discrepancies arise for the

following reasons. First, the level set function is constructed

on a uniform grid of finite resolution which can capture the

sharp edges of the elliptic regions only up to a certain degree.

This can be, however, enhanced using adaptive mesh genera-

tion techniques (see, e.g., Refs. 35 and 36). Second, while

the regularization term ej maintains the smoothness of the

interface C during its evolution, it may also undesirably pre-

vent the development of sharp corners in the evolving inter-

face. Third, KAM tori are close to but generally do not

coincide with the infinitesimally uniformly stretching curves

over a finite time interval. Figure 4 shows the execution

times for two major steps of Algorithm 1 as a function of

increasing spatial resolution of the computational domain.

The main computational bottleneck, as shown in the figure,

is computing the Cauchy–Green strain tensor for the active

set. For this reason, we utilized parallel computing techni-

ques with 28 MATLAB workers, with each worker just com-

puting the CG strain tensor for a few active points. At the

same time, we used simple serial computation to update the

zero level set and its corresponding sparse band.

The decay of the energy functional in our numerical

computation is shown Fig. 5. We note that the energy func-

tional decays fast initially due to the strong non-uniform

stretching present in the chaotic region.

B. Jupiter’s wind-velocity field

We use the level set method of Algorithm 1 to uncover

unsteady mixing barriers in an unsteady velocity field

extracted from a video footage of Jupiter’s atmosphere.4 The

video footage is acquired over NASA’s Cassini mission,

covering 24 Jovian days that range from October 31 to

November 9 in the year 2000. To reconstruct the velocity

FIG. 3. (a)–(c) Evolution of the zero level set toward the boundary of KAM regions for the periodically forced pendulum. Shown in the background is a

Poincar�e map constructed for 800 iterations. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4964103.1]

FIG. 4. The plot depicts the runtimes of Algorithm 1 for six different resolu-

tions for the periodically forced pendulum. The CG runtimes represent the

average CPU-times for 28 MATLAB workers used in parallel in these com-

putations. The runtimes for the contour evolution are obtained from serial

computations. The computations were carried out on MATLAB R2015b

installed in a computer with two 3.10 GHz Intel Xeon CPUs.
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field, we apply the Advection Corrected Correlation Image

Velocimetry (ACCIV) method37 that yields a high-density,

time-resolved representation of Jupiter’s wind field at the

cloud deck (see Ref. 4 for more details).

For the level-set computation described in Section III,

we calculate the Cauchy–Green strain tensor field Ct1
t0, with

t0 ¼ 0 and t1 ¼ 24 days, over a uniform grid of 300	 200

points. The spatial domain U ranges from �61.6� W to

�31.6� W in longitude and from �8.9� S to �28.9� S in lati-

tude. Figure 6 (Multimedia view) shows the level set-based

vortex boundary for the Great Red Spot (GRS), superim-

posed on the cylindrical map of Jupiter acquired by NASA’s

Hubble Space Telescope.38

Beyond executing Algorithm 1 to extract the boundary of

the GRS using the level set framework, we also use this exam-

ple to make a comparison with the geodesic LCS theory.1 As

mentioned in Section III A, the latter theory seeks vortex

boundaries as closed material-lines that remain perfectly non-

filamenting over a finite time interval of interest. Such vortex

boundaries turn out to be closed material curves in the flow

that stretch uniformly by a constant factor. Figure 7(a) shows

the result from the geodesic approach at the initial time,4 with

the level set-based vortex boundary superimposed.

Figure 7(a) shows that both methods label the GRS as a

vortex, but the geodesic method yields a tighter boundary

compared to the level set approach. This is because the geode-

sic method adopts a more stringent definition of coherence,

which imposes the uniform stretching of the boundary. This

observation is also consistent with the earlier comparison

made between the geodesic LCS method and the more recent

Lagrangian-Averaged Vorticity Deviation approach.5

In Fig. 7(b), we show the advected image of the extracted

vortex boundaries at the final time, confirming the sustained

coherence for both boundaries over the period of 24 Jovian

days. For the purposes of this comparison, we have used the

numerical implementation of the geodesic eddy detection

method described in Hadjighasem and Haller.4 A MATLAB

implementation of this algorithm is available under https://

github.com/LCSETH.

In Fig. 8, we show a comparison of relative stretching of

the geodesic vortex boundary and the level set based vortex

FIG. 7. Geodesic vortex boundary (green) at initial time t0¼ 0 for the Jupiter

data set,4 with the level set-based vortex boundary (black) superimposed. (b)

Advected position of the Lagrangian vortex boundaries at final time t1¼ 24.

FIG. 8. Relative stretching of the geodesic boundary in comparison with the

relative stretching of the level set-based boundary. The relative stretching of

a material line segment is defined as the ratio of its length at the final time lt1

to its initial length lt0 .

FIG. 5. The evolution of the energy functional vs. the computational step in

a level-set optimization for the periodically forced pendulum.

FIG. 6. Lagrangian vortex boundary of the GRS obtained with the level-set

method shown at initial time t0¼ 0. The initial zero level set is shown with

blue dashed lines. The new global map of Jupiter acquired by NASA’s

Hubble Space Telescope on January 19, 2015 is used as background.

(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4964103.2]
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boundary. Figure 8 confirms the expectation that the geode-

sic boundary only exhibits uniform stretching, while the

level set-based boundary can exhibit larger variation in the

relative stretching. The small deviation from constant

stretching in the computed geodesic boundary is only due to

finite sampling of the curve, as well as to the interpolation

error in the computation of Cauchy–Green strain tensor field.

While the geodesic LCS method yields a perfectly

coherent boundary, the level set approach comes with a

lower computational cost for the following reasons. First, the

search for a maximal limit cycle in the vector field family

induced by the value of relative stretching is absent in the

level set approach. Second, the evolution of the level set

function is governed by a vector field which does not rely on

Cauchy-Green invariants. This in turn eliminates the need

for the Cauchy-Green eigendecomposition, which must be

carried out with high precision close to the tensor singulari-

ties. Third, the geodesic method requires integrating a vector

field for which orientational discontinuities need to be

resolved locally at each integration step. Such orientational

discontinuities are not present in the level set approach.

C. An ocean surface data set

Next, we apply Algorithms 1 and 2 to a two-dimensional

unsteady velocity data set derived from AVISO satellite-

observed sea-surface heights (SSH) under the geostrophic

approximation. In this approximation, the sea-surface height

gðu; h; tÞ serves as a stream function for surface velocities in

the ðu; hÞ longitude-latitude spherical coordinate system. The

evolution of fluid particles is given by

_u u; h; tð Þ ¼ � g

R2
Ef hð Þcos h

@hg u; h; tð Þ;

_h u; h; tð Þ ¼ g

R2
Ef hð Þcos h

@ug u; h; tð Þ;

where g is the constant of gravity, RE is the mean radius of

the Earth, and f ðhÞ � 2XE sin h is the Coriolis parameter,

with XE denoting the Earth’s mean angular velocity.

Here, we illustrate the detection of coherent Lagrangian

vortices with Algorithms 1 and 2 over a period of 90 days,

ranging from t0¼November 11, 2006, to t1¼ 9 February,

2007. We select the computational domain in the

longitudinal range [�4�, 6�] and the latitudinal range [�34�,
�28�], which falls inside the region of the Agulhas leakage

in the Southern Ocean. The region in question with the same

time interval is studied earlier in Ref. 5 using Lagrangian-

Averaged Vorticity Deviation approach.

To apply Algorithm 2, we select a uniform grid of

250	 150 points to represent the level set function /. To

evolve the level set function across the active set at each iter-

ation, we first construct a localized graph, with 64 nodes dis-

tributed uniformly in a ball of radius R¼ 1/25�, for each

active point. We then partition each localized graph into a

local interior and local exterior and find the subsequent Ncut

value. The optimality of partitioning in return drives the zero

level set toward the vortex boundaries (see Section III B). In

this computation, we set the regularization term as e¼ 10�3.

Figure 9(a) (Multimedia view) shows the time t0 posi-

tion of the vortices identified from Algorithms 1 and 2, and

Fig. 9(b) (Multimedia view) shows their advected positions

at time t1, confirming the coherence of the extracted vortices

over the 90-day period. The LAVD-based vortex boundaries

are also shown in black for the comparison.

As shown in Fig. 9, the results of Algorithm 1 and

Algorithm 2 can differ from each other as they are based on

different coherence principles. In fact, each of Algorithms 1

and 2 has its own advantages and disadvantages. For

instance, Algorithm 1 compared to Algorithm 2 uses a more

stringent notion of coherence which usually results in

smaller vortex boundaries (see Fig. 9). However, Algorithm

2 is computationally more expensive than Algorithm 1. The

main reason for presenting both algorithms is to emphasize

that the level set methodology can be used for reformulating

different approaches developed for detecting coherent struc-

tures in the fluid flows.

V. CONCLUSION

We have demonstrated the application of the variational

level set methodology to coherent material vortex detection

in fluid flows. To identify coherent structures, we minimize

appropriate energy functionals defining the boundaries of

coherent vortices. We carry out the minimization via a

gradient-descent method that drives the zero level set

towards the desired boundaries.

FIG. 9. (a) Graph-based vortices (red) identified from Algorithm 2 with the stretching-based vortex boundaries (green) identified from Algorithm 1 at time

t0¼November 11, 2006. The initial zero level set is shown with blue dashed lines. The LAVD-based vortex boundaries are shown in black for the comparison.

(b) The advected positions of the vortex boundaries 90 days later at time t1¼ 9 February, 2007. (Multimedia view) [URL: http://dx.doi.org/10.1063/

1.4964103.3][URL: http://dx.doi.org/10.1063/1.4964103.4]
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We have illustrated the performance of the proposed

technique on two different energy functionals, each using

a different Lagrangian notion of coherence. Our first varia-

tional formulation seeks coherent vortices as closed material

lines that are close to uniform stretching. This notion of

coherence derives from the earlier work of Haller and

Beron-Vera.1 We show the effectiveness of the correspond-

ing approach by detecting Lagrangian coherent vortices in

periodic and unsteady two-dimensional flows.

In the second approach, we adopt the idea of normalized

graph cut33 to identify coherent structures based on the prox-

imity of particles in the spatio-temporal domain. Here, we

conceive coherent structures, in a fashion similar to Refs. 2

and 10, as a set of Lagrangian particles that remain tightly

grouped. We apply this second approach in our last example,

the ocean surface data set, to identify Agulhas eddies in the

Southern Ocean.

A drawback of the level set technique is the effort

required for the construction of energy functionals whose

local minima mark the vortex boundaries. A reward for this

effort is a versatile numerical platform that can capture vorti-

ces in an automated fashion.

Future challenges include extending the current level set

approach to three-dimensional problems and using parallel

implementation for speeding up the related calculations.
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APPENDIX A: NUMERICAL ASPECTS

The numerical implementation of Equations (10) and

(12) is simple but requires some care to ensure sufficient

accuracy and efficiency. In this section, we address these

implementation aspects.

1. Stability and CFL condition

To keep numerical stability and obtain accurate approxi-

mation results, the time step for solving (1) with explicit

time-marching scheme must satisfy the Courant-Friedrichs-
Lewy (CFL) condition,26 which states that the front should

not cross more than one grid cell at each time step

Ds
maxjuj

Dx

� �
¼ l; 0 < l < 1:

Here, u refers to the speed with which the zero level set

propagates. A common near-optimal choice for the CFL
number is l¼ 0.9, and a common conservative choice is

l¼ 0.5 (cf. Ref. 26).

For stability concerns, implicit or semi-implicit methods

may also improve the efficiency of level set methods.

Compared to the time steps of explicit schemes limited by a

CFL condition, the implicit or semi-implicit level set methods

allow for larger time steps (see, for example, Ref. 20).

Consequently, the convergence of implicit or semi-implicit

schemes is usually faster compared to the explicit methods.

2. Reinitialization

In general, even if we initialize the level set function /
as a signed distance function, it is not guaranteed to remain a

distance function at later times. As a consequence, the level

set function / develops steep or flat shapes during the evolu-

tion, making the results inaccurate. Classic level set methods

often use the re-initialization remedy to avoid this problem,

that is, periodically initialize the level set function as a signed

distance function using either the fast marching method39 or

partial differential equation (PDE)-based approaches.17 The

re-initialization process, however, is complicated and expen-

sive and has an unwanted side effect of shifting the zero level

set away from its original location.40 Moreover, this process is

conducted in an ad-hoc manner because there is no rule as to

when and how to reinitialize the level set function to a signed

distance function. A better approach is to limit re-initializa-

tion41 or use methods that do not require re-initialization at all

(see Refs. 40 and 42 for examples).

3. Finite difference scheme

Equation (10) is a nonlinear Hamilton-Jacobi equation

composed of both parabolic and hyperbolic terms. When

implementing Eq. (10), one must give special attention to

how parabolic terms, such as jr/j, are calculated, as stan-

dard finite difference methods fail for non-linear hyperbolic

PDEs. Thus, one needs the special machinery of upwind
finite differencing or upwinding, where spatial derivatives

are computed using one-sided differencing based on the

direction of propagation. We make use of the state-of-the-art

high order essentially non-oscillatory (ENO)25,43 and

weighted ENO (WENO)44 schemes in our implementations,

whenever it is appropriate to do so.

4. Level set regularization

In Section II, we assumed that the interface C stays

smooth over its evolution, but in applications, smoothness is

often lost. A well-known example is the cosine curve evolv-

ing with unit speed uðx; sÞ ¼ 1, where the propagating curve

develops a sharp corner in finite time.41 Once the corner

develops, the normal direction becomes undefined and the

differentiability of the interface is lost. Thus, it is important

to ensure that the interface C stays smooth and non-

intersecting all along its evolution. This is commonly

achieved by adding a regularization term ej to the evolution

equation (see Refs. 20, 25, and 41 for examples). The curva-

ture term ej regularizes the interface by accelerating the

movement of those segments of the interface that remain

behind the average speed of the interface and slowing down

the segments marching faster than the average speed. The

parameter e determines the strength of regularization. If e is

large, the regularization term will smooth out interface irreg-

ularities such that the interface ultimately will become
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convex. If e is small, the front will maintain sharp curvatures

and may have a concave geometry at the end of the

evolution.

5. Narrow band

The classic level set approach evolves the level set func-

tion / by solving an initial value problem for a partial differ-

ential equation in the entire computational domain. This is

superfluous if only information near the zero level set is of

interest. Instead, an efficient modification is to perform the

computation in a neighborhood or narrow band of the zero

level set, as introduced by Adalsteinsson and Sethian.45 The

idea of the narrow band approach was later extended to

the Sparse Field Method (SFM), in which the narrow band

is only one pixel wide and the level set function is re-

initialized with a distance transform in each iteration.46 We

will discuss the Sparse Field Method further in Appendix B.

More details concerning the numerical schemes for level

set methods can be found in Ref. 26.

APPENDIX B: SPARSE FIELD METHOD

In classical level set methods, the value of the level set

function / is updated in the full computational domain,

which is computationally costly. Narrow band methods23,45

address this problem by only updating pixels near the evolv-

ing curve. To optimize and simplify the implementation of

the narrow-band scheme, Whitaker46 proposed the Sparse

Field Method which takes the narrow-band strategy to the

extreme. The basic idea of the SFM is to use lists of points

that represent the zero level set as well as points adjacent to

the zero level set (see Fig. 10). By using these lists and care-

fully adding and removing points from the appropriate list,

the level set function / can efficiently be maintained. The

fact that the SFM uses lists to keep track of the points near

the zero level set means that the computational speed at each

iteration depends only on the length of the curve jCj and not

on the size of the domain.

We call the minimal connected set of grid points that are

closest to the level set as the active set, denoting it by L0, and

the individual elements in this set are the active points. We

then define its neighborhood layers by L6i for i ¼ 61;…;6N,

where i indicates the city block distance of a neighborhood

point from the nearest active point (see Fig. 10(b)). In this

paper, we use up to the second-order derivatives of /, so we

need only five layers: L2, L1, L0, L�1, and L�2. In addition to

the lists, two arrays are used to save the information of the

above lists. The first is the / array which has the same dimen-

sions as the computational domain and should be stored at full

floating point precision. The second array is a label map which

is used to record the status of each point and takes integer val-

ues f�3;�2;�1; 0; 1; 2; 3g, as shown in Fig. 10(a).

The procedure of the SFM can be divided into three

main steps: initialization, curve evolution, and updating the

lists. The initialization process of the interface is fairly sim-

ple and starts by defining a level set function whose zero

level set is explicitly stored at various grid points. This is

done by assigning the corresponding points in / to 0, and

by adding them to the L0 list. The other lists are then filled

with points according to their distance from the nearest

active point and are updated accordingly. Next, points in

/ that are members of the active set L0 are updated by

the level set evolution equation. These changes are then

reflected in the neighboring layers with the simple numeri-

cal procedure specified in Ref. 46, and the lists are updated

accordingly. How these steps are executed is described in

details in Refs. 46 and 47.
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