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Rotationally coherent Lagrangian vortices are formed by tubes of deforming fluid
elements that complete equal bulk material rotation relative to the mean rotation
of the deforming fluid volume. We show that the initial positions of such tubes
coincide with tubular level surfaces of the Lagrangian-averaged vorticity deviation
(LAVD), the trajectory integral of the normed difference of the vorticity from its
spatial mean. The LAVD-based vortices are objective, i.e. remain unchanged under
time-dependent rotations and translations of the coordinate frame. In the limit of
vanishing Rossby numbers in geostrophic flows, cyclonic LAVD vortex centres are
precisely the observed attractors for light particles. A similar result holds for heavy
particles in anticyclonic LAVD vortices. We also establish a relationship between
rotationally coherent Lagrangian vortices and their instantaneous Eulerian counterparts.
The latter are formed by tubular surfaces of equal material rotation rate, objectively
measured by the instantaneous vorticity deviation (IVD). We illustrate the use of the
LAVD and the IVD to detect rotationally coherent Lagrangian and Eulerian vortices
objectively in several two- and three-dimensional flows.

Key words: nonlinear dynamical systems, topological fluid dynamics, vortex dynamics

1. Introduction
Coherent vortices still have no universal definition in fluid mechanics, but two

main features of a possible definition have been emerging. First, it is broadly agreed
that vortices are concentrated regions of high vorticity. Some authors require this
dominance of vorticity relative to other flow domains (McWilliams 1984; Hussain
1986). Others expect it relative to the strain in the same domain (Okubo 1970; Hunt,
Wray & Moin 1988; Weiss 1991; Hua & Klein 1998; Hua, McWilliams & Klein
1998). Yet others compare vorticity with strain in the rate-of-strain eigenbasis (Tabor
& Klapper 1994; see also Lapeyre, Klein & Hua 1999; Lapeyre, Hua & Legras
2001).

† Email address for correspondence: georgehaller@ethz.ch
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Second, vortices are generally viewed as evolving domains with a high degree
of material invariance. Lugt (1979) writes that a vortex is a ‘multitude of material
particles rotating around a common center’. McWilliams (1984) expects the vortex to
‘persist under passive advection by the large-scale flow’. Chong, Perry & Cantwell
(1990) propose to capture vortices by finding spiralling particle motions in the frozen
time limit of the flow. Vortices are described as ‘highly impermeable to inward and
outward particle fluxes’ by Provenzale (1999), who requires small relative dispersion
within vortex cores (see also Cucitore, Quadrio & Baron 1999). Chakraborty,
Balachandar & Adrian (2005) propose that both swirling motion and small particle
separation should be distinguishing features of a vortex core. Haller (2005) views
vortices as sets of trajectories with a persistent lack of Lagrangian hyperbolicity.
Chelton et al. (2011) observe that nonlinear eddies (vortices with a rotation speed
exceeding their translation speed) trap fluid in their interior and transport it along.
Finally, in a similar geophysical setting, Mason, Pascual & McWilliams (2014) stress
that vortices are ‘efficient carriers of mass and its physical, chemical, and biological
properties’.

The core of a coherent vortex is, therefore, broadly expected to be an impermeable
material region marked by a high concentration of vorticity. What constitutes high
vorticity is, however, subject to individual judgement, thresholding and choice of the
reference frame. It is therefore the material invariance of a vortex core that holds
more promise as a first requirement in an unambiguous vortex definition. Indeed, the
Lagrangian nature of a vortex can simply be assured by defining its boundary as a
tubular (i.e. cylindrical, cup-shaped or toroidal) material surface. The challenging next
step is then to select such a material surface in such a way that it also encloses a
region of concentrated vorticity.

Unlike vorticity, materially defined vortex boundary surfaces are inherently
frame-invariant, defined by a set of fluid trajectories rather than by coordinates
or instantaneous scalar field values. In continuum mechanics terminology, a material
vortex boundary must therefore be objective, i.e. invariant with respect to all Euclidean
frame changes of the form

x=Q(t)y+ b(t), (1.1)

where x ∈ R3 and y ∈ R3 denote coordinates in the original and in the transformed
frame respectively, Q(t) ∈ SO(3) is an arbitrary rotation matrix and b(t) ∈ R3 is an
arbitrary translation vector (Truesdell & Noll 1965). Paradoxically, with the exception
of the approach initiated by Tabor & Klapper (1994), none of the instantaneous
Eulerian vortex criteria listed above are objective. Accordingly, they may only detect
coherent structures after passage to an appropriately rotating or translating coordinate
frame. For instance, the unsteady Navier–Stokes velocity field

v(x, t)=
x1 sin 4t+ x2(2+ cos 4t)

x1(cos 4t− 2)− x2 sin 4t
0

 (1.2)

is classified as a vortex by the Okubo–Weiss, Hua–Klein, Hua–McWilliams–Klein and
Chakraborty–Balachandar–Adrian criteria, as well as by the Q-criterion of Hunt et al.,
the ∆-criterion of Chong, Perry and Cantwell, and the nonlinear eddy criterion of
Chelton et al. In reality, (1.2) is a rotating saddle-point flow, with typical trajectories
growing exponentially in norm. This instability, however, only becomes detectable to
these criteria after one passes to an appropriately chosen rotating frame (Haller 2005,
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2015). Promisingly, if we simply impose the localized high-vorticity requirement, the
constant-vorticity flow (1.2) is immediately discounted as a vortex without further need
for analysis.

The selection of vortex boundaries as material surfaces ensures material invariance
for the vortex, but any tubular material surface can a priori be considered for
this purpose. Recent stretching-based variational approaches narrow down this
consideration to exceptional material tubes that remain perfectly unfilamented under
material advection (Haller & Beron-Vera 2013; Blazevski & Haller 2014; Haller
2015). As an alternative, Farazmand & Haller (2016) seek vortex boundaries as
maximal material tubes along which material elements complete the same polar
rotation over a finite time interval of interest. These approaches have proven effective
in two-dimensional flows. They, however, rely on a precise computation of the
invariants of the Cauchy–Green strain tensor along a Lagrangian grid, which requires
the accurate numerical differentiation of trajectories with respect to their initial
positions. This presents a challenge in three-dimensional unsteady flows, for which
the polar rotation approach additionally fails to be objective. Most importantly,
however, Lagrangian strain-based approaches offer no link between material vortices
and the expected high vorticity concentration, a defining feature of observed vortices.

In summary, despite recent advances in vortex criteria and fluid trajectory stability
analysis, a fully three-dimensional, computationally tractable and objective global
vortex definition, with guaranteed material invariance and experimentally observable
rotational coherence, has not yet emerged. Here, we propose such a vortex definition
and a corresponding vortex detection technique.

Our approach is based on a recently obtained unique decomposition of the
deformation gradient into the product of two deformation gradients: one for a purely
straining flow and one for a purely rotational flow (Haller 2016). This rotational
deformation gradient, the dynamic rotation tensor, obeys the temporal superposition
property of rigid-body rotations, thereby eliminating a dynamical inconsistency of
the classic polar rotation tensor used in classical continuum mechanics. The dynamic
rotation tensor can further be factorized into a spatial mean-rotation component and
a deviation from this rotation. The latter deviatory part yields an objective intrinsic
material rotational angle relative to the deforming fluid mass.

We then define a rotationally coherent Lagrangian vortex as a nested set of material
tubes, each exhibiting uniform intrinsic material rotation. Such a vortex turns out to be
foliated by outward-decreasing tubular level sets of the Lagrangian-averaged vorticity
deviation (LAVD). Additionally, we prove that the centre of an LAVD-based vortex
is always the observed attractor for nearby finite-size (inertial) particle motions in
geostrophic flows.

In the limit of zero advection time, our Lagrangian vortex definition turns into
an objective Eulerian vortex definition: a set of tubular surfaces of equal intrinsic
rotation rate. These surfaces are tubular level sets of the instantaneous vorticity
deviation (IVD), providing a mathematical link between rotationally coherent Eulerian
and Lagrangian vortices: the former are effectively derivatives of the latter. We
illustrate our results on several examples, ranging from analytic velocity fields to
time-dependent two- and three-dimensional models and observational data.

2. Set-up

We consider an unsteady velocity field v(x, t), defined on a possibly time-dependent
spatial domain U(t) ⊂ R3 over a finite time interval [t0, t1]. We assume that U(t) is
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Defining coherent vortices objectively from the vorticity 139

invariant under the fluid flow generated by the velocity field (cf. (2.7) below). Thus,
U(t) is either a physical domain with an impermeable boundary or a material domain
formed by a set of evolving trajectories of v(x, t).

We write the velocity gradient ∇v as

∇v(x, t)= D(x, t)+W (x, t), (2.1)

where D= (∇v+ [∇v]T)/2 is the rate-of-strain tensor and W = (∇v− [∇v]T)/2 is the
spin tensor. We recall that the vorticity ω=∇× v of the fluid satisfies

We=− 1
2ω× e, ∀e ∈R3. (2.2)

We will also use the instantaneous spatial mean ω̄ of the vorticity over U(t), defined
as

ω̄(t)=

∫
U(t)

ω(x, t) dV

vol (U(t))
, (2.3)

where vol( ·) denotes the volume for three-dimensional flows and the area for two-
dimensional flows. Accordingly, dV refers to the volume or area element respectively
in U(t).

Under general observer changes of the form (1.1), the spin tensor and the vorticity
in the new y coordinate frame take the forms

W̃ (y, t)=QT(t)W (x, t)Q(t)−QT(t)Q̇(t), ω̃(y, t)=QT(t)ω(x, t)+ q̇(t), (2.4a,b)

with the vector q̇ defined uniquely by the relation Q̇QTe= (q̇× e)/2 for all e∈R3 (see,
e.g., Truesdell & Rajagopal 2009). Formula (2.4) shows that the spin tensor and the
vorticity are not objective quantities: the eigenvalues and eigenvectors of W change
in rotating frames, and so do the direction and the magnitude of ω. Thus, neither
W nor ω is, by itself, suitable for defining distinguished material sets in the flow.
This is because material sets are tied to evolving fluid particles without any reference
to coordinates, and hence are inherently frame-invariant. More generally, statements
about the material response of a moving continuum cannot depend on the observer
and hence should be objective (Gurtin 1982).

Fluid particle trajectories generated by v(x, t) are solutions of the differential
equation

ẋ= v(x, t), (2.5)

defining the flow map

F t
t0 : x0 7→ x(t; x0), t ∈ [t0, t1], (2.6)

as the mapping from initial particle positions x0 ∈ U(t0) to their later positions
x(t; x0)∈U(t). The assumed invariance of U(t) over the time interval [t0, t1] can now
be conveniently expressed as

F t
t0(U(t0))=U(t), t ∈ [t0, t1]. (2.7)

We will also use the notion of a material surface, which is a smooth codimension-
one time-dependent surface family M (t) advected by the flow, i.e. M (t) =
F t

t0(M (t0)) ∈ [t0, t1].
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The deformation gradient

F t
t0(x0)=∇F t

t0(x0) (2.8)

is a linear map, taking initial infinitesimal perturbations to the fluid trajectory x(t; x0)
at time t0 to their later positions at time t. Although often believed otherwise, F t

t0 is
not objective: its eigenvectors and eigenvalues depend on the frame of reference (see,
e.g., Liu 2004). Therefore, the invariants of F t

t0 do not provide an objective indication
of the rotational component of the deformation.

3. Finite material rotation from the dynamic polar decomposition
We seek to identify coherent Lagrangian vortices as the union of tubular material

surfaces in which fluid elements exhibit the same bulk material rotation over a finite
time interval of interest. Individual material fibres based at an initial point x0 in
a deforming continuum, however, all rotate around different axes and by different
angles. In recent work (Farazmand & Haller 2016), we used the classic polar rotation
angle (PRA) from finite strain theory to identify pointwise bulk material rotation
in a moving fluid systematically. The use of the PRA, however, also leaves several
challenges unaddressed, as we discuss in appendix A. Most notable of these are an
inconsistency of the PRA with experimentally observed dynamic rotation angles of
spherical tracers in fluids, and its lack of objectivity in three dimensions.

To address these challenges, we use here the recently developed dynamic polar
decomposition (DPD) to identify a dynamically consistent and fully frame-invariant
rotational component in the finite deformation of fluid elements (Haller 2016). This
decomposition gives a unique time-evolving factorization of the deformation gradient
into the product of two deformation gradients: one for a purely rotational flow with
zero rate of strain and one for a purely straining flow with zero vorticity.

Specifically, the unique right DPD of F t
t0 at x0 can be written as

F t
t0 =O t

t0 M t
t0, t ∈ [t0, t1], (3.1)

where the proper orthogonal dynamic rotation tensor O t
t0 = ∂a0a(t) is the deformation

gradient of the purely rotational flow

ȧ=W (x(t; x0), t)a, (3.2)

and the non-degenerate right dynamic stretch tensor M t
t0 = ∂b0b(t) is the deformation

gradient of the purely straining flow

ḃ=O t0
t D(x(t; x0), t)O t

t0b. (3.3)

The linear velocity field for a(t) in (3.2) is strainless because its coefficient matrix W
is skew-symmetric. Similarly, the linear velocity field for b(t) in (3.3) is irrotational
because its coefficient matrix O t0

t D(x(t; x0), t)O t
t0 is symmetric. Unlike the classic

polar rotation tensor (cf. appendix A), the dynamic rotation tensor O t
t0 is dynamically

consistent, i.e. satisfies the fundamental superposition property of solid-body rotations:

O t
t0 =O t

sOs
t0, s, t ∈ [t0, t1]. (3.4)

This follows because O t
t0 is the fundamental matrix solution of a classical linear

differential equation and hence satisfies the process property noted in (3.4) (cf.
Dafermos 1971; Arnold 1978). In contrast, M t

t0 is the fundamental matrix solution of
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a non-classical linear differential equation with memory, i.e. with explicit dependence
on the initial time t0. Such fundamental solutions do not obey the process property
indicated in (3.4). The reason behind the dynamical inconsistency (A 3) of polar
rotations is a similar memory effect to that in (A 2).

The decomposition in (3.1) is a right-type decomposition, i.e. the dynamic stretch
tensor precedes the dynamic rotation tensor from the right. Just as for the classic polar
decomposition, a left-type version of the DPD is also available (Haller 2016).

4. Lagrangian-averaged vorticity deviation

Despite its dynamical consistency, the dynamic rotation tensor O t
t0 is not objective.

Its frame dependence is the consequence of the frame dependence of the spin tensor
W (x, t) appearing in the differential equation (3.2). The single remaining challenge out
of those listed in appendix A is, therefore, to identify an objective part of the rotation
described by O t

t0 which also preserves the dynamical consistency of O t
t0 . Below we

recall further results from Haller (2016), and use them to address this challenge.
The dynamic rotation tensor O t

t0 can further be factorized into two deformation
gradients: one for a spatially uniformly rotating flow and one for a flow that describes
deviations from this uniform rotation. Specifically, we have

O t
t0 =Φ t

t0Θ
t
t0, (4.1)

where the proper orthogonal relative rotation tensor Φ t
t0 = ∂α0α(t) is dynamically

consistent, serving as the deformation gradient of the relative rotation flow

α̇ = [W (x(t; x0), t)− W̄ (t)]α. (4.2)

In contrast, the proper orthogonal mean-rotation tensor Θ t
t0 = Dβ0β(t) is the

deformation gradient of the mean-rotation flow

β̇ =Φ t0
t W̄ (t)Φ t

t0β. (4.3)

The mean-rotation tensor Θ t
t0 is not dynamically consistent because (4.3) exhibits the

same memory effect as discussed for (3.3).
The dynamic consistency of Φ t

t0 implies that the total angle swept by this tensor
around its own axis of rotation is dynamically consistent. This angle ψ t

t0(x0), called
the intrinsic rotation angle (see figure 1), therefore satisfies

ψ t
t0(x0)=ψ t

s(x0)+ψ s
t0(x0), s, t ∈ [t0, t1]. (4.4)

In addition, as shown in Haller (2016), ψ t
t0(x0) is objective in both two and three

dimensions. In two dimensions, even the tensor Φ t
t0 itself turns out to be objective,

not just its associated scalar field ψ t
t0(x0).

Using the results obtained in Haller (2016), the intrinsic dynamic rotation ψ t
t0(x0)

can be computed as
ψ t

t0(x0)= 1
2 LAVDt

t0(x0), (4.5)

with the LAVD defined here as

LAVDt
t0(x0) :=

∫ t

t0

|ω(x(s; x0), s)− ω̄(s)| ds. (4.6)
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FIGURE 1. The geometry of the intrinsic rotation angle ψ t
t0(x0) along a material trajectory

x(t) in a three-dimensional deforming continuum.

The objectivity of ψ t
t0 and LAVD can be confirmed directly from formula (2.4a,b).

Indeed, under a Euclidean observer change x=Q(t)y+ b(t), the transformed vorticity
ω̃(y, t) satisfies

|ω̃(y(s), s)− ˜̄ω(s)| = |QT(s)ω(x(s), s)+QT(t)q̇(t)− (QT(s)ω̄(s)+QT(t)q̇(t))|
= |QT(s)[ω(x(s), s)− ω̄(s)]|
= |ω(x(s), s)− ω̄(s)|, (4.7)

because the rotation matrix QT(s) preserves the length of vectors. We summarize the
results of this section in a theorem.

THEOREM 1. For an infinitesimal fluid volume starting from x0, the LAVDt
t0(x0) field

is a dynamically consistent and objective measure of bulk material rotation relative to
the spatial mean rotation of the fluid volume U(t). Specifically, LAVDt

t0(x0) is twice
the intrinsic dynamic rotation angle generated by the relative rotation tensor Φ t

t0 . The
latter tensor is obtained from the dynamically consistent decomposition

F t
t0 =Φ t

t0Θ
t
t0 M t

t0, (4.8)

with the deformation gradient Θ t
t0 of a pure rigid-body rotation and with the

deformation gradient M t
t0 of a unique purely straining flow.

For detailed proofs of all statements in Theorem 1, we refer the reader to
Haller (2016). Importantly, this theorem enables the extraction of an objective and
dynamically consistent material rotation component from the deformation gradient
without carrying out the differentiation with respect to the initial conditions in the
definition (2.8) of F t

t0 .

5. Rotationally coherent Lagrangian vortices
We now use the LAVD to identify objectively material tubes along which small fluid

volumes experience the same bulk rotation over [t0, t1] relative to the mean rigid-body
rotation of the fluid. By Theorem 1, the time t0 positions of such material tubes are
tubular level surfaces of the scalar function LAVDt1

t0(x0). By a tubular set, we mean
here a convex, cylindrical, cup-shaped or toroidal set in three dimensions, and a closed
convex curve in two dimensions. We require convexity for tubular surfaces, motivated
by the near-circular cross-section generally observed for stable vortices.
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FIGURE 2. Initial and current positions of a rotationally coherent Lagrangian vortex V (t),
a Lagrangian vortex boundary B(t) and a Lagrangian vortex centre C (t). Also shown
within V (t) is a rotational LCS L (t), i.e. a material surface along which volume elements
exhibit the same intrinsic dynamic rotation over the time interval [t0, t1]. As a consequence,
V (t) experiences only tangential material filamentation without global breakaway.

If the gradient ∂x0LAVDt1
t0(x0) is non-zero along a tubular LAVD level surface, then

this level surface is surrounded by a continuous nested family of tubular level surfaces
(Milnor 1963). The singular centre of such a nested sequence of tubes, with inward-
increasing LAVD values, gives a definition of a Lagrangian vortex centre. Similarly,
the largest convex member of such a nested tube family defines the boundary of a
Lagrangian vortex. We summarize these concepts in the following definition, with its
geometry illustrated in figure 2.

DEFINITION 1. Over the finite time interval [t0, t1]:
(i) a rotationally coherent Lagrangian vortex is an evolving material domain V (t)

such that V (t0) is filled with a nested family of tubular level surfaces of
LAVDt1

t0(x0) with outward-decreasing LAVD values;
(ii) the boundary B(t) of V (t) is a material surface such that B(t0) is the outermost

tubular level surface of LAVDt1
t0(x0) in V (t0);

(iii) the centre C (t) of V (t) is a material set C (t) such that C (t0) is the innermost
member (maximum) of the LAVDt1

t0(x0) level-surface family in V (t0).

We refer to the evolving positions L (t) of the tubular level sets

L (t0)=
{

x0 ∈U(t0) : LAVDt1
t0(x0)= const.

}
(5.1)

as rotational Lagrangian coherent structures (rotational LCSs), as indicated in figure 2.
These LCSs give a foliation of the evolving Lagrangian vortex V (t) into tubes along
which material elements complete the same intrinsic dynamic rotation ψ t

t0(x0).
For rotational LCSs, as well as Lagrangian vortices, their boundaries and centres are

material objects by definition. Therefore, their time t position is uniquely determined
by Lagrangian advection of their initial positions:

L (t)=F t
t0(L (t0)), B(t)=F t

t0(B(t0)), C (t)=F t
t0(C (t0)), t ∈ [t0, t1].

(5.2a−c)
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Recent stretching-based definitions of Lagrangian vortices allow for no filamentation
in the boundary of the vortex (Haller & Beron-Vera 2013; Blazevski & Haller 2014).
In contrast, the LAVD-based definition of a rotational LCS allows for tangential
material filamentation. The filamented part of the material surface, however, still
rotates together with the LCS without global breakaway.

The above definitions capture Lagrangian vortices with the simplest (i.e. convex)
geometry at time t0. More generally, one may allow for small tangential filamentation
to be a priori present in the vortex boundary even at time t0. This involves the
relaxation of the convexity of L (t0) and B(t0) to material surfaces with small
convexity deficiency, as discussed along with other numerical aspects in § 9.

In geophysical flows over a rotating planet, rotationally coherent Lagrangian vortices
can be directly computed from the flow induced in the curvilinear coordinate space
instead of the curved surface of the planet (cf. appendix B). By construction, the
resulting vortices and their centres are invariant with respect to time-dependent
rotations and translations within the space of curvilinear coordinates. (Frame
invariance cannot be defined restricted to a curvilinear surface, as Euclidean frame
changes take the observer off the surface.) With this approach, one simply computes
the classic Euclidean vorticity of the longitudinal and latitudinal coordinate speeds,
as opposed to computing the vorticity in curvilinear coordinates.

6. Rotationally coherent Eulerian vortices

Over a short time interval [t0, t+ s] with |s|� 1, we can Taylor expand the LAVD
field as

LAVDt+s
t0 (x0)= LAVDt

t0(x0)+ IVD(x(t; x0), t) · s+O(s2), (6.1)

with the instantaneous vorticity deviation (IVD) defined as

IVD(x, t) := |ω(x, t)− ω̄(t)|. (6.2)

By the calculation (4.7), the IVD field is objective. By (6.1), IVD(x(t; x0), t) describes
the rate of change of the LAVD field at an initial condition x0 under increasing
integration time.

Using the IVD, we now introduce the instantaneous notion of a rotationally coherent
Eulerian vortex by taking the limit t0, t1→ t in Definition 1. At a time t ∈ [t0, t1],
such an Eulerian vortex is composed of tubular surfaces along which the intrinsic
rotation rates ψ̇ t

t of fluid elements are equal. Indeed, by formula (4.5), we have
ψ̇ t

t (x)= (IVD(x, t))/2= const. along these tubular surfaces. The following definition
summarizes the details for this objective Eulerian vortex concept.

DEFINITION 2. At a time instance t ∈ [t0, t1]:
(i) a rotationally coherent Eulerian vortex is a set V(t) filled with a nested family

of tubular level sets of IVD(x, t) with outwards non-increasing IVD values;
(ii) the boundary B(t) of V(t) is the outermost level surface of IVD(x, t) in V(t);

(iii) the centre C(t) of V(t) is the innermost member (maximum) of the IVD(x, t)
level-surface family in V(t).

A rotational Eulerian coherent structure (rotational ECS) is then just a level surface

E(t)= {x ∈U(t) : IVD(x, t)=C0(t)} (6.3)
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FIGURE 3. A rotationally coherent Eulerian vortex V (t), with boundary B(t) and vortex
centre C (t). Also shown within V (t) is a rotational ECS E (t), i.e. a surface along which
volume elements exhibit the same intrinsic dynamic rotation rate instantaneously at time t.
No material coherence is guaranteed for the Eulerian vortex V (t) under passive advection.

Lagrangian vortex
from LAVD under
increasing extraction time

Eulerian vortex
from IVD at initial time

FIGURE 4. A rotationally coherent Eulerian vortex is the limit of a rotationally coherent
Lagrangian vortex under vanishing extraction time (i.e. integration time).

along which material elements experience the same dynamic rotation rate ψ̇ t
t (x) =

C0(t)/2. Unlike rotational LCSs, individual rotational ECSs are instantaneous
quantitates without a well-defined evolution, unless C0(t) is specifically selected
as constant over time. We illustrate the geometry of Definition 2 in figure 3.

Given that
d
dt

LAVDt
t0(x0)= IVD(x(t; x0), t), (6.4)

rotationally coherent Eulerian vortices are effectively the derivatives of rotationally
coherent Lagrangian vortices with respect to the length of the extraction time of the
latter. Setting t= t0 in (6.1) and observing that LAVDt0

t0(x0)= 0, we conclude that the
B(t0) initial positions of rotationally coherent Lagrangian vortex boundaries evolve
precisely from their Eulerian coherent counterparts B(t0) as the Lagrangian extraction
time t1 − t0 increases from zero (see figure 4).

Physically, these Eulerian vortices are built of tubular surfaces showing instantaneous
coherence in the rate of their bulk material rotation. This instantaneous coherence
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in rotation rates generally does not imply sustained coherence in the finite rotation
of material trajectories released from these surfaces. Furthermore, the interior of an
evolving vortex V(t) is not a material domain.

By the objectivity of the IVD, Definition 2 nevertheless gives an objective definition
of an Eulerian vortex, its centre and boundary. To the best of our knowledge, no
other objective three-dimensional Eulerian vortex definition has been proposed in the
literature. Specifically, none of the Eulerian criteria reviewed or proposed in Jeong
& Hussein (1995), Chakraborty et al. (2005) and Haller (2005) are invariant under
time-dependent rotations and translations of the observer. Since truly unsteady flows
have no distinguished frames of reference (Lugt 1979), non-objective Eulerian vortex
criteria do not yield well-defined material vortices for unsteady flows.

A relevant discussion can be found in Jeong & Hussein (1995) about the
|ω|-criterion, by which |ω| must exceed a preselected threshold within a vortex.
This approach is found to be intuitive but inadequate in Jeong & Hussein (1995) for
several reasons. We agree with this general assessment, because the |ω|-criterion is
threshold-dependent and not objective. In contrast, our rotationally coherent Eulerian
vortex definition in Definition 2 is based on a threshold-independent and objective
assessment of the level-surface topology of |ω− ω̄|.

Importantly, for flows with zero mean vorticity in their frame of definition, the
outermost convex tubular level sets of the vorticity magnitude |ω| or of the enstrophy
|ω|2 coincide with rotationally coherent Eulerian vortices. Therefore, when properly
interrogated, the vorticity and enstrophy distributions of zero-mean-vorticity flows do
reveal objective structures that can be viewed as derivatives of rotationally coherent
Lagrangian vortices.

7. Rotationally coherent vortices in planar flows

In a flow defined in the (x1, x2) plane, the LAVD (4.6) takes the simple form

LAVDt
t0(x0)=

∫ t

t0

|ω3(x(s; x0), s)− ω̄3(s)| ds, (7.1)

with ω3 referring here to the x3 component of the vorticity vector ω(x, t) =
(0, 0, ω3(x, t)), and with the mean vorticity ω̄3(s).

By Definition 1, a rotational LCS evolves over the time interval [t0, t1] via advection
from a closed and convex level curve of the LAVDt1

t0(x0) computed in (7.1). By
the same definition, Lagrangian vortex boundaries are outermost members of such
rotational LCS families. Similarly, Lagrangian vortex centres are advected positions
of isolated maxima of LAVDt1

t0(x0).
By Definition 2, a rotational ECS at time t is a closed and convex level curve of

IVD(x, t)= |ω3(x, t)− ω̄3(t)|, (7.2)

around one of its local maxima. Accordingly, rotationally coherent Eulerian vortices
are outermost members of such nested curve families with outwards non-increasing
instantaneous IVD values.

For two-dimensional flows only, Haller (2016) shows that the relative dynamic
rotation angle

φt
t0(x0) := 1

2

∫ t

t0

[ω3(x(s; x0), s)− ω̄3(s)] ds (7.3)
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is also an objective and dynamically consistent measure of rotation. It measures the
net rotation angle generated by the relative rotation tensor around the x3 axis, with
sign changes in the rotation accounted for. (In contrast, ψ t

t0(x0) measures the rotation
about the evolving instantaneous axis of rotation of Φ t

t0 , which points in the −x3
direction when ω3 − ω̄3 is negative.)

While ψ t1
t0 (x0), as the total angle swept by the relative rotation tensor over the time

interval [t0, t1], is always positive, the sign of the angle φt1
t0 (x0) is unrestricted.

In vortical regions preserving the pointwise sign of the Lagrangian vorticity
ω3(x(s; x0), s) − ω̄3(s), contours of φt1

t0 (x0), contours of LAVDt1
t0(x0) and contours

of the Lagrangian-averaged vorticity (LAV)

LAVt1
t0(x0) :=

∫ t1

t0

ω3(x(s; x0), s) ds (7.4)

all coincide with each other, albeit they generally correspond to different values of the
underlying scalar fields. (It should be noted that LAVt1

t0(x0) is not an objective quantity,
but its level curves are objectively defined.) In such regions, the sign of φt1

t0 (x0) will
also carry objective information about the direction of the relative rotation.

Differences in the contours of LAVDt1
t0(x0), φt1

t0 (x0) and LAVt1
t0(x0) will arise in

regions where the sign of ω3(x(s), s) − ω̄3(s) crosses zero, i.e. near the boundaries
of regions with a well-defined sign in their deviation from the mean vorticity of
the flow. In such regions, connected level curves of LAVt1

t0(x0) can group together
initial conditions with substantially different global rotational histories, as long as
their final net rotations are equal. The use of LAVDt1

t0(x0) eliminates such coincidental
agreement in the net rotation angles.

8. Geostrophic Lagrangian vortex centres are attractors for inertial particles
Consider a small spherical particle of radius r0 and density ρpart in a geostrophic

flow of density ρ and viscosity ν. Under the β-plane approximation, let f denote the
Coriolis parameter (twice the local vertical component of the angular velocity of the
Earth). Applying a slow-manifold reduction to the Maxey–Riley equations (Maxey &
Riley 1983) in the limit of small Rossby numbers, Beron-Vera et al. (2015) showed
that the inertial particle motion satisfies

ẋ= v(x, t)+ τ(δ − 1)f Jv(x, t)+O(τ 2), J =
(

0 −1
1 0

)
, (8.1)

where

δ = ρ

ρpart
, τ := 2r2

0

9νδ
. (8.2a,b)

Provenzale (1999) considered the Maxey–Riley equation in the same physical setting,
but without a slow-manifold reduction. His second-order differential equation also
included additional terms that either vanish along the β-plane or appear at higher
order in the reduced first-order equation (8.1) (cf. Beron-Vera et al. (2015) for more
detail).

Remarkably, in the limit of vanishing Rossby numbers, cyclonic attractors for light
particles (δ > 1) and anticyclonic attractors for heavy particles (δ < 1) in (8.1) turn
out to be precisely the rotationally coherent vortex centres defined in Definition 1.
The same Lagrangian vortex centres act as cyclonic repellers for heavy particles
and anticyclonic repellers for light particles. We state these results in more detail as
follows.
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Positively buoyant
inertial particle trajectory

Centre trajectory of
cyclonic Lagrangian eddy

FIGURE 5. By Theorem 2, cyclonic Lagrangian eddy centres evolving from LAVD
maxima act as observed attractors for small positively buoyant particles, such as drifters
and floating debris.

THEOREM 2. Assume that x∗0 ∈U(t0) is the initial position of a rotationally coherent
Lagrangian vortex centre whose relative rotation keeps constant sign, i.e.

sign[ω3(x∗0, t)− ω̄3(t)] =µ(x∗0), t ∈ [t0, t1], (8.3)

for an appropriate sign constant µ(x∗0)∈ {−1+ 1}. Then, for τ > 0 small enough, the
following hold:

(i) in a cyclonic (µ(x∗0)f > 0) rotationally coherent vortex, there exists a finite-time
attractor (repeller) for light (heavy) particles that stays O(τ ) close to the vortex
centre C (t);

(ii) in an anticyclonic (µ(x∗0)f < 0) rotationally coherent vortex, there exists a finite-
time attractor (repeller) for heavy (light) particles that stays O(τ ) close to the
vortex centre C (t).

Proof. See appendix C.

Theorem 2 provides an independent experimentally verifiable justification for
defining vortex centres as in Definition 1 for geostrophic flows. Specifically, positively
buoyant drifters or floating debris released well inside a cyclonic oceanic eddy
will spiral onto the evolving Lagrangian vortex centre identified from Definition 1
(figure 5). We will illustrate this effect using simulated inertial particle motion on
satellite-based ocean velocities in § 10.5.

9. Numerical aspects

Computation of a rotation angle from the classic polar decomposition requires
the computation of the deformation gradient F t

t0 (cf. (A 1) in appendix A). This is
achieved either by the numerical differentiation of fluid trajectories with respect
to their initial conditions or by solving the equation of variations (d/dt)F t

t0 =
∇v(x(t; t0, x0), t)F t

t0 , whose solutions typically grow exponentially. Either way,
computation of polar rotation has the same long-time numerical sensitivity that
arises in computing the invariants of the Cauchy–Green strain tensor.
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In contrast, computation of rotationally coherent vortices based on Definition 1
only requires the integration of the normed vorticity deviation along fluid trajectories.
This is simplest to do simultaneously with trajectory integration, solving the extended
system of differential equations

dx
dt
= v(x, t),

d
dt

LAVDt
t0 = |∇× v(x, t)−∇× v(t)|

 (9.1)

over a grid of initial conditions over the time interval [t0, t1]. In our experience,
however, features of the LAVDt

t0(x0) turn out to be sharper when the trajectory
ordinary differential equation (ODE) ẋ = v(x, t) is solved first, and the vorticity
is subsequently integrated along trajectories. This is because adaptive ODE solvers
make different decisions about time steps when the trajectory ODE is amended with
the ODE for the LAVD field. This is especially so when both ODEs are solved
simultaneously over large grids of initial conditions.

The computational domain for solving (9.1) is just U(t)≡U in the case of a closed
flow with a fixed boundary. In open flows, the focus may be on vortices on a smaller
domain. In that case, the domain should still be chosen large enough so that the
averaged vorticity ∇× v(t) is representative of the overall mean rotation of the fluid
mass under study. In geophysical flows, this mean rotation is expected to be zero,
which is confirmed by our calculations even for domains of the size of a few degrees.

For two-dimensional flows, we first identify local maxima of the LAVD field, then
extract nearby closed LAVD level curves. In all of our computations, we use the
level-set function of MATLAB for this purpose, and identify the closedness of a
level curve by probing the output from this function. Definition 1 then requires the
identification of the outermost convex LAVD level curve around an LAVD maximum
as vortex boundary. This convexity requirement is conservative, ensuring that the
material vortex starts out unfilamented at the initial time t0. At later times, our
approach allows for tangential filamentation in the advected LCS due to local strain,
but disallows large-scale filamentation arising from differences in the bulk rotation
along material filaments. As a consequence, filaments developed by rotational LCSs
rotate together with the main body of the underlying material vortex.

In actual computations, one reason to relax strict convexity for closed LAVD level
surfaces is that they are numerically represented by discrete polygons. The more
vertices such a polygon has, the more likely it is that the polygon is not convex,
even if the approximated level curve is. A second reason for relaxing convexity
is to remove the conceptual asymmetry of figure 2, allowing for small tangential
filamentation even in the initial positions of vortex boundaries. A third reason for
relaxing strict convexity in multi-scale data sets is the presence of smaller-scale
vortices near the perimeter of a larger-scale vortex. This necessitates the use of an
appropriately coarse-grained notion for the boundary of the larger vortex.

In two dimensions, addressing the finite grid, the initial tangential filamentation
and the multi-scale challenges can be achieved by allowing for a small convexity
deficiency in the LAVD level curves (Gonzalez and Woods 2008; Batchelor & Whelan
2012). Here, we define the convexity deficiency of a closed curve in the plane as
the ratio of the area between the curve and its convex hull to the area enclosed
by the curve. In figure 6, we show cases of closed LAVD level sets with small
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(a) (b) (c)

FIGURE 6. (Colour online) Cases of closed LAVD level sets benefiting from the relaxation
of convexity to small convexity deficiency. The shaded area indicates the area difference
between the level set and its convex hull. (a) A convex LAVD level set with a non-convex
approximating polygon arising from discretization. (b) A closed LAVD level set with
minor initial filamentation in the tangential direction. (c) A closed LAVD level set that
is only convex after a filtering of smaller-scale vortices.

convexity deficiency. In three dimensions, we require small convexity deficiency for
the one-dimensional intersection of LAVD level surfaces with a family {Pi} of planes
transverse to the expected vortex centre curve C (t0).

In our computations, we set the convexity deficiency bound to 10−3 or lower,
which we find to produce robust results for the first two cases covered in figure 6.
Applications to multi-scale data sets (figure 6c) will probably require a somewhat
higher bound. In general, increasing the convexity deficiency bound produces larger
eddies that also tend to filament more.

Small-scale local maxima of the LAVD function also arise due to numerical or
observational noise in the velocity data. To eliminate the resulting artificial vortex
candidates, we choose to ignore closed LAVD contours whose arclength falls below a
minimal threshold. In a given application, this threshold should be chosen below the
minimal vortex perimeter that is expected to be reliably resolved by the data set.

We summarize the extraction procedure for rotationally coherent Lagrangian vortices
in two- and three-dimensional flows in Algorithms 1 and 2 respectively. The extraction
of their rotationally coherent Eulerian counterparts follows the same steps (ii)–(iii), but
applied to the function IVD(x, t) instead of LAVDt

t0(x0).
The procedure outlined in Algorithm 2 is mathematically well defined by the

level-surface topology of the LAVD. Step (2) of the algorithm describes one possible
numerical extraction scheme for these level surfaces, using their intersections with
planes transverse to the anticipated vortex centre C (t0). (A MATLAB implementation
of this algorithm is available under https://github.com/LCSETH.) Complex flow
geometries with multiple vortices and a priori unknown vortex orientations will
require more involved numerical approaches to level-set extraction.

To implement Algorithms 1 and 2 in the forthcoming examples, we use a
variable-order Adams–Bashforth–Moulton solver (ODE113 in MATLAB) for trajectory
advection. The absolute and relative tolerances of the ODE solver are chosen as 10−6

or higher. In §§ 10.3–10.5 and 11.2, we use cubic and bilinear interpolation schemes
for computing pointwise vorticity values for the IVD and LAVD functions respectively.
The lower-order interpolation suffices for the LAVD calculation, because trajectory
advection smoothes out the LAVD contours in our experience.
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Algorithm 1 Coherent Lagrangian vortex boundaries and vortex centres for two-
dimensional flows
Input: A two-dimensional time-resolved velocity field

(i) For a two-dimensional grid of initial conditions x0, compute the LAVD:
LAVDt1

t0(x0)=
∫ t1

t0
|ω3(x(s; x0), s)− ω̄3(s)| ds.

(ii) Detect initial positions C (t0) of vortex centres as local maxima of LAVDt1
t0(x0).

(iii) Seek initial vortex boundaries B(t0) as outermost closed contours of LAVDt1
t0(x0)

satisfying all of the following.
(a) B(t0) encircles a vortex centre C (t0).
(b) B(t0) has arclength exceeding a threshold lmin.
(c) B(t0) has convexity deficiency less than a bound dmax.

Output: Initial positions of rotationally coherent Lagrangian vortex boundaries (closed
curves) and vortex centres (isolated points) with respect to the time interval [t0, t1].

10. Two-dimensional examples
10.1. Planar Euler flows

On any solution of the two-dimensional Euler equation on the (x1, x2) coordinate plane,
the scalar vorticity value ω3(x, t) is preserved along trajectories. Therefore, the LAVD
defined in (4.6) simplifies to

LAVDt
t0(x0)= (t− t0)|ω3(x0, t0)− ω̄3(t0)| = (t− t0) IVD(x0, t0). (10.1)

Consequently, at time t0, the boundaries and centres of all rotationally coherent
Lagrangian vortices coincide with those of rotationally coherent Eulerian vortices.
Specifically, B(t0) = B(t0) are outermost, closed and convex level curves of
|ω3(x0, t0)− ω̄3(t0)|, encircling a local maximum C (t0)=C(t0) of |ω3(x0, t0)− ω̄3(t0)|.

If the planar Euler flow is steady, then

dω(x(t))
dt

=∇ω(x(t)) · v(x(t))= 0. (10.2)

Consequently, as long as the vorticity is not constant on open sets, the vorticity
contours coincide with streamlines. In that case, both the Lagrangian and the Eulerian
vortices are bounded by outermost closed streamlines, with their centres marked by
a centre-type fixed point, as expected.

Despite these formal LAVD calculations for planar Euler flows, one must remember
that the eternal conservation of vorticity in these flows creates a high degree of
degeneracy for the rotation of fluid parcels. Indeed, despite the temporal and spatial
complexity of a planar Euler velocity field v(x, t), a fluid element travelling along a
fluid trajectory x(t) will keep its initial angular velocity (i.e. half of its vorticity at t0)
for all times t. This property locks the initial conditions of initially rotationally
coherent fluid parcels to the same LAVD level curve for all times, no matter
how much these parcels separate or deform in the meantime. Specifically, even
if material filaments break away transversely from a vortical region and undergo high
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Algorithm 2 Coherent Lagrangian vortex boundaries and vortex centres for three-
dimensional flows
Input: A three-dimensional time-resolved velocity field

(i) For a three-dimensional grid of initial conditions x0, compute the LAVD:
LAVDt1

t0(x0)=
∫ t1

t0
|ω(x(s; x0), s)− ω̄(s)| ds.

(ii) Detect initial positions C (t0) of vortex centres as local maximum curves (singular
level sets) of LAVDt1

t0(x0). This is best done by locating and connecting local
maximum points Ĉi(t0) of LAVDt1

t0(x0) in a family {Pi}Ni=1 of N parallel planes.
(iii) Seek initial vortex boundaries B(t0) as outermost tubular level surfaces of

LAVDt1
t0(x0) whose intersections B̂i(t0)=B(t0) ∩Pi with the planes Pi satisfy

the following for i= 1, . . . ,N.

(a) B̂i(t0) encircles a vortex centre Ĉi(t0).

(b) B̂i(t0) has arclength exceeding a threshold lmin.

(c) B̂i(t0) has convexity deficiency less than a bound dmax.

Output: Initial positions of rotationally coherent Lagrangian vortex boundaries
(tubular surfaces) and vortex centres (curves) with respect to the time interval [t0, t1].

stretching and global filamentation, they will eternally keep the exact same pointwise
angular velocity they initially acquired near the vortex (see, e.g., the Eulerian vortex
interaction simulation of Dritschel & Waugh (1992) for a striking example).

This rotational degeneracy of the planar Euler equation is lost under the addition of
the slightest viscous dissipation, compressibility or three-dimensionality. Under any of
these regularizing perturbations, LAVD-based vortex detection can be applied to reveal
the Lagrangian signature of vortex interactions in the perturbed flow. We illustrate this
in a viscous perturbation of the contour-dynamics simulation of Dritschel & Waugh
(1992) in Section 10.4.

10.2. Irrotational vortices
Although physically unrealizable, swirling flows with regions of zero vorticity are
important theoretical models. The classic irrotational vortex flow is given by the two-
dimensional circularly symmetric velocity field

v(x)=


−αx2

x2
1 + x2

2

αx1

x2
1 + x2

2

 . (10.3)

The vorticity of this flow is identically zero, implying LAVDt
t0(x0)≡ 0 and IVD(x)≡ 0

for any choice of t0 and t. This may seem to be at odds with the fact that all particles
move on circular orbits, and hence line elements tangent to the trajectories exhibit one
full rotation over the period of the circular orbit.

However, the tangents are special line elements and are not representative of
the overall bulk rotation of fluid elements. Material fibres transverse to the trajectory
tangents all rotate at different speeds. The average rate of rotation for all line elements
emanating from a given point is zero, as was already pointed out by Helmholtz (1858)
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in a related debate with Bertrand (1873) (cf. Truesdell & Rajagopal 2009; Haller
2016). Therefore, an infinitesimal fluid volume has no experimentally measurable
bulk rigid-body rotation component in its deformation, as indeed demonstrated by
Shapiro (1961).

The irrotational vortex flow (10.3) is composed of a single degenerate LAVD and
IVD level set LAVDt

t0(x0)= IVD(x)≡0, as opposed to a nested family of codimension-
one tubular level sets with outward-decreasing LAVD and IVD values. Therefore, the
flow (10.3) does not satisfy our Definitions 1 and 2, and hence does not qualify as
a rotationally coherent Lagrangian or Eulerian vortex. A similar conclusion holds on
the irrotational domains of the Rankine and Lamb–Oseen vortices (Majda & Bertozzi
2002), or, more generally, in a recirculation region of any potential flow. We note
that irrotational vortices are also either explicitly excluded by most systematic vortex
criteria or fail the test for being a vortex according to these criteria.

10.3. Direct numerical simulation of two-dimensional turbulence
We solve numerically the forced Navier–Stokes equation

∂tv + v · ∇v =−∇p+ ν∆v + f , ∇ · v = 0, (10.4)

for a two-dimensional velocity field v(x, t) with x= (x1, x2) ∈ U = [0, 2π] × [0, 2π].
We use a pseudo-spectral code with viscosity ν = 10−5. We evolve a random-in-phase
velocity field in the absence of forcing (f = 0) until the flow is fully developed, then
turn on a random-in-phase forcing (cf. Farazmand & Haller 2013). We identify this
latter time instance with the initial time t0 = 0, and run the simulation until the final
time t1 = 50.

To construct the LAVD field, we advect trajectories from an initial grid of
1024× 1024 points over the time interval [0, 50]. We integrate the vorticity deviation
norm separately (as opposed to solving the combined ODE (9.1)), using 1200
vorticity values along each trajectory, equally spaced in time. Figure 7 shows the
results superimposed on the contours of LAVD50

0 (x0). In this computation, we have
set the minimum arclength lmin = 0.3 and convexity deficiency bound dmax = 10−4.

Figure 7 shows the Lagrangian vortex boundaries extracted from Definition 1
using Algorithm 1 at the initial time t0 = 0. In figure 7, we confirm the Lagrangian
rotational coherence of these vortex boundaries by advecting them to the final time
t1 = 50. As expected, the vortex boundaries do not give in to the general trend of
exponential stretching and folding observed for generic material lines. Instead, they
display only local (tangential) filamentation. The complete advection sequence over
the time interval [0, 50] is illustrated in the online supplementary movie M1 available
at http://dx.doi.org/10.1017/jfm.2016.151.

In figure 8(a), we show the time t0 positions of rotationally coherent Eulerian
vortices in green, along with their Lagrangian counterparts in red. The passively
advected positions of the Eulerian vortices are shown in figure 8(b), displaying
substantial material fingering into their surroundings. While this lack of full material
coherence over time is expected for the Eulerian vortices, some of them are
impressively close to their Lagrangian counterparts at the initial time t0, even though
they are extracted from just an instantaneous analysis. At the same time, other
Eulerian vortices without nearby Lagrangian counterparts disintegrate completely
under advection, as seen in figure 8(c).
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FIGURE 7. (a) Three-dimensional contour plot of LAVD50
0 (x0). Lagrangian vortex

boundaries (outermost rotational LCSs) extracted from Algorithm 1 are shown in red.
(b) Vortex boundaries shown in the flow domain at initial time t= 0. The contour plot of
LAVD50

0 (x0) is shown in the background for reference. (c) Advected Lagrangian vortex
boundaries at the final time t1 = 50 (see the online supplementary movie M1 for the
complete advection sequence of the vortex boundaries).

10.4. Interaction of two unequal vortices
Motivated by the inviscid contour-dynamics simulation of Dritschel & Waugh (1992),
we seek to identify Lagrangian vortex cores in the interaction of two vortices
of unequal strength (cf. our discussion in § 10.1). We solve the Navier–Stokes
equation (10.4) in two dimensions with viscosity ν = 2 × 10−6. As initial velocity
field, we let

v(x, 0)= v1(x)+ v2(x), vi(x)= Γi
1− exp(−r2

i /δ
2
i )

2πr2
i

Rπ/2 (x− xi), i= 1, 2,

(10.5a,b)
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(b) (c)

(a)

FIGURE 8. (a) Lagrangian (red) and Eulerian (green) rotationally coherent vortices at time
t0 in the two-dimensional turbulence example. (b) Rotationally coherent Eulerian vortex
boundaries and centres at time t0, with the IVD(x, t0) field shown in the background.
(c) The same objects advected passively to the final time t1 = 50, with IVD(x, t1) shown
in the background.

where r2
i = |x− xi|2, and the matrix Rπ/2 refers to counter-clockwise rotation by π/2.

Each vi defines a vortex centred at a point xi with a Gaussian profile. The parameters
Γi and δi control the strength and width of each vortex respectively. In our simulation,
we chose

Γ1 = 0.01, δ1 = 0.05, x1 = (π,π+ 0.2), (10.6a−c)

Γ2 = 0.12, δ2 = 0.20, x2 = (π,π− 0.2). (10.7a−c)

The vortex described initially by v1 is, therefore, weaker and smaller, and hence is
expected to deform significantly under the strain field created by the second vortex
initially described by v2. The computational domain is x∈[0,2π]× [0,2π], discretized
into 512× 512 grid points. During the simulation, the vortices stay far enough from
the boundary so that the boundary effects on their evolution are negligible. A relevant
Reynolds number can be computed as Re = Γ2/ν = 6 × 104 (cf. Kevlahan & Farge
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FIGURE 9. (a) Rotationally coherent Lagrangian vortex boundaries (red) at time t0 = 0
in the vortex interaction example. Also shown are two circles (black) approximating
the Eulerian vortex boundaries inferred at time t0 from the vorticity distribution. The
LAVD30

0 (x0) is shown in the background for reference. (b) The advected positions of the
Lagrangian vortex boundaries and the two closed material curves at time t = 30. The
advected LAVD field LAVD30

0 (x(30; 0, x0)) is shown in the background (see the online
supplementary movie M2 for the complete advection sequence of the vortex boundaries).

1997). For this Reynolds number, the flow still remains fairly close to its inviscid limit,
with the standard deviation of the vorticity from its initial value staying below 0.5 %
along fluid trajectories.

We have run the computation from the non-dimensional time t0 = 0 up to t = 30.
Over this time scale, we could preserve the smoothness of the velocity field without
additional numerical effort. We applied Algorithm 1 with the tight convexity deficiency
dmax = 10−3 and the arclength filter lmin = 0.1. We show the rotationally coherent
vortex boundaries obtained in this fashion in figure 9, along with two other closed
material lines initiated around the vortex cores. The latter two circles approximate
closely the Eulerian vorticity boundaries inferred from the instantaneous vorticity at
time t0 = 0. They, therefore, mimic the role of the initially circular vorticity jump
contours advected in the inviscid simulation of Dritschel & Waugh (1992).

As seen in figure 9, the stronger Eulerian vortex creates a sizable rotationally
coherent Lagrangian vortex in the centre. This vortex shows only tangential
filamentation, as confirmed by its advected position at t = 30. The weaker Eulerian
vortex has a substantially smaller coherent Lagrangian footprint that orbits around the
larger vortex.

This weaker satellite vortex gradually reaches a maximal elongated perimeter at
approximately t = 24, then preserves its arclength in an approximate rigid-body
rotation for the remaining 20 % of the simulation time. No transverse filamentation
occurs in this case either: the satellite vortex remains rotationally coherent in the
sense of our Definition 1.

Therefore, as figure 9 illustrates, two unequal viscous vortices may interact strongly
and still preserve their rotationally coherent material cores during a finite time interval
of their interaction. Such coherent cores remain hidden in contour-dynamics studies
focused on the advection of Eulerian vortex boundaries inferred from large initial
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vorticity gradients. Indeed, the two black material curves of figure 9, mimicking
the role of vortex-bounding inviscid vorticity contours, develop substantial transverse
filamentation during the same time interval.

10.5. Two-dimensional Agulhas eddies in satellite altimetry
Here, we illustrate the detection of rotationally coherent eddy boundaries in velocity
data derived from satellite-observed sea-surface heights under the geostrophic
approximation. In this approximation, the satellite-measured sea-surface height
η(ϕ, θ, t) serves as a non-canonical Hamiltonian for surface velocities in the (ϕ, θ)
longitude–latitude coordinate system.

The evolution of fluid particles satisfies

ϕ̇(ϕ, θ, t)=− g
R2f (θ) cos θ

∂θη(ϕ, θ, t), (10.8)

θ̇ (ϕ, θ, t)= g
R2f (θ) cos θ

∂ϕη(ϕ, θ, t), (10.9)

where g is the constant of gravity, R is the mean radius of the Earth and f (θ) ≡
2Ω sin θ is the Coriolis parameter, with Ω denoting the Earth’s mean angular velocity.
The publicly available AVISO sea-surface height data base for η(ϕ, θ, t) is given at a
spatial resolution of 1/4◦ and a temporal resolution of 7 days.

We select the computational domain in the longitudinal range [−4◦, 9◦] and the
latitudinal range [−35◦,−28◦], which falls inside the region of the Agulhas leakage
in the Southern Ocean. A Lagrangian analysis of coherent mesoscale eddies is
particularly important in this context, as the amount of warm and salty water carried
from the Indian Ocean to Atlantic Ocean has relevance for global circulation and
climate (Beal et al. 2011).

Recent two-dimensional Lagrangian studies of the Agulhas leakage have used
geodesic LCS theory to locate perfectly non-filamenting (black-hole-type) material
eddies (Beron-Vera et al. 2013; Haller & Beron-Vera 2013). Here, we use a relaxed
notion of coherence, which allows for tangential filamentation, but not for global
breakaway of material from the eddy. The computational cost in the present method
is substantially lower: the calculation of the deformation gradient and the search for
limit cycles bounding the black-hole eddies are absent.

We consider the AVISO data set ranging from the initial time t0=11 November 2006
to the final time t1 = t0 + 90 days. We select an initial grid of particles with step
size ∆x0= 1/50◦. As an additional filter to eliminate LAVD and IVD maxima due to
resolution coarseness, we ignore from the start LAVD and IVD maxima that are closer
than the submesoscale distance 0.2◦ (approximately 20 km). As a convexity deficiency
bound, we select dmax = 10−3. As an arclength threshold, we fix lmin = 2πr, with r=
20 km selected again as a lower bound on mesoscale structures reliably resolved by
altimetry.

Beyond executing Algorithm 1 to extract rotationally coherent eddies in this setting,
we also use this example to illustrate the predictions obtained from Theorem 2 for the
attractor role of rotationally coherent Lagrangian vortex centres. Figure 10(a) shows
the rotationally coherent eddies, while figure 10(b) confirms that their boundaries
only develop tangential filamentation under Lagrangian advection, as expected. This
second plot also confirms that LAVD-based vortex centres are precisely the observed
attractors for light particles released in cyclonic eddies and for heavy particles released
in anticyclonic eddies.
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FIGURE 10. (a) Rotationally coherent Lagrangian vortices at time t0= 11 November 2006,
identified from Algorithm 1 using the contours of LAVDt0+T

t0 (x0) with T = 90 days. The
contour plot of LAVDt0+T

t0 (x0) is shown in the background for reference. (b) Initial (red)
and final (black) positions of the Lagrangian vortex boundaries at time t0+ T , along with
representative inertial particle trajectories. Heavy particles (blue) converge to the centres of
anticyclonic (clockwise) eddies. Light particles (green) converge to the centres of cyclonic
(clockwise) eddies. Here, δheavy=0.99, δlight=1.01, r0=1 m. (See the online supplementary
movie M3 for the complete advection sequence of the vortex boundaries and the inertial
particles.)

We show a comparison of the initial positions of rotationally coherent Lagrangian
and Eulerian vortices in figure 11(a). Three of the Eulerian eddies (green) are close to
Lagrangian eddies (red), and will accordingly show some coherence under advection
by the end of the observational period in figure 11(c). The remaining Eulerian eddies
show major filamentation and disintegrate under advection. We note the large number
of false positives for coherent eddies based on the instantaneous Eulerian prediction
at the initial time, even though this prediction is frame-invariant.

In appendix D, we also use this example to illustrate differences between LAVD-
based vortex detection and two other objective Lagrangian tools for two-dimensional
flows: the geodesic LCS approach of Haller & Beron-Vera (2013) and the ellipticity-
time diagnostic of Haller (2001).

We find that the geodesic LCS approach generally identifies similar material vortex
regions to the LAVD approach. By construction, however, geodesic vortex boundaries
enclose perfectly non-filamenting vortex cores, and hence miss the rotationally
coherent (but tangentially filamenting) outer annuli of Lagrangian vortices. The
identification of the perfectly coherent black-hole-type cores by the geodesic LCS
approach also comes with a higher computational cost and does not extend to three
dimensions (cf. appendix D for details).
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FIGURE 11. (a) Lagrangian (red) and Eulerian (green) rotationally coherent vortices
at time t0 in the satellite altimetry example. (b) Rotationally coherent Eulerian vortex
boundaries and centres at time t0, with the IVD(x, t0) field shown in the background.
(c) The same objects advected passively to the final time t1 = t0 + T , with IVD(x, t1)
shown in the background.

We also find that the ellipticity-time diagnostic highlights the general vicinity
of the coherent material vortex regions, but offers no well-defined procedure for
defining vortex boundaries. Focused on individual trajectory stability rather than global
coherence, the ellipticity time has equally high values in some regions that do not
remain coherent as a whole. Conversely, the ellipticity time indicates predominantly
hyperbolic (i.e. non-vortical) behaviour in the outer tangentially filamenting parts of
rotationally coherent vortices.

In summary, despite their higher computational costs, neither globally uniform-
stretching material lines nor elliptic fluid trajectories are able to provide the large
coherent material vortex boundaries obtained from the LAVD.

11. Three-dimensional examples
11.1. Strong Beltrami flows

Strong Beltrami flows are steady flows whose vorticity field is a constant scalar
multiple of the velocity field (Majda & Bertozzi 2002), i.e.

ω(x)= λv(x). (11.1)

In this case, formula (4.6) gives

LAVDt
t0(x0)= |λ|

∫ t

t0

|v(x(s))− v̄| ds, v̄ := 1
vol (U)

∫
U

v(x) dV. (11.2a,b)

Thus, for any strong Beltrami flow with λ 6= 0, a rotationally coherent Lagrangian
vortex boundary is a locally outermost, closed and convex level surface of

∫ t
t0
|v(x(s))−

v̄| ds, the trajectory-averaged deviation of the velocity field from its spatial mean.
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FIGURE 12. (a) Three representative rotationally coherent Lagrangian vortex boundaries
in the ABC flow, obtained as outermost convex tubular level sets of LAVD50

0 (x0). Black
curves indicate trajectories launched on these boundaries. (b) Two representative IVD(x)
level surfaces (with blue denoting the rotationally coherent Eulerian vortex boundary) in
the single Eulerian coherent vortex obtained from the IVD field for the ABC flow for the
parameter values considered here.

For general 3D steady flows, level sets of asymptotically Lagrangian-averaged
observables have been noted to approximate ergodic components (Budišić & Mezić
2012). The new result here is that tubular level sets of the finite-time average of
the normed velocity deviation in strong Beltrami flows define rotationally coherent
Lagrangian structures (surfaces of constant net bulk rotation) in an objective fashion.

By formula (11.2), rotationally coherent Eulerian vortices in strong Beltrami flows
are composed of convex tubular level surfaces of the normed velocity deviation
IVD(x)= |v(x)− v̄|.

As an example, we consider the ABC flow whose velocity field is given by

v(x)=
A sin x3 +C cos x2

B sin x1 + A cos x3

C sin x2 + B cos x1

 (11.3)

over the triply periodic domain U = [0, 2π]3. A direct calculation gives v̄(x)≡ 0 and
λ = 1. We select the parameter configuration A = 1, B = √2/3 and C = √1/3. For
our Lagrangian advection, we select an initial grid of 2003 evenly distributed particles,
which we advect over the interval [t0, t1] = [0, 50].

Figure 12(a) shows three representative Lagrangian vortex boundaries obtained as
outermost convex tubular level surfaces of LAVD50

0 (x0). Due to the simplicity of this
steady flow, relaxation of the convexity was not necessary (the convexity deficiency is
zero). Also shown in figure 12 are trajectory segments launched along the Lagrangian
vortex boundaries, illustrating their Lagrangian invariance. Figure 12(b) shows the
single IVD-based Eulerian vortex obtained for the ABC flow. While this Eulerian
structure is near one of the Lagrangian vortices, the shape of the IVD-based vortex
is not representative of the true Lagrangian vortex in this example. Furthermore, no
IVD-based Eulerian vortices arise near the remaining Lagrangian vortices. This might
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seem puzzling first, but one must remember the spatial anisotropy of the ABC flow
for unequal A, B and C parameter values.

11.2. Three-dimensional Agulhas eddies in a data-assimilating circulation model
Here, we apply LAVD-based vortex extraction to a three-dimensional unsteady
velocity field set obtained from the Southern Ocean state estimation (SOSE) model
(Mazloff, Heimbach & Wunsch 2010). The domain of the data set is again in the
area of the Agulhas leakage in the Southern Ocean, representing a three-dimensional
extension of the Agulhas eddy extraction study of § 10.5.

Our Lagrangian study covers a period of T = 120 days, ranging from t0 =
15 May 2006 to t = 12 September 2006. The selected computational domain in the
South Atlantic ocean is bounded by longitudes [11◦E, 16◦E], latitudes [37◦S, 33◦S]
and depths [7, 2000] m. We compute the LAVD and IVD fields over a uniform grid
of 350× 350× 350 points, and identify rotationally coherent Lagrangian and Eulerian
vortices using Algorithm 2. As in our two-dimensional turbulence example, we
integrate the vorticity deviation norm separately (as opposed to solving the combined
ODE (9.1)), using 1000 vorticity values along each trajectory, equally spaced in time.
For the plane family Pi featured in Algorithm 2, we consider horizontal planes along
nodes of the initial grid, starting from 28 m below the sea-surface level to eliminate
noise due to boundary effects at the surface. In these planes we use the arclength
threshold lmin = 0.1 and the maximal convexity deficiency dmax = 10−4. The spatial
mean vorticity ω̄(t), as the practically observed mean vorticity for a large enough
fluid mass in the ocean, is taken to be zero.

Figure 13(a) shows the initial position of a rotationally coherent Lagrangian eddy
boundary (yellow) and its centre (red), extracted as level sets of LAVDt1

t0(x0) by
Algorithm 2. Also shown is a nearby LAVD level surface outside the eddy boundary,
illustrating the complexity of the near-surface mixing region enclosing the eddy.
Figure 13(b) gives a full view of the Lagrangian eddy, whereas figure 13(c) shows
the materially advected position of the eddy at the final time, 120 days later. As
expected, there is mild tangential filamentation in the material eddy boundary, but
strictly no breakaway from the rotating water mass. Given the complexity of material
mixing in the surrounding waters, this high degree of material coherence illustrates
well the accuracy of LAVD-based vortex extraction.

The corresponding rotationally coherent Eulerian eddy extracted at the same initial
location, then materially advected for 120 days, is shown in figure 14. In the Eulerian
computation, the noise in the level-surface computation is more moderate than in the
Lagrangian case. As a result, the plane family Pi featured in Algorithm 2 can be
selected to start from as high as 7 m below the surface.

This Eulerian eddy has approximately the same diameter near the sea surface as its
Lagrangian counterpart, but maintains this diameter and reaches substantially larger
depths. Its vertical size is further increased under advection, with the bottom forming
a sharp tip. Overall, the advected surface shows high ribbing and filamentation. Large-
scale material breakaway is absent in this example, but this cannot be guaranteed
a priori for an Eulerian eddy (see our two-dimensional computations in § 10.5). A
comparison of figures 13 and 14 suggests that the Lagrangian eddy forms a smooth
coherent centre region that transports water without observable filamentation inside the
vortical Eulerian feature.

With a larger number of dedicated control points, the computation of LAVD
level surfaces can be extended closer to the ocean surface. Figure 15 shows a
higher-resolution computation of the initial and advected positions of the top slices of
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FIGURE 13. (a) Representative level surfaces of LAVDt0+T
t0 (x0) with t0=15 May 2006 and

T = 120 days. The yellow surface is extracted using Algorithm 2, marking the vortex
boundary for a mesoscale rotationally coherent Lagrangian eddy, extending from 28 m
down to 646 m in depth. The green surface is a nearby level surface of LAVDt0+T

t0 (x0)
outside the Lagrangian vortex region. The red curve marks the coherent vortex centre, as
defined in Definition 1. (b) Full view of the Lagrangian eddy boundary and its centre
at the initial time t0. (c) The advected eddy boundary and vortex centre 120 days later,
extending from 49 m down to 726 m below the surface (see the online supplementary
movie M4 for the complete advection sequence of the eddy boundary).

IVD-based and LAVD-based rotationally coherent vortex boundary surfaces. In this
computation, the initial top slice of the LAVD-based vortex boundary is located only
15 m below the ocean surface, as opposed to the 28 m distance used in figure 13(c).
Even this Lagrangian boundary slice remains more coherent than the Eulerian one,
but the Eulerian slice still performs well under material advection for this eddy and
for this advection time.
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FIGURE 14. (a) The rotationally coherent Eulerian counterpart of the Lagrangian eddy
shown in figure 13(a), ranging from 7 m down to 1007 m below the sea surface. (b)
The materially advected position of the Eulerian eddy 120 days later, ranging from 15 to
1163 m below the sea surface (see the online supplementary movie M5 for the complete
advection sequence of the eddy boundary).
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FIGURE 15. Initial top slices (dashed lines, at time t0= 15 May 2006) and their advected
positions (solid lines, T = 120 days later) of the LAVD- and IVD-based rotationally
coherent vortex boundaries.

12. Conclusions
We have given an objective (fully observer-independent) definition of a Lagrangian

vortex as a set of material tubes in which fluid elements complete the same intrinsic
dynamic rotation. This material rotation angle is obtained from the exact dynamically
consistent decomposition (4.8) of the deformation gradient. Remarkably, the intrinsic
material rotation angle is expressible as the trajectory integral of the normed deviation
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of the vorticity from its spatial mean (LAVD). The intrinsic material rotation is,
therefore, directly observable as the rotation of vorticity meters in fluid experiments
(Shapiro 1961), once the mean rotation reported by these devices is subtracted from
the measurements.

The identification of a rotationally coherent material vortex does not require
advection of high-density material grids, a generally taxing numerical procedure in
Lagrangian coherence calculations. By construction, LAVD-based material vortices
may show material filamentation, but even filamented material elements will rotate
together with the vortex without global breakaway. The vortex interior, therefore,
shows no advective mixing with its environment, as we have illustrated on several
two- and three-dimensional unsteady flows.

Our approach also enables the extraction of vortex centres as singular level sets
(local maxima) of the LAVD. We have proved that in two-dimensional geostrophic
flows these vortex centres coincide precisely with attractors of light particles in
cyclonic eddies and with those of heavy particles in anticyclonic eddies. Indeed, we
have found that numerically simulated light and heavy inertial particles show rapid
convergence to the appropriate moving vortex cores in a satellite-inferred geostrophic
ocean velocity field. On the same example, we have illustrated the advantages of
LAVD-based coherent vortex detection compared with other objective Lagrangian
vortex detection tools.

It is tempting to consider the deviation of the potential vorticity from its spatial
mean for a similar analysis, but such an approach would remain heuristic, driven
purely by analogy. This is because the potential vorticity is not objective and cannot
be rigorously connected to intrinsic material rotation generated by the deformation
gradient.

Motivated by our results on LAVD, one might proceed by analogy and probe plots
of Lagrangian averages of arbitrary scalar fields for vortical features. As long as these
scalar fields are non-degenerate and favourably initialized, material vortices should
indeed have a footprint in the resulting plots due to the coherence of trajectories
in the vortex interiors. For instance, the trajectory-averaged Okubo–Weiss parameter
(Dresselhaus & Tabor 1989; Pérez-Muñuzuri & Huhn 2013) and trajectory-averaged
helicity (Pérez-Muñuzuri & Huhn 2013) may also have lows and highs respectively
near material vortices. Such extrema are, however, heuristic diagnostics, each
signalling a different domain for a vortex, and each showing extrema in other
flow regions as well. Their features are a consequence, rather than a well-understood
root cause, of material coherence (cf. Beron-Vera 2015).

In contrast, we arrive here at LAVD-based vortices by solving an objectively
posed coherence problem for material surfaces of equal bulk rotation. The LAVD
then arises from an exact dynamically consistent decomposition of the deformation
gradient into purely rotational and purely straining deformation gradients. The vortex
boundaries and centres thus obtained are sharply defined, do not develop global
material filamentation and remain invariant with respect to all possible Euclidean
observer changes.

We have also formulated an objective Eulerian definition of a rotationally coherent
vortex: a domain filled with tubular surfaces of constant intrinsic material rotation
rate. These surfaces coincide with outward-decreasing tubular level sets of the IVD.
In some cases, we have found rotationally coherent Eulerian vortices and their centres
to be surprisingly close to their Lagrangian counterparts. While such closeness does
not hold in general, IVD-based vortices do provide a systematic and frame-invariant
way to track coherent velocity features that are infinitesimally consistent in time with
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coherent material vortices. This makes these Eulerian vortices and vortex centres
appropriate tools for a fully frame-invariant automated vortex census in turbulent flow
data.
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Appendix A. Material rotation from the classical polar decomposition
Finite strain theory (Truesdell & Noll 1965) infers a unique bulk material rotation

for material volume elements between times t0 and t1 from the polar decomposition

F t1
t0 = R t1

t0 U t1
t0 , R t1

t0 = F t1
t0 [C t1

t0 ]−1/2, U t1
t0 = [C t1

t0 ]1/2 (A 1a−c)

of the deformation gradient. Here, the rotation tensor R t1
t0 is proper orthogonal,

interpreted as the solid-body rotation component of the deformation. The right stretch
tensor, U t1

t0 , is symmetric and positive definite, obtained as the principal square root
of the Cauchy–Green strain tensor C t1

t0 . The right stretch tensor is interpreted as the
stretching preceding the solid-body rotation represented by R t1

t0 . The tensors R t1
t0 and

U t1
t0 are not objective, but the eigenvalues of U t1

t0 are preserved under time-dependent
rotations and translations (Truesdell & Noll 1965).

In a given frame of reference, R t1
t0 (x0) represents the unique rotation that gives the

closest fit to the linear operator F t1
t0 (x0) in the Frobenius matrix norm (Golub & Van

Loan 1983). In two and three dimensions, the action of R t1
t0 (x0) can be described by a

single polar rotation angle (PRA). Well defined up to multiples of 2π, the PRA is the
signed angle of rotation along the axis of rotation associated with the tensor R t1

t0 (x0).
In recent work, we used tubular and singular level surfaces of the PRA to visualize

elliptic Lagrangian regions and their centres respectively (Farazmand & Haller
2016). To the best of our knowledge, this represents the first systematic approach to
identifying Lagrangian coherence based on a synchrony in the net material rotation
of infinitesimal volume elements. The level sets of the PRA are objective in two
dimensions, and have shown themselves to be accurate indicators of elliptic regions
in unsteady flows with general time dependence.

Nevertheless, several challenges remain that the classic polar decomposition, and
hence also the PRA, is unable to address.

(i) Polar rotation angle level sets are not frame-invariant in three dimensions.
Therefore, the PRA in three dimensions cannot be used to define elliptic LCSs,
which are material (and hence fundamentally frame-invariant) surfaces.

(ii) The computation of the PRA is based on the invariants of the Cauchy–Green
strain tensor. This requires the accurate differentiation of the flow map F t1

t0 (x0)
with respect to the initial conditions. This is numerically costly for extended
times in large flow domains.
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(iii) No straightforward relationship exists between finite material rotation represented
by the PRA and physical quantities (most notably vorticity) used in Eulerian
vortex identification. Indeed, only an involved relation exists between R t1

t0 and the
spin tensor W through the formula

Ṙ
t
t0 = (W − 1

2 R t
t0[U̇

t
t0(U

t
t0)
−1 − (U t

t0)
−1U̇

t
t0](R t

t0)
T)R t

t0, (A 2)

where the dot refers to differentiation with respect to t (Truesdell & Rajagopal
2009).

(iv) Between two fixed times t0 and t1, the polar rotation tensor R t1
t0 represents the

closest solid-body rotation to F t1
t0 in the Frobenius norm. For intermediate times

t ∈ [t0, t1], the rotation family R t
t0 provides no self-consistent solid-body rotation

component for the evolving deformation gradients F t
t0 . Indeed, one generally has

R t
t0 6= R t

sR s
t0, s, t ∈ [t0, t1], (A 3)

which means that the rotation family R t
t0 does not satisfy the basic superposition

principle of subsequent rigid-body rotations. Consequently, experimentally
observed finite material rotation in fluids (visualized by small rigid-body tracers
(Shapiro 1961)) will differ from the PRA even in the simplest flows (see Haller
(2016) for further discussion).

Haller (2016) also discusses the rotational component yielded by R t
t0 for two

simple fluid-mechanical examples: irrotational vortices and parallel shear flows. In
these examples, the observed material rotation signalled by small inertial tracers
(vorticity meters) differs fundamentally from the rotation captured by R t

t0 .

Appendix B. Rotationally coherent vortices in flow over a moving surface
Here, we show how the LAVD and IVD can be computed over moving surfaces,

such as the rotating Earth, without having to compute the vorticity in curvilinear
coordinates. Consider first a three-dimensional spatial domain U(t)⊂R3 that possibly
also translates and rotates in time. We assume that U(t) admits a globally orthogonal
parametrization

f t :U ⊂R3→U(t),
α 7→ x,

}
(B 1)

where α is non-dimensionalized. If the velocity field at points x∈U(t) is denoted by
v(x, t), then

ẋ= v(f t(α), t)=Df t(α)α̇ + ∂tf (α), (B 2)

which induces the corresponding velocity field

α̇ = ṽ(α, t) := [Df t(α)]−1[v(f t(α), t)− ∂tf (α)] (B 3)

in the parameter space U . The vorticity associated with the flow (B 3) in the
parameter space is then given by

ω̃(α, t)=∇α × ṽ, (B 4)

with ∇α denoting the gradient operation in the orthogonal coordinates α. Theorem 1
is then applicable to the pull-back flow (B 3) in the parameter space with the vorticity
ω̃(α, t).
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As an example, we let U(t) denote a three-dimensional spherical shell region
rotating with the Earth. A non-dimensional version of the classical spherical
parametrization of the globe is given by α = (λ/360◦, ψ/360◦, ρ/R), where λ and ψ
denote the longitude and latitude in degrees, ρ denotes the altitude in kilometres and
R denotes the radius of the Earth in kilometres.

With the Earth modelled as a sphere placed in the x coordinate system, rotating
with uniform angular velocity ν0 about the x3 axis, we have the parametrization (B 1)
in the form

f t(α)= R

α3 cos 2πα2 cos(2πα1 + ν0t)
α3 cos 2πα2 sin(2πα1 + ν0t)

α3 sin 2πα2

 . (B 5)

The velocity field v(α, t) in U(t) and the corresponding velocity field (B 3) in the
space U of curvilinear coordinates have the forms

v(α, t)=
vλ(α, t)
vψ(α, t)
vρ(α, t)

 , ṽ(α, t)=
vλ(α, t)/[Rα3 cos(2πα1 + ν0t)]

vψ(α, t)/(Rα3)
vρ(α, t)

 (B 6a,b)

respectively. Here, (vλ, vψ , vρ) denote projections of the velocity v onto local unit
vectors tangent to coordinate lines of the latitude, longitude and altitude.

The parameter-space vorticity (B 4) can be computed from the velocity field ṽ(α, t)
in (B 6), then used in computing the IVD and the LAVD. For the special case of
two-dimensional flows over a sphere, the ρ-component of ṽ is zero, and ρ ≡ R in all
formulae above.

Appendix C. Proof of Theorem 2
The linearization of (8.1) along a particle motion xp(t) starting from a position x0

at time t0 gives the equation of variations

ξ̇ = [∇v(xp(t), t)+ τ(δ − 1)f J∇v(xpart(t), t)+O(τ 2)]ξ . (C 1)

By Liouville’s theorem (Arnold 1978), the fundamental matrix solution P t
t0(x0) of this

linear system of ODEs satisfies the relationship

det P t
t0(x0) = exp

{∫ t

t0

Trace[∇v(xpart(s), s)+ τ(δ − 1)f J∇v(xpart(s), s)+O(τ 2)] ds
}

= exp
{
τ(δ − 1)f

∫ t

t0

ω3(xpart(s), s) ds+O(τ 2)

}
. (C 2)

By smooth dependence of the solutions of (8.1) on parameters, over a finite time
interval and for small enough τ , the inertial particle trajectory xpart(s) is O(τ ) C1-close
to the fluid particle trajectory x(t; x0) starting from the same initial position x0 at time
t0. We thus have

ω3(xpart(s), s)=ω3(x(s; x0), s)+O(τ ), s ∈ [t0, t1]. (C 3)

Substituting this relation together with assumption (8.3) into (C 2), we obtain

det P t
t0(x
∗
0) = exp

{
τ(δ − 1)f

∫ t

t0

ω3(x(s; x∗0), s) ds+O(τ 2)

}
= exp{τ(δ − 1)f ω̄3(t)} exp{µτ(δ − 1)f LAVDt

t0(x
∗
0)+O(τ 2)}, (C 4)
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with the two-dimensional LAVD field defined in (7.1) and the sign parameter µ
defined in (8.3). The planar form (7.1) of the LAVD applies in the present spherical
flow setting because the β-plane approximation is assumed in the derivation of the
reduced Maxey–Riley equation (8.1).

Over a finite time interval [t0, t1], no unique classical attractor can be defined in a
dynamical system. Indeed, by smooth dependence on initial conditions, any attracting
trajectory has an open neighbourhood filled with other attracting trajectories. What
prevails from such an open set as a uniquely observed finite-time attractor is the
trajectory that attracts the others at the strongest rate.

Such a strongest attracting or repelling inertial particle motion starting from an
initial position x0 is signalled by a local extremum of the function det P t1

t0 (x0) at x∗0, i.e.
by the relation ∇x0[det P t1

t0 (x
∗
0)] = 0. By (C 4), this extremum condition is equivalent

to

exp{µτ(δ − 1)f LAVDt1
t0(x
∗
0)}[µτ(δ − 1)f∇x0LAVDt1

t0(x
∗
0)+O(τ 2)] = 0, (C 5)

which is in turn equivalent, for non-zero τ , to an equation of the general form

∇x0LAVDt1
t0(x
∗
0)+O(τ )= 0. (C 6)

Assume now that x∗0 is a non-degenerate maximum point of LAVDt1
t0(x0), i.e. we

have
∇x0LAVDt1

t0(x
∗
0)= 0, det[∇2

x0
LAVDt1

t0(x
∗
0)]> 0. (C 7)

Then, by the implicit function theorem, for small enough τ > 0, the equation (C 6)
has a unique solution of the form

x̄0(τ )= x∗0 +O(τ ). (C 8)

Inertial particle trajectories starting from the initial position x̄0(τ ), therefore, prevail
as the strongest finite-time attractors or repellers over the time interval [t0, t1]. These
attracting and repelling trajectories remain O(τ ) C1-close to fluid particle trajectories
starting from the positions x∗0.

Now, on a large enough domain, the spatially averaged relative vorticity is
approximately zero. (This already holds on the computational domain used in § 10.5.)
Thus, the exponent in expression (C 4) can be written as

τ [µ(δ − 1)f LAVDt1
t0(x
∗
0)+O(τ , f ω̄3)]. (C 9)

When this expression is negative (positive) at the local maximum x∗0 of LAVDt
t0 , then

the fluid trajectory starting from x∗0 approximates the locally strongest finite-time
attractor (repeller) of the inertial particle motion by (C 8). In other words, when
µ(δ− 1)f is negative (positive) at x∗0, the Lagrangian fluid trajectory starting from x∗0
approximates the locally strongest attractor (repeller) over the time interval [t0, t1].

We conclude that in the limit of τ→ 0, cyclonic (µf > 0) Lagrangian eddy centres,
as defined in Definition 1, are attractors for light (δ > 1) particles and repellers for
heavy particles (δ < 1). Likewise, for τ → 0, anticyclonic (µf < 0) Lagrangian eddy
centres, as defined in Definition 1, are attractors for heavy (δ < 1) particles and
repellers for light (δ > 1) particles. This completes the proof of Theorem 2.
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Appendix D. Comparison of LAVD-based vortex identification with other
objective approaches

D.1. Geodesic vortex detection
Geodesic vortex detection seeks time t0 positions of Lagrangian vortex boundaries as
outermost closed stationary curves of the material-line-averaged tangential stretching
functional

Q(γ )= 1
σ

∫ σ

0

√
〈x′0(s), C t

t0(x0(s))x′0(s)〉√〈x′0(s), x′0(s)〉
ds, (D 1)

with C t
t0(x0)=[F t

t0(x0)]TF t
t0(x0) denoting the left Cauchy–Green strain tensor, and with

x0(s) referring to a parametrization of the closed curve γ (cf. Haller & Beron-Vera
2013; Haller 2015 for details). On such stationary curves, the functional Q must
necessarily have a vanishing variation:

δQ(γ )= 0. (D 2)

This variational problem can be solved explicitly, with the solution depending on the
eigenvalues λi(x0) and eigenvectors ξi(x0) of C t

t0(x0), defined and indexed as

C t
t0ξi = λiξi, |ξi| = 1, i= 1, 2; 0< λ1 6 λ2, ξ1 ⊥ ξ2. (D 3)

Using these quantities, all closed curves solving (D 2) can be expressed as limit
cycles of the autonomous differential equation family

x′0 = η±λ (x0), η±λ =
√
λ2 − λ2

λ2 − λ1
ξ1 ±

√
λ2 − λ1

λ2 − λ1
ξ2, (D 4a,b)

for some value of λ> 0 and for some choice of the sign in ±. This constant λ turns
out to be precisely the factor by which any subset of a trajectory of (D 4) will be
stretched under the flow map F t

t0 . Outermost members of nested limit-cycle families
of (D 4) are, therefore, locally the maximal closed curves in the flow that stretch
uniformly (i.e. without filamentation). The geodesic theory of elliptic LCSs developed
by Haller & Beron-Vera (2013) defines coherent Lagrangian vortex boundaries to be
these outermost limit cycles. These boundaries are objective by the objectivity of the
invariants of C t

t0(x0). An automated detection algorithm for geodesic vortex boundaries
is given by Karrasch, Huhn & Haller (2014). Geodesic vortex detection has no direct
extension to three-dimensional flows, but a variational approach for nearly uniformly
stretching material surfaces is available Öttinger, Blazevski & Haller (2016).

D.2. Ellipticity-time diagnostic
Haller (2001) studies the finite-time stability of a fluid trajectory x(t; t0, x0) in a
frame aligned with the eigenvectors of the rate-of-strain tensor D(x, t) along the
trajectory. A topological argument shows that the trajectory has an instantaneous
elliptic stability type if, throughout the time interval of interest, either D vanishes or
the strain-acceleration tensor

M = Ḋ + 2D∇v (D 5)

is indefinite on the zero rate of strain set Z = {a ∈ R2 : 〈a, Da〉 = 0}. (In (D 5), the
dot refers to the material derivative.) The ellipticity time τe(t1, t0, x0) for a trajectory
released from x0 at time t0 is then defined as the percentage of time within [t0, t1]
over which the trajectory has instantaneous elliptic stability.
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FIGURE 16. (a) The ellipticity-time field τe(t1, t0, x0) for the Agulhas leakage data set of
§ 10.5 with t0= 11 November 2006 and t1= t0+ 90 days. Rotationally coherent Lagrangian
vortex boundaries (red) are superimposed for reference. (b) Geodesic vortex boundaries at
time t0 for the same data set, with the LAVD-based vortex boundaries (red) superimposed.

The scalar field τe(t1, t0, x0) is an objective pointwise indicator of fluid trajectory
stability. It does not offer a strict definition of a material vortex boundary, but its
high values indicate the general location of material vortices. As shown in Haller
(2001), τe(t1, t0, x0) can equivalently be defined as the percentage of time over which
the trajectory x(t; t0, x0) is elliptic in the sense of the Okubo–Weiss criterion, applied
in a frame co-rotating with the rate-of-strain eigenbasis. A similar ellipticity-time
diagnostic can be defined in three dimensions (Haller 2005), but this extension is no
longer related to other known instantaneous vortex criteria.

To be experimentally verifiable, a vortex criterion based on coherent rotation
of fluid elements should have a direct relation to the observable mean material
rotation visualized by small inertial tracers with attached arrows (vorticity meters).
Experiments show that this mean material rotation has an angular velocity that is
precisely one-half of the local vorticity (Shapiro 1961). In contrast, the relative
vorticity observed in the rate-of-strain eigenbasis remains invisible under all possible
Euclidean observer changes from the laboratory frame. Indeed, the coordinate change
to the pointwise differing rate-of-strain eigenbases would require a spatially nonlinear
rotation tensor Q(x, t) in (1.1), under which (1.1) no longer describes a physically
meaningful observer change.

D.3. Comparison with LAVD on the Agulhas leakage data set
Both the geodesic and the ellipticity-time approach require more computational effort
than the LAVD approach. For the geodesic method, limit-cycle families of a vector
field composed of the invariants of the Cauchy–Green strain tensor must be computed
with high accuracy, requiring the accurate differentiation of trajectories with respect
to their initial conditions. For the ellipticity-time approach, the time derivative of the
rate-of-strain eigenbasis must be determined along trajectories with high accuracy.

Both approaches are also more stringent than the LAVD approach, requiring uniform
stretching (geodesic method) or a lack of trajectory-level instability (ellipticity-time
diagnostic) along the Lagrangian vortex boundaries. By their objectivity, both
approaches should generally capture the same Lagrangian vortex region as the LAVD
approach, but are expected to yield tighter vortex boundaries because of their more
stringent definitions of coherence and trajectory stability respectively.

Figure 16 shows the results from these two alternative approaches for the data
set analysed in § 10.5, with the LAVD-based vortex boundaries superimposed in red.
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For the purposes of this comparison, we have used the numerical implementation of
the geodesic eddy detection method described by Hadjighasem & Haller (2016).

As seen in figure 16(a), the pointwise ellipticity-time diagnostic highlights the same
material vortex regions labelled as coherent by the other two methods. However, it
also suggests further vortical regions that are neither rotationally nor stretching-wise
coherent. The diagnostic does not offer a well-defined boundary for the detected
vortices either.

Figure 16(b) confirms the expectation that the variationally derived geodesic
vortex detection method generally labels the same coherent material vortices, but
yields smaller vortex boundaries due to its uniform-stretching requirement. This,
coupled with the significantly decreased computational cost and coding effort, renders
LAVD-based Lagrangian vortex identification preferable over the other two objective
methods considered here.
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