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ABSTRACT

We derive universal upper estimates for model prediction error under moderate but otherwise unknown model uncertainty. Our estimates
give upper bounds on the leading-order trajectory uncertainty arising along model trajectories, solely as functions of the invariants of the
known Cauchy–Green strain tensor of the model. Our bounds turn out to be optimal, which means that they cannot be improved for general
systems. The quantity relating the leading-order trajectory-uncertainty to the model uncertainty is the model sensitivity (MS), which we find
to be a useful tool for a quick global assessment of the impact of modeling uncertainties in various domains of the phase space. By examining
the expectation that finite-time Lyapunov exponents capture sensitivity to modeling errors, we show that this does not generally follow.
However, we find that certain important features of the finite-time Lyapunov exponent persist in the MS field.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021665

We present a method of sensitivity analysis for general dynamical
systems, which are subjected to deterministic or stochastic model-
ing uncertainty. Using the properties of the unperturbed dynam-
ics, we derive a universal bound for the leading-order prediction
error. This bound motivates the definition of the model sensitiv-
ity (MS), a scalar quantity, depending on the initial condition and
time. We demonstrate using nonlinear numerical models that the
MS provides both a global view over the phase space of the dynam-
ical system and, in some situations, a localized, time-dependent
predictor of uncertainties along trajectories. We find that the
phase-space structure of the MS is related but not identical to that
of finite-time Lyapunov exponents (FTLEs). We formulate condi-
tions under which robust features of the FTLE field are expected
to also be seen in the MS field.

I. INTRODUCTION

One of the challenges in predicting and describing real-
world phenomena is uncertainties that enter the modeling process.
Depending on the context, these can arise as a result of incomplete
or noisy data, uncertainty in the mathematical model, or even the
error introduced by numerical algorithms. Here, we seek to bound
the impact of these uncertainties on specific model trajectories

utilizing minimal information on the modeling errors but substan-
tial information on the internal dynamics of the known model.

A range of approaches exists to assess the impact of model
uncertainty. One such approach, response theory, originates from
statistical physics, where a central question was an equilibrium
system’s response to infinitesimal perturbations. Under a (possi-
bly time-dependent) perturbation to a Hamiltonian system, Kubo’s
formula1 establishes a link between the expected value of the linear-
order response and certain quantities of the unperturbed system.
This linear response theory was generalized to systems with uniform
hyperbolicity. With this assumption, Ruelle’s work put the theory
on a rigorous foundation, providing formulas for the asymptotic
expansion of the invariant measure2 of the perturbed system. The
results have been sharpened by the use of transfer operators3 and
have been expanded to stochastic dynamical systems.4 Numerical
evidence shows5–7 that linear response can be observed even in sys-
tems that are not strictly uniformly hyperbolic. In particular, in the
field of climate science, response theory has been successfully used
to assess the various possible scenarios of anthropogenic climate
change.8–11

For general dynamical systems, an additional source of uncer-
tainty is also present: sensitivity to initial conditions. This means
that a small error in the system’s initial condition grows exponen-
tially, governed by the largest Lyapunov exponent.12,13 A common
illustration of this phenomenon is weather prediction, in which
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long-term predictions are impossible due to the exponential error
growth. Considerable effort has gone into assessing these difficulties,
for example, by using ensemble methods8,14–16 to obtain a statisti-
cal characterization. Data assimilation,17–19 where model prediction
is compared regularly to real observations, is also a prominent
method of quantifying errors. It is also possible to quantify modeling
errors, for example, by either introducing perturbations to both the
background state and the observations20 or by adding a physically
justified, stochastic forcing term to the model.21

Another important question is the sensitivity of model predic-
tions to slight changes in the model parameters.22,23 This sensitivity
is often characterized by the derivatives of an observable (a func-
tion of the model variables) with respect to those parameters.24–28 In
general, sensitivity analysis seeks to assess prediction errors under
modeling uncertainty. For this problem, response theory could also
be employed29 successfully. Alternatively, one could also use finite
differencing to approximate the derivative. However, to reduce the
computational cost, the sensitivity is often computed from the lin-
earized dynamics (tangent method)27,28 along a reference trajectory.

Usually, the observed quantity is an infinite-time average com-
puted along trajectories. Direct calculations need to utilize suffi-
ciently long Monte Carlo simulations of the full model and finite
difference approximations for the derivative. In this case, the tangent
method generally results in asymptotically unbounded sensitivities,
which do not match the bounded ones computed directly.24,25 As
noted in Ref. 26, the issue comes from exchanging two limits: the
sensitivity of an infinite-time average is the derivative of the infinite-
time average, while the tangent method calculates the infinite-time
average of a derivative.

It has been suspected that similarly to sensitivity with respect to
initial conditions, sensitivity with respect to parameters is also gov-
erned by the largest Lyapunov exponent of the underlying trajectory.
This is supported by numerical results24 but can also be intuitively
understood: the differential equation that describes the growth of
perturbations to initial conditions has the same homogeneous part
as the one describing error growth due to parameter changes.27,28 A
connection between the two types of sensitivities has also been noted
in the context of perturbation bounds of Markov chains.30,31

To circumvent this problem of unbounded averages, the
ensemble method calculates the sensitivity over shorter time inter-
vals for several randomly selected trajectories using the linearized
dynamics. Then, the true sensitivity of the infinite-time average can
be approximated by the ensemble average.24,25

For ergodic systems, the least-squares shadowing
method27,28,32,33 offers an alternative calculation of the true parameter
sensitivity of an infinite-time average. Instead of solving the tan-
gent equation, the method looks for a nearby shadowing trajectory
that has a uniformly bounded distance from the reference trajec-
tory. Practically, this means that a nonlinear optimization problem
has to be solved. Solving the linearized version of this problem,
it is possible to obtain meaningful sensitivities28 even for chaotic
systems.27 The method was also implemented in turbulent fluid
dynamical simulations.32 Further improvements on calculating sen-
sitivities for chaotic systems take advantage of unstable periodic
orbits.33

In contrast to the methods mentioned above, we focus here
on finite-time predictions and their uncertainties, as opposed to

infinite-time averages. This is motivated by the fact that certain
models may not be defined for infinite times, or the infinite time
averages may not be accurate representations of the system.16

We derive universal bounds on the uncertainties in model pre-
dictions under small modeling errors. Our estimates only assume
the knowledge of a general bound on the model errors, yet yield
trajectory-specific bounds for the model-prediction errors. These
bounds provide a granular assessment of the impact of modeling
errors, depending only on the known local dynamics of the phase
space in the absence of model uncertainties. We relate the arising
model sensitivities to the finite-time Lyapunov exponents (FTLE)34

and their ridges35 and, hence, to Lagrangian coherent structures
(LCS),36 which are organizing structures in the idealized model’s
phase space. The sensitivities are captured by a time-dependent
scalar field, the model sensitivity (MS), analogous to the FTLE.
We find that the ridges of the FTLE do not necessarily signal the
presence of a ridge in the scalar field characterizing model sensi-
tivity. However, we formulate a plausible condition under which a
correspondence is expected.

We also extend the analysis to cases when both deterministic
and stochastic uncertainties are present. We show that assuming
multiplicative Gaussian noise, the expectation value of the obser-
vation error can be bounded by an asymptotic formula, analogous
to the purely deterministic case. All these estimates even turn out
to be optimal: we give examples in which the inequalities become
equalities. In addition, through numerical examples of models that
represent various levels of complexity, we show that the bounds
developed for the observation error hold for surprisingly large
modeling uncertainties too.

II. SETUP

We first consider a parametrized family of deterministic differ-
ential equations

ẋ = f0(x, t) + εg(x, t, ε) x ∈ U ⊂ R
n, t ∈ [t0, t1], 0 ≤ ε � 1

(2.1)

where both f0 and g are assumed to be smooth functions of their
arguments. Trajectories of this equation are of the form x(t; t0, x0, ε),
which are as smooth in their arguments as f is. We can think of
εg(x, t; ε) as a family of perturbations representing errors to a known
model system

ẋ = f0(x, t), (2.2)

our “best understanding” of the given problem. The perturbations of
the form εg(x, t; ε) represent the modeling uncertainty of the under-
lying problem, such as a systematic bias with spatial and temporal
dependences. We assume that this term is bounded in norm.

We are interested in how trajectories change under changes in
parameter ε. While the exact nature of the family εg(x, t; ε) is gen-
erally unknown for ε > 0, we still seek to assess the leading-order
uncertainty of trajectories in case an overall bound on ε|g(x, t; ε)|
is available. We call this leading-order uncertainty the model-
sensitivity of the trajectory with respect to parameter ε.

We will show that even for completely general systems, there
exists a bound on the leading-order uncertainty, which can, in
practice, be even used to bound the proper trajectory uncertainty.
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Next, we will assume stochastic model uncertainty by adding
a white-noise-driven stochastic process in the perturbation to the
known vector field f0. This translates into a stochastic differential
equation of the form

dxt = f0(xt, t) dt + εg(xt, t, ε) dt + εσ (xt,t) dWt,

x ∈ U ⊂ R
n, t ∈ [t0, t1], 0 ≤ ε � 1. (2.3)

The SDE is understood in terms of the Itô interpretation, where Wt

is an n-dimensional Wiener process and σ(xt, t) is the covariance
matrix. The coefficient functions in (2.3) will be assumed to sat-
isfy additional assumptions that guarantee the existence of a strong
solution to the equation. These types of stochastic perturbations
represent either random errors in the model or unresolved effects.

III. DETERMINISTIC MODEL SENSITIVITY

Traditionally, model sensitivity refers to the change in an
observable under changes in the model equations, usually through
parameters. Here, we take the observable to be simply the model
trajectory itself.

A. Influence of deterministic uncertainty

Let us first assume that (2.1) holds, generating a flow-map

Ft
t0

: U → U,

x0 7→ x(t, t0, x0; ε). (3.1)

To assess the effect of a slight change in ε, we consider the norm
of the difference between the idealized model trajectory

x0(t) := x(t, t0, x0; 0) (3.2)

and the real one (with ε 6= 0)

xε(t) := x(t, t0, x0; ε), (3.3)

starting from the same initial condition. This trajectory uncertainty
is given by

|x(t, t0, x0; 0) − x(t, t0, x0; ε)| = |x0(t) − xε(t)|. (3.4)

By classic results on ordinary differential equations, the flow
map Ft

t0
is as smooth in the parameter ε as is the vector field f0 + εg

and hence can also be Taylor-expanded in ε. This gives the leading-
order trajectory uncertainty as

ε

∣∣∣∣
∂xε(t)

∂ε

∣∣∣∣
ε=0

= ε|η(t, t0, x0)|. (3.5)

The vector η, which is the derivative of the flow map with
respect to ε, obeys the (inhomogeneous) equation of variations37 also
called the tangent model23 of (2.1):

η̇ = ∇f0
(
x0(t), t

)
η + g

(
x0(t), t; 0

)
,

η(t0; t0, x0) = 0. (3.6)

The solution to this initial value problem is

η(t; t0, x0) =
∫ t

t0

φt
s

(
x0(s)

)
g
(
x0(s), s; 0

)
ds, (3.7)

where the deformation gradient, φt
t0
(x0) = ∇Ft

t0
(x0), is the normal-

ized fundamental matrix solution of the equation of variations,

η̇ = ∇f0
(
x0(t), t

)
η, (3.8)

i.e., the homogeneous part of the linear system of ordinary differen-
tial equations (3.6).

Therefore, the leading-order change to a trajectory x0(t) due to
changes in the model is

ε |η(t; t0, x0)| = ε

∣∣∣∣
∫ t

t0

φt
s

(
x0(s)

)
g
(
x0(s), s; 0

)
ds

∣∣∣∣ . (3.9)

This quantity can be bounded from above as

ε |η(t; t0, x0)| ≤ ε

∫ t

t0

∣∣φt
s

(
x0(s)

)
g
(
x0(s), s; 0

)∣∣ ds

≤
∫ t

t0

∥∥φt
s

(
x0(s)

)∥∥ ∣∣εg
(
x0(s), s; 0

)∣∣ ds

≤ ε

∫ t

t0

∥∥φt
s

(
x0(s)

)∥∥ ds
∥∥g
(
x0(s), s; 0

)∥∥
∞

≤ ε

∫ t

t0

√
3t

s (x
0(s)) ds

∥∥g
(
x0(s), s; 0

)∥∥
∞ , (3.10)

where || · ||∞ refers to the supremum norm and 3t
s

(
x0(s)

)
denotes

the largest eigenvalue of the (right) Cauchy–Green strain tensor

Ct
s

(
x0(s)

)
=
[
φt

s

(
x0(s)

)]T
φt

s

(
x0(s)

)
. In other words,

√
3t

s (x
0(s)) is

the largest singular value of φt
s

(
x0(s)

)
.

Let

1∞(x0, t) := ε
∥∥g
(
x0( · ), · ; 0

)∥∥
∞

= ε max
s∈[t0 ,t]

∣∣g
(
x0(s), s; 0

)∣∣ (3.11)

denote the maximal leading-order model uncertainty18 along the tra-
jectory x0(t) of the idealized model (2.2). With this notation, let
us define the leading-order trajectory uncertaintyat any time instant
t ∈ [t0, t1] as

δ(x0, t) := ε |η(t; t0, x0)| ≤
∫ t

t0

√
3t

s (x
0(s)) ds1∞(x0, t). (3.12)

For any finite k ∈ N
+, we also define the corresponding time

averaged leading-order trajectory uncertainty as the temporal Lk

norm of δ(x0, t):

δk(x0) := ‖δ(x0, t)‖Lk = ε k

√∫ t1

t0

[η(t; t0, x0)]
k dt. (3.13)

To obtain a uniform bound for δk(x0) over the time interval [t0, t1],
we can simply let k → ∞ and find that

δ∞(x0) := ‖δ(x0, t)‖∞ = ε max
t∈[t0 ,t1]

|η(t, t0, x0; 0)| . (3.14)

Similarly, for the maximal leading-order model uncertainty, we
can set

1∞(x0) := ε max
s∈[t0 ,t]

1∞(x0, s) = ε max
s∈[t0 ,t1]

∣∣g
(
x0(s), s; 0

)∣∣ . (3.15)
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Then, by Eq. (3.10), the trajectory uncertainty δk(x0) can be esti-
mated from above as

δk(x0) = ε k

√∫ t1

t0

[η(t; t0, x0)]
k dt

≤ 1∞(x0, t)

∥∥∥∥
∫ t

t0

√
3t

s (x
0(s)) ds

∥∥∥∥
Lk

. (3.16)

Taking the supremum norm of both sides gives

δ∞(x0) ≤ 1∞(x0, t1) max
t∈[t0 ,t1]

∫ t

t0

√
3t

s (x
0(s)) ds. (3.17)

Note that the upper bound
∫ t

t0

√
3t

s (x
0(s)) ds 1∞(x0, t) is gen-

erally not a monotone function of t. This implies that in order to
evaluate the right-hand side of (3.17), one needs to compute the
integral involved for all time instants in [t0, t1].

In conclusion, the estimate (3.12) shows that the leading-order
trajectory uncertainty under modeling errors can be estimated from
above by a product of two quantities. One of these, 1∞, is a measure
of the overall size of the model uncertainty, while the other factor is
related to the sensitivity with respect to initial conditions within the
idealized model.

Remark 1. Recall that sensitivity with respect to initial con-
ditions over a time interval [s, t] is typically characterized by the
finite-time Lyapunov exponent (or FTLE),34 which is given by

FTLEt
s

(
x0(s)

)
=

1

t − s
log

√
3t

s (x
0(s)). (3.18)

With this in mind, our uncertainty estimate can be rewritten as
a functional of the FTLE field as follows:

δ(x0, t) ≤ 1∞(x0, t)

∫ t

t0

exp
[
(t − s)FTLEt

s

(
x0(s)

)]
ds. (3.19)

Remark 2. The calculation of the integral in (3.12) can also be
done in backward time, which is sometimes more convenient. Fol-
lowing the results on the smallest eigenvalue of the Cauchy–Green
strain tensor,38 we note that

√
3t

s (x
0(s)) =

1√
λmin

[
Cs

t (x
0(t))

] (3.20)

and hence

∫ t

t0

√
3t

s (x
0(s)) ds =

∣∣∣∣∣∣

∫ t0

t

1√
λmin

[
Cs

t (x
0)
]

∣∣∣∣∣∣
. (3.21)

Numerically, formula (3.21) requires the evaluation of the inte-
gral of the square root of the largest eigenvalue of backward-time
Cauchy–Green strain tensor Cs

t

(
x0(t)

)
, computed over [t, s], with s

decreasing from t to t0. This can be computed by finite-differencing
along backward-time trajectories starting from a regular grid at
time t back to time t0. The advantage of this approach is that the
Cauchy–Green strain tensor is always calculated for the same initial
point during integration. However, this point is the time-t position
of the idealized model trajectory. To obtain the bound as a function

of the time-t0 position, one needs to map the values back from time
t to time t0 with the idealized flow map.

With the above estimates, we can now bound the leading-
order trajectory uncertainty of the dynamical system. Most methods
currently available for calculating sensitivity measures need addi-
tional assumptions, such as the existence of an invariant measure,2

ergodicity,27,28 or a specific form of the modeling errors (to run direct
simulations). While these often give precise predictions on the value
of sensitivity, they are not applicable to typical dynamical systems.
In contrast, the inequality (3.12) holds for all dynamical systems of
the form (2.1). In addition, we can also use it to formulate a bound
on the proper (not only leading order) uncertainty in the dynamical
system’s trajectories.

Theorem 1 (Universal bound on trajectory uncertainty).
Consider the dynamical system defined over a finite time interval
[t0, t1] and on a compact domain U ⊂ R

n by (2.1). Denote by x0(t) the
idealized model’s solution (3.2), starting from x0 at t0. Similarly, let
xε(t) be the true solution (3.3), belonging to an arbitrary ε 6= 0, start-
ing from the same initial condition. Then, for any δ > 0 small enough,
there exists ε0 > 0, such that for ε < ε0 the following inequality holds
for all t ∈ [t0, t1] and x0 ∈ U,

|xε(t) − x0(t)| ≤
(∫ t

t0

√
3t

s (x
0(s)) ds + δ

)
1∞(x0, t). (3.22)

Proof. See section 1 of the Appendix. �

Our Theorem 1 provides a bound for small values of ε, that is
computable numerically and holds for any time instant in the time
interval and any initial condition in the domain. At first, the depen-
dence on a finite δ may seem problematic. However, we note that for
small enough ε, the size-δ correction can be made arbitrarily small.
Our numerical findings indicate that (3.22) tends to be satisfied even
for δ = 0.

The inequality (3.22) gives an upper bound for the maximal
possible error between the idealized model solution and the real one.
Available bounds in the literature39,40 either require knowledge of the
perturbed trajectory itself or introduce Gronwall-type estimates that
vastly overestimate the error due to their universality in space and
time.

For example, assume that in system (2.1), f0 satisfies the Lip-
schitz condition with Lipschitz constant L, and the perturbation
εg(x, t) is uniformly bounded by a constant M = max 1∞. We then
obtain |xε(t) − x0(t)| ≤ M

L
(eL(t−t0) − 1) from the classic Gronwall-

lemma.41 This is a rigorous but highly conservative upper bound
on the trajectory uncertainty, as seen from a direct comparison
with (3.22).

To illustrate the difference between the two estimates, consider
the classic damped-forced Duffing oscillator,

ẋ = y,

ẏ = x − x3 − δy + A cos t,
(3.23)

with δ = 0.15 and A = 0.3. For these parameter values, the system
is chaotic. As such, it is reasonable to expect high sensitivity to mod-
eling errors. It is also known that the system has a chaotic global
attractor,42 contained in the region U = [−1.5, 1.5] × [−1.5, 1.5],
which is an invariant set of the stroboscopic map41 of period 2π .
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FIG. 1. Comparison of uncertainty estimates, applied to system (3.23). The
dashed-dotted curve shows the phase-space distance between the idealized
model solution and the real one, starting from the same initial condition (0.15, 0.4),
with ε = 0.01 and ωp = 10. The red curve is the bound obtained from the lead-
ing-order bound in inequality (3.12). The blue curve is the Gronwall-type, rigorous
upper bound, defined by M

L
(eLt − 1), with M = ε and L = 2.

Using this fact, we choose the global Lipschitz-constant L = 2 over
this bounded domain for the idealized system. We consider a model
error term of the form εg(x, t) = (0, ε sin(ωpt)), representing a
high-frequency deterministic perturbation to system (3.23). For this
choice of perturbation, we can select the uniform bound M = ε for
the model error.

As seen in Fig. 1, both the Gronwall-type estimate and the
leading-order bound of (3.12) substantially overestimate the actual
distance between the true and the idealized model trajectories.
However, while the Gronwall-estimate suggests an overall expo-
nential increase for all trajectories starting in U, our leading-order
bound (3.12) depends on the unperturbed trajectory, providing a
tighter estimate on the trajectory uncertainty.

IV. STOCHASTIC MODEL SENSITIVITY

It is often reasonable to assume a stochastic model error as one
of the sources of uncertainty in the model. In that case, trajectories
obey the following stochastic differential equation (SDE):

ẋ = f0(x, t) + εg(x, t, ε) + εσ (x, t)ξ(t). (4.1)

The uncertainty comes from a white-noise process ξ , and
f0, g, and σ are smooth functions. Equation (4.1) can be interpreted
in the Itô-sense as

dxt = f0(xt, t) dt + εg(xt, t, ε) dt + εσ (xt, t) dWt, (4.2)

on a probability space (�,F , P), where � is the sample space, F
is the σ -algebra of events and P is a probability measure. Here,
Wt is an n-dimensional Wiener process, f0 : R

n × [t0, t1] → R
n and

g : R
n × [t0, t1] × R → R

n govern the deterministic part of the SDE,
and σ(·, ·) : R

n × [t0, t1] → R
n×n is the covariance matrix of the

noise. The functions f0 and σ are assumed to be measurable, smooth
functions of their arguments.

Our goal is to characterize the leading-order deviation of the
solution process xt of (4.2) from the solution of the idealized model
(ε = 0). Note that the idealized model dynamics is given by the ODE
(2.2), for all realizations ω ∈ � of the noise. To achieve such a char-
acterization, we develop an upper estimate similar to (3.17). We
first state the necessary and sufficient conditions for the existence
of a solution process xt, derive the SDE governing the leading-order
trajectory uncertainty (a stochastic analog to the equation of vari-
ations), and give bounds on the expected value of the norm of its
solutions.

Assume that there exist constants C, D > 0, such that for all
x, y ∈ R

n, t ∈ [t0, t1], and small enough ε > 0, we have

|f0(x, t) + εg(x, t, ε)| + |εσ (x, t)| ≤ C(1 + |x|),

|f0(x, t) + εg(x, t, ε) − f0(y, t) − εg(y, t, ε)| + |εσ (x, t)

− εσ (y, t)| ≤ D|x − y|. (4.3)

Then, Eq. (4.2) along with the deterministic initial condition
xt=t0 = x0 has a unique solution xt which is adapted to the filtration

generated by Ws for s ≤ t. In addition, E
(∫ t1

t0
|xt|2 dt

)
< ∞ holds

and the sample paths of the solution xt(ω) are continuous.43 The fol-
lowing theorem provides an analogue of the equation of variations
(3.8) in the stochastic setting.

Theorem 2 (Small noise expansion). Assume that the coeffi-
cients in (4.2) have bounded and measurable partial derivatives up to
second order. Then, there exists ε̄ > 0, such that for ε < ε̄ the solution
xε

t can be written as

xε
t = x0

t + εηt + ε2R2(t, ε), (4.4)

with the same notation as we had in (3.6) but now with ηt denoting
a stochastic process. The remainder term, R2(t, ε), is bounded in the
mean-squared sense, i.e., there exists K > 0, such that

sup
t∈[t0 ,t1]

[
E |R2(t, ε)|2

]
≤ K. (4.5)

The coefficients x0
t and ηt satisfy the system of stochastic

differential equations,

dx0
t = f0

(
x0

t , t
)

dt, x0
t=t0

= x0, (4.6)

dηt = ∇f0
(
x0

t , t
)
ηt dt + g

(
x0

t , t; 0
)

dt + σ
(
x0

t , t
)

dWt,

ηt=t0 = 0. (4.7)

Proof. This result is the application of small-noise expansion
of stochastic differential equations,44–46 which is analogous to the
equation of variations for ordinary differential equations. The proof
is essentially the extension of the known result for the vector-valued,
autonomous case47 to also allow for nonautonomous and parameter-
dependent SDE-s. For details, see section 2 of the Appendix. �

Remark 3. The zeroth-order SDE in ε, Eq. (4.6), is precisely
the idealized model. Hence, the solution process x0

t is deterministic
and could be also written as x0

t ≡ x0(t).
Theorem 3. Let φt

t0
(x0) be the normalized fundamental

matrix solution to (3.8). Then, ηt defined as the solution to the linear
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SDE (4.7), is an Ornstein–Uhlenbeck process that can be written as

ηt =
∫ t

t0

φt
s

(
x0

s

)
g
(
x0

s , s
)

ds +
∫ t

t0

φt
s

(
x0

s

)
σ
(
x0

s , s
)

dWs. (4.8)

Proof. This result is well-known for scalar stochastic differen-
tial equations. The extension to our multi-dimensional setting is
given in section 3 of the Appendix. �

Following this result, let N(t) = ||ηt|| denote the norm of the
vector valued stochastic process ηt, which measures the leading-
order trajectory uncertainty arising from both deterministic and
stochastic modeling errors. The leading-order trajectory uncertainty
is then εN(t). Using formula (4.8) for ηt, we can define the deter-
ministic term (Nd), the stochastic term (Ns), and the mixed term
(Nm) of this leading-order trajectory uncertainty. To remain con-
sistent with the notation of Sec. III, we have the deterministic term
δ(x0, t) = εNd(t). The full expression for N2(t) is as follows:

N(t)2 =
(∫ t

t0

φt
s

(
x0

s

)
g
(
x0

s , s
)

ds +
∫ t

t0

φt
s

(
x0

s

)
σ
(
x0

s , s
)

dWs

)2

=
(∫ t

t0

φt
s

(
x0

s

)
g
(
x0

s , s
)

ds

)2

+
(∫ t

t0

φt
s

(
x0

s

)
σ
(
x0

s , s
)

dWs

)2

+ 2

(∫ t

t0

φt
s

(
x0

s

)
σ
(
x0

s , s
)

dWs

)(∫ t

t0

φt
s

(
x0

s

)
g
(
x0

s , s
)

ds

)

= Nd(t)
2 + Ns(t)

2 + 2Nm(t). (4.9)

Formula (4.9) allows us to formulate a stochastic extension of
Theorem 1, which applies even in the stochastic setting. The quan-
tity to be estimated is now the mean-square of the leading-order
trajectory uncertainty.

Theorem 4 (Bound on the mean-squared leading-order
trajectory uncertainty). The leading-order trajectory uncertainty
can be bounded in the mean-square sense as

ε2
E
[
N(t)2

]
≤
(∫ t

t0

√
3t

s

(
x0

s

)
ds

)2

12
∞(x0, t)

+
∫ t

t0

tr
[
Ct

s

(
x0

s

)]
ds 1σ

∞(x0, t), (4.10)

where we have introduced the notation 1σ
∞(x0, t)

= ε2 maxs∈[t0 ,t] tr
[
σ
(
x0

s , s
)T

σ
(
x0

s , s
)]

.

Proof. The proof consists of a computation of the expected
values of N2

s and Nm, since N2
d is purely deterministic and was

already computed before. The details of the proof are given in
section 4 of the Appendix. �

Note that if the model has no stochastic error, i.e., σ(x, t) ≡ 0,
Theorem 4 gives N(t) = Nd and 1σ

∞(x0, t) ≡ 0, yielding the upper

estimate εE [N(t)] = εN(t) = δ(x0, t) ≤
∫ t

t0

√
3t

s

(
x0

s

)
ds 1∞(x0, t).

This is consistent with the upper bound derived in Sec. III.
Rearranging expression (4.10), we obtain a quantity, computed

in terms of the idealized model and the relative strength of errors
(deterministic or stochastic). We refer to this quantity as the model

sensitivity (MS), which is defined as

MSt
t0
(x0; r) :=

(∫ t

t0

√
3t

s

(
x0

s

)
ds

)2

+ r

∫ t

t0

tr[Ct
s

(
x0

s

)
]ds, (4.11)

where r := 1σ
∞(x0, t)/1

2
∞(x0, t) is the ratio characterizing the rel-

ative importance of the stochastic modeling errors. By calculating
MSt

t0
for several initial conditions in a phase-space region of inter-

est, we can quickly identify locations of high sensitivity to modeling
errors. By Theorem 4, these locations are expected to show higher
uncertainty.

We note that MS is a scalar-valued function of several variables:
it depends on the phase-space location and the chosen time interval.
Therefore, it does not give a global characterization of the model’s
sensitivity. Instead, we must view it as a time-dependent scalar field,
which provides granular analysis of sensitivities. A similar assess-
ment of sensitivities distributed over phase space was recently given
by using Markov modeling in the context of response theory.48 That
result focuses on infinite time intervals, which is not the case for our
method.

Moreover, by Theorem 4, the leading order trajectory uncer-
tainty is related to MS, in the mean-square sense, by

ε2
E[N(t)2] ≤ MSt

t0
(x0; r)1

2
∞(x0, t), or equivalently,

MSt
t0
(x0; r) ≥

ε2
E[N(t)2]

12
∞(x0, t)

. (4.12)

In other words, MS is the coefficient relating the leading-order
mean-squared trajectory uncertainty to the modeling uncertainty.

As in the purely deterministic case, we obtain a theorem that
relates (MSt

t0
) to the proper trajectory uncertainty.

Theorem 5 (Universal bound on the mean-squared trajectory
uncertainty). Consider the stochastic dynamical system defined
over a finite time interval [t0, t1] and on a compact domain U ⊂ R

n

by the SDE (4.2). Then, for any δ > 0, there exists an ε0 > 0, such
that for ε < ε0 the following inequality holds for all t ∈ [t0, t1] and
x0 ∈ U:

√
E (|xε

t − x0(t)|2) ≤ 1∞(x0, t)
(√

MSt
t0
(x0, r) + δ

)
. (4.13)

Proof. See section 5 of the Appendix. �

By Theorem 5, the bound on the mean-squared leading-order
trajectory uncertainty is extended to the actual mean-squared tra-
jectory uncertainty for small enough ε. Then, the MS can be used
to calculate a time-dependent upper bound on the trajectory uncer-
tainty, which will be true for any perturbation of size 1∞, assuming
a ratio of r between stochastic and deterministic modeling errors.

We also note that in practice, the bound (4.13) tends to be
satisfied even without including the size-δ correction (similarly
to Theorem 1). This means that the much simpler expression of
Theorem 4 can be used to assess the mean-squared trajectory uncer-
tainty. In Sec. V, we demonstrate this fact on a few examples.

V. COMPUTATION OF TRAJECTORY UNCERTAINTY

ESTIMATES

We start by an explicit calculation of the MS for linear sys-
tems. Within this class of systems, we can find examples proving the
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optimality of our estimates. Consider the constant coefficient linear
stochastic differential equation, driven by an n-dimensional Wiener
process Wt,

dxt = Axt dt + εb dt + εσ dWt, x, b ∈ R
n, A, σ ∈ R

n×n. (5.1)

Here, b is a (constant) deterministic perturbation vector, σ is the
covariance matrix of the noise, and ε ≥ 0 controls the size of the
perturbation.

To calculate the MS, we use formula (4.11), with

1∞ = ε|b| 1σ
∞ = ε2||σ ||2F. (5.2)

The equation of variations of system (5.1) is simply φ̇t
t0

= Aφt
t0

,

which gives φt
t0

= eA(t−t0) for the flow-map gradient. Then, by for-
mula (4.11), MS is

MSt
t0

=
(∫ t

t0

√
3
[(

eA(t−s)
)T

eA(t−s)

]
ds

)2

+
||σ ||2F
|b|2

∫ t

t0

tr
[(

eA(t−s)
)T

eA(t−s)
]

ds. (5.3)

From this, we can obtain the bound on the leading-order
trajectory uncertainty after multiplying by ε2|b|2.

On the other hand, we can calculate the trajectory uncertainty
directly. The idealized system (with ε = 0) has the general solu-
tion x0

t = eAtx0, while the solution to the perturbed problem is the
stochastic process,43

xt = eAtx0 + ε

∫ t

t0

eA(t−s)b ds + ε

∫ t

t0

eA(t−s)
σ dWs. (5.4)

The mean-square of the difference between the idealized model
solution and the real solution is

E(|xε
t − x0

t |2)

= ε2

(∫ t

t0

eA(t−s)b ds

)2

+ ε2
E

(∫ t

t0

eA(t−s)
σdWs

)2

= ε2

(∫ t

t0

eA(t−s)b ds

)2

+ ε2

∫ t

t0

|| eA(t−s)
σ ||2F ds. (5.5)

Here, we used that the expected value of the mixed term is zero, and
the expression for the second integral follows from Itô’s isometry.

An immediate consequence of this calculation is the optimal-
ity of Theorem 4. If system (5.1) is a scalar equation, xt ∈ R, A, σ ,
b ∈ R, then once we evaluate the integrals, we obtain

E(|xε
t − x0

t |2) =
ε2b2

A2

(
eA(t−t0) − 1

)2 +
ε2σ 2

2A
(e2A(t−t0) − 1)

= ε2b2MSt
t0

. (5.6)

This shows that Theorem 4 is optimal: the bound it provides
cannot be strengthened for general systems.

A. Numerical examples

Example 1. The Duffing oscillator
To illustrate our main results, we apply formula (4.12) to two

models of differing complexity. First, let us consider once again the

damped-driven Duffing oscillator, defined by (3.23), which exhibits
chaotic behavior. In the presence of a deterministic, time-periodic
perturbation, the trajectory uncertainty is already shown in Fig. 1.
To assess the sensitivity to general, possibly stochastic perturbations,
we first calculate MSt

t0
and display it on a uniform grid over the

domain U = [−1.5, 1.5] × [−1.5, 1.5] for two time intervals of inter-
est, [0, 2π] and [0, 4π]. This calculation only requires knowledge of
the idealized system and the relative magnitude of modeling errors.
For the calculation of the Cauchy–Green strain tensor, we use finite
differences over a secondary grid49 to increase accuracy.

MS fields are shown in Fig. 2. We now assume a specific
modeling error that contains both a deterministic and a stochastic
component. The equations then are SDEs, which read as

dxt = ydt,

dyt = (xt − x3
t − δyt + A cos t) dt + ε sin(ωpt) dt + εdWt.

(5.7)

In this case, both types of errors are assumed to be of norm ε, that
is, 12

∞ = 1σ
∞ = ε2, with ωp = 10.

We compare the bound (4.12) on the leading-order trajectory
uncertainty, obtained from the MS, with the actual observed mean-
squared trajectory uncertainty at select initial conditions. We
calculate the mean-squared trajectory uncertainty from 2000 real-
izations of the stochastic process defined by (5.7). For the solution
of the SDE, an Euler–Maruyama scheme is used. The phase-space
locations of the initial conditions considered are marked in Fig. 2.

The estimated upper bounds on the trajectory uncertainties are
shown in the three panels of Fig. 3. For all three initial conditions,
we see that the bound on the expected mean-squared trajectory
uncertainty is confirmed. Remarkably, Fig. 3 shows that the mean-
squared trajectory uncertainty stays within two orders of magnitude
of the leading-order bound, closely following trends in its graph.
In other words, not only is the MS a quantitatively accurate upper
estimate, but it also provides qualitative information about the time
dependence of the error growth.

For this particular system, the upper bound has predictive
power over finite time intervals. The reason is that the idealized
model has an underlying chaotic attractor (of finite size) and, thus,
does not allow unbounded growth of errors. This is not the case,
for example, in system (5.1) (with n = 1), where the bound was
shown to be attained exactly for all times, providing an infinitely
large relevant time interval. However, we also note that in practice,
this relevant time interval can be quite long, much longer than what
we would consider relevant for a rigorous, Gronwall-type estimate,
which can also be derived for stochastic modeling errors.50 See Fig. 1
for a comparison in the purely deterministic case or Fig. 3 in the
stochastic case.

As noted earlier for the calculation of MSt
t0
(x0, r) and for the

leading-order trajectory uncertainty, we did not make any assump-
tions on the form of modeling errors. For this reason, given one

specific instance of modeling errors and two points x(1)
0 and x(2)

0 , the
relation

MSt
t0

(
x(1)

0 , r
)

< MSt
t0

(
x(2)

0 , r
)

(5.8)

does not imply that the actual trajectory uncertainty will be greater

in x(2)
0 than in x(1)

0 . Instead, what we can conclude from (5.8) is
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FIG. 2. Model sensitivity (MS) for the Duffing oscillator under both deterministic
and stochastic modeling errors. The value of the MS is obtained from formula
(4.11), applied to system (3.23) with parameters δ = 0.15 and A = 0.3. Both the
deterministic model error and the noise are assumed to have amplitude ε, that is,
1∞(x, t) = ε and 1σ

∞(x, t) = ε2, with ε = 0.01. In the upper panel, the time
interval of interest is [0, 2π ], while in the lower panel, it is [0, 4π ]. Light blue dots
mark the starting points of the trajectories relevant for Fig. 3.

that the dynamics at x(1)
0 is such that it can allow higher trajectory

uncertainty than at x(2)
0 .

Example 2. The Charney–DeVore model
Next, we turn to a higher-dimensional model.51 It is demon-

strated in Ref. 52 that a six-dimensional reduced order model for

the barotropic flow over topography admits multiple equilibria and
can even exhibit tipping transitions between them. Therefore, the
Charney–DeVore51 model is expected to show highly unstable tran-
sient behavior,53 which results in high sensitivity with respect to
perturbations. The dynamical equations are

ẋ1 = γ̃1x3 − C(x1 − x∗
1),

ẋ2 = −(α1x1 − β1)x3 − Cx2 − δ1x4x6,

ẋ3 = (α1x1 − β1)x2 − γ1x1 − Cx3 + δ1x4x5,

ẋ4 = γ̃2x6 − C(x4 − x∗
4) + λ(x2x6 − x3x5),

ẋ5 = −(α2x1 − β2)x6 − Cx5 − δ2x4x3,

ẋ6 = (α2x1 − β2)x5 − γ2x4 − Cx6 + δ2x4x2.

(5.9)

The coefficients αm, βm, γm, and δm are defined by

αm =
8
√

2

π

m2

4m2 − 1

b2 + m2 − 1

b2 + m2
, βm =

βb2

b2 + m2
,

δm =
64

√
2

15π

b2 − m2 + 1

b2 + m2
, γ̃m = γ

4m

4m2 − 1

√
2b

π
,

λ =
16

√
2

5π
, γm = γ

4m3

4m2 − 1

√
2b

π(b2 + m2)
. (5.10)

As in Refs. 52 and 53, we set the parameters to correspond
to the multistable regime: (x∗

1 , x∗
4 , C, β , γ , b) = (0.95, −0.760 95, 0.1,

1.25, 0.2, 0.5).
The MSt

t0
field is shown in Fig. 4 along a few slices of phase

space. Similar to the low-dimensional Duffing oscillator, the phase
space of the Charney–DeVore model also exhibits high variability
for MS.

Although we cannot show the complete MS field in this
high-dimensional phase space, this example demonstrates how our
method remains applicable in higher-dimensional systems. Even in
this lower-dimensional representation, we can distinguish structures
with particularly high sensitivity to perturbations over the chosen
time scale.

Next, we fix a modeling error to Eq. (5.9) in the form

g(x, t) = b0 sin(k · x) cos(ωpt), |b0| = 1, σ =
1

√
6

I. (5.11)

This represents a deterministic modeling error that is periodic in
both time and space. In addition, each coordinate is perturbed by an
independent Wiener process.

The vector b0 is of unit length and has components
b0 = (0.310, 0.376, 0.476, 0.478, 0.281, 0.479). The wave vector is
k = (1.815, 1.905, 1.127, 1.913, 1.632, 1.097) and the perturbation
frequency is ωp = 10. With this choice of parameters, the magni-
tude of the perturbations is once again 12

∞(x0, t) = ε2|b0|2 = ε2 and
1σ

∞ = ε2tr σ Tσ = ε2, which gives r = 1.
A comparison of the bound on the mean-squared leading-

order trajectory uncertainty and the actual measured mean-squared
trajectory uncertainty is shown in Fig. 5, along with an appropriate
Gronwall-type bound. Here, one of the initial conditions is chosen
to lie on a steep ridge of the MS (left column), while the other is
chosen from a region with lower values (right column). The results
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FIG. 3. Square of the difference between the idealized model solutions and the perturbed solutions to the Duffing system (5.7). The gray curves show the error along a
few sample paths, and the black curve is the mean-squared error computed from 2000 sample paths. The red curve is the upper bound on the mean-squared leading-order

trajectory uncertainty, defined by MS
t
t0
(x0, r)1

2
∞(x0, t). The blue curve is the Gronwall-type upper bound for the mean-squared error,50 asymptotically given as eL

2 t2/2,

where L is a Lipschitz constant for (3.23) and was chosen to be L = 2. The inset shows the three curves on a larger scale. The modeling errors are detailed in the text,
12

∞ = ε2 with ε = 0.01 and r = 1. The initial conditions are as follows: left panel: x0 = (−0.8253,−0.487 95); middle panel: x0 = (−1.0904,−0.873 49); and right panel:
x0 = (0.704 82,−0.246 99).

show that the bound on the mean-squared leading-order trajectory
uncertainty is respected for both initial conditions, in a wide range of
ε. While the mean-squared trajectory uncertainty is overestimated
for the interval [0,15] (by a factor of around 10), the trends of the
graph are captured accurately by our estimate in all of the examples
shown.

VI. GEOMETRIC STRUCTURE OF THE MODEL

SENSITIVITY

Geometric descriptions of uncertainty in dynamical systems
involve the finite-time Lyapunov exponent. This quantity describes
the growth rate of infinitesimal perturbations to initial conditions.

Ridges of the FTLE field often signal repelling material surfaces in
the phase space.36 Under further assumptions,54 one can rigorously
conclude the presence of a repelling hyperbolic LCS from an FTLE
ridge.

Our results show that the FTLE field in itself is not sufficient to
characterize sensitivity to modeling errors in dynamical systems. By
Theorem 4, one needs to integrate the time-dependent FTLE field
over the time interval of interest to obtain the MS. Regardless, the
two fields are clearly related.

For purely deterministic perturbations, let us denote the max-
imal eigenvalue of the Cauchy–Green strain tensor, computed over
[s, t] at point x0 by

3s,t(x0, t0) = 3t
s

(
Fs

t0
(x0)

)
, (6.1)

FIG. 4. Model sensitivity (MS), computed for the Charney–DeVore model (5.9). The parameter values used are given in the text, and the time interval is t0 = 0 and t = 15.
The ratio of the importance of stochastic and deterministic modeling errors was set to r = 1. The figures show different two-dimensional slices of six-dimensional phase
space. Light blue dots mark the starting points of the trajectories relevant for Fig. 5.

Chaos 30, 113144 (2020); doi: 10.1063/5.0021665 30, 113144-9

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Square of the difference between the idealized and the real solutions to the Charney–DeVore model. Gray lines show the squared error along sample paths, and the
black curve is the average computed from 1000 sample paths. The red curve is the upper bound on the mean-squared leading-order trajectory uncertainty. The blue curve

is the Gronwall-type upper bound for the mean-squared error,50 asymptotically given as eL
2 t2/2, where L is a Lipschitz constant for (5.9) and was chosen to be L = 1.8. The

inset shows the three curves on a larger scale. The trajectories start from the point x
(1)
0 = (0,−0.012 048, 0,−2.4217, 0, 0) [x

(2)
0 = (2.1084, 0, 0,−1.5904, 0, 0)] in the left

[right] column. The magnitude of the perturbations is ε, which is indicated above the panels, r = 1.
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FIG. 6. Comparison between the FTLE and the MS fields for the Charney–DeVore model. The scalar fields are shown for the time interval [0, 15], over the x1–x4 plane. In

the left panel, the FTLE field, while in the right panel, the field 1
2(t−t0)

log MS
t
t0
(x0, 0) is plotted.

where Fs
t0
(x0) is the flow map of the idealized model (2.2). Specifi-

cally, with this notation, we can write the FTLE as

FTLEt
t0
(x0) =

log
√

3t0 ,t(x0, t0)

t − t0

. (6.2)

We will use quantity 3s,t to connect features of the MS field
to those of the FTLE field. Such a connection is already suggested
in Fig. 6, which compares the FTLE field of the Charney–DeVore
model to the field,

1

2(t − t0)
log MSt

t0
(x0, r) (6.3)

of the same model. That is, we display the MS on a similar scale as
the FTLE for a better comparison. This scale will be justified later.

The figure shows that the main features of the FTLE field are
also found in the MS field if they are compared over the same
time interval. Specifically, the main organizers of the dynamics,
the FTLE-ridges, tend to persist in the MS field. A closer look
reveals, however, that this is not always the case. For example, in the
region around (x1 = 2.5, x4 = −1.5), finer ridges of the FTLE field
disappear in the MS field.

To analyze this phenomenon, we adopt the following definition
of a ridge from Ref. 55.

Definition 1. Let f : R
n → R be a smooth function and M ⊂

R
n be a compact, codimension-one manifold with boundary ∂M.

The manifold M is a ridge of the scalar field f if both M and ∂M are
normally attracting invariant manifolds for the gradient system

ẋ = ∇f(x). (6.4)

The term normally attracting invariant manifold56 refers to
an invariant manifold for which contraction along the manifold is
dominated by contraction normal to it. This allows the use of results

that guarantee the persistence of ridges under small perturbations to
the scalar field f.

To find a condition relating the MS- and FTLE-ridges, we
assume that the deterministic modeling error in (4.11) is the only
contributor to MS, that is, we can take MSt

t0
(x0, r) with r = 0. In this

case, we can write

MSt
t0
(x0, 0) =

(∫ t

t0

√
3s,t(x0, t0) ds

)2

= 3t0 ,t(x0, t0)

(∫ t

t0

√
3s,t(x0, t0)

3t0 ,t(x0, t0)
ds

)2

. (6.5)

Taking the logarithm and using expression (3.18) for the FTLE field,
we obtain

log MSt
t0
(x0, 0)

2(t − t0)
= FTLEt

t0
(x0) +

1

t − t0

log

∫ t

t0

√
3s,t(x0, t0)

3t0 ,t(x0, t0)
ds.

(6.6)

Equation (6.6) shows that we are able to write the appropriately
scaled MS field as a perturbation of the FTLE field. The difference
between the MS and the FTLE fields is shown in Fig. 7, which sug-
gests the values of the two fields differ substantially, even at the
location of the persisting ridge. We conclude that, in general, ridges
of the MS field are different from those of the FTLE field. As seen
from (6.6), the MS field must be treated as finite-size-perturbation
to the FTLE field: the persistence results of Ref. 55 do not apply.

The general results on persistence of normally hyperbolic
invariant manifolds55,56 state that for a ridge of a scalar field f0(x0)

to persist in the field f(x0), the appropriate gradient vector fields in
(6.4) must be C1-θ close, for θ small enough.

In our setting, this translates into a condition on the gradient
of the difference field, defined by (6.6). This indicates that ridges of
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FIG. 7. Difference between the MS and the FTLE fields in the Charney–DeVore

model. The quantity
log MSt

t0
(x0 ,0)

2(t−t0)
− FTLEt

t0
(x0) is shown over the x1–x4 plane for

the time interval [0, 15].

the FTLE field, along which

sup
x0∈V

∥∥∥∥∥∇
1

t − t0

log

∫ t

t0

√
3s,t(x0, t0)

3t0 ,t(x0, t0)
ds

∥∥∥∥∥ ≤ θ ,

sup
x0∈V

∥∥∥∥∥∇
2 1

t − t0

log

∫ t

t0

√
3s,t(x0, t0)

3t0 ,t(x0, t0)
ds

∥∥∥∥∥ ≤ θ (6.7)

hold for θ sufficiently small, are expected to be close to ridges of the

scalar field
log MSt

t0
(x0 ,0)

2(t−t0)
.

VII. CONCLUSIONS

We have investigated the effect of modeling uncertainties
on trajectories of a dynamical system. Under general smoothness
assumptions, in a deterministic setting, we derived a bound on
the leading order trajectory uncertainty, which can be computed
using the idealized model dynamics and assuming a bound on the
magnitude of the modeling error. Our upper bound depends on
the eigenvalues of an appropriate Cauchy-Green strain tensor of
the idealized model, allowing for a location-specific assessment of
trajectory uncertainty in the phase space.

We have also generalized our result to the case of stochastic
modeling errors. In that setting, we have introduced the model sen-
sitivity (MS), a coefficient relating the modeling uncertainty to the
bound of the mean-squared leading-order trajectory uncertainty.
This MS is computed solely in terms of the idealized, determin-
istic dynamics as a general functional of the invariants of the
Cauchy–Green strain tensor. As a consequence, we do not need to
assume any specific form for the modeling errors to quickly assess

their effects. Contrary to prior, statistical, and data based meth-
ods, the MS quantifies trajectory sensitivity based on the dynamical
properties of the known model.

We have also shown that our bounds on the leading order
trajectory uncertainty are optimal. Specifically, for a class of linear
systems, we gave an example in which the mean-squared trajec-
tory uncertainty was exactly equal to the product of the MS and the
modeling uncertainty. Therefore, for general systems satisfying our
smoothness assumptions, our bounds cannot be improved.

On numerical examples (one of which was a chaotic system),
we showed that the MS can be a useful predictor of local trajectory
uncertainty: the mean-squared trajectory uncertainty qualitatively
follows the bound defined by (4.12) for surprisingly long time
intervals, which is not the case with the classical, Gronwall-type
bounds.40,50 When viewed as a scalar field over the phase space, the
MS field can exhibit complex structure, which allows us to distin-
guish particularly sensitive regions. We have shown that the MS
fields are similar to the FTLE fields, which are often used to char-
acterize instability in phase space. This is in line with the usual
reasoning that the instabilities within a dynamical system typically
grow with the rate of the largest Lyapunov exponent. Our results
make this argument precise by pointing out the exact relationship
between the MS and the FTLE. In particular, we find that not all
features of the FTLE field persist in the MS field.

The sensitivity analysis developed here becomes more com-
putationally intensive for higher-dimensional dynamical systems.
Indeed, the calculation of the Cauchy–Green strain tensor is prob-
lematic for even a few hundred dimensions. This could be improved
by using approximate methods such as optimally time depen-
dent (OTD) modes,53 enabling the calculation of the dominant
Cauchy–Green eigenvalue with much less effort. This approach
could give useful results even for certain climate models, for which
sensitivity analysis is critical.
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APPENDIX: PROOFS OF THE MAIN RESULTS

1. Proof of Theorem 1

The trajectory uncertainty, based on a power-series
expansion, is

∣∣x0(t) − xε(t)
∣∣ = |εη(t, t0, x0) + O(ε2)|. (A1)

This can be bounded by

|εη(t, t0, x0) + O(ε2)| ≤ ε|η(t, t0, x0)| + |O(ε2)|, (A2)

where the remainder O(ε2) term can be bounded by Mε2, when
ε ≤ ε̄ for some ε̄ > 0. This bound depends on x0, but assuming a
compact domain U within R

n, we can choose the constants M > 0
and ε̄ such that this bound is satisfied for all x0 ∈ U.
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Next, we simply substitute the bound (3.12) for the leading-
order trajectory uncertainty into Eq. (A2) to obtain

∣∣x0(t) − xε(t)
∣∣ ≤

(∫ t

t0

√
3t

s (x
0(s)) ds

)
1∞(x0, t) + Mε2

=
(∫ t

t0

√
3t

s (x
0(s)) ds

)
1∞(x0, t)

+ 1∞(x0, t)
Mε2

1∞(x0, t)

=
(∫ t

t0

√
3t

s (x
0(s)) ds +

Mε2

1∞(x0, t)

)
1∞(x0, t).

(A3)

Comparing Eq. (A3) to Eq. (3.22), we obtain that if

δ < min
t∈[t0 ,t1]

x0∈U

Mε̄2

1∞(x0, t)
= δ̄, (A4)

then we can set

ε0 := max
t∈[t0 ,t1]

x0∈U

√
1∞(x0, t)δ

M
. (A5)

Otherwise, if δ ≥ δ̄, inequality (A3) is satisfied for ε0 := ε̄. Hence,
for all δ > 0, we can choose

ε0 := min



 max

t∈[t0 ,t1]
x0∈U

√
1∞(x0, t)δ

M
, ε̄



 (A6)

as claimed.

2. Proof of Theorem 2

The statement follows from an asymptotic expansion for
stochastic differential equations44,45 of the form

dXε
t = µ(Xε

t ) dt + 6ε(Xε
t )dWt. (A7)

Assume that the coefficient functions µ and 6ε have bounded and
measurable derivatives up to order m. Then, there exists ε̄ > 0,
such that for ε < ε̄ one can recursively obtain stochastic differential

equations for the stochastic variables X(k)
t . For any k < m,

Xε
t = X0

t + εX1
t + ε2X2

t + · · · + εk−1Xk−1
t + εkRk(t, ε), (A8)

with the remainder term being bounded in the mean-squared sense.
For a proof of the n dimensional case, see Ref. 47.

To generalize this result for time- and ε-dependent drift and
diffusion coefficients, we proceed by introducing an SDE on the
extended phase space R

n × [t0, t1] × [0, ε̄] of Eq. (4.2). Let Xε
t ∈

R
n × [t0, t1] × [0, ε̄], Xε

t = (xt,1, xt,2, . . . , xt,n, t, ε) and

µ(Xε
t ) =




f0(xt, t)1 + εg(xt, t, ε)1

f0(xt, t)2 + εg(xt, t, ε)2

...
f0(xt, t)n + εg(xt, t, ε)n

1
0




,

6ε(Xε
t ) =




εσ11(xt, t) · · · εσ1n(xt, t) 0 0
...

. . .
... 0 0

εσn1(xt, t) · · · εσnn(xt, t) 0 0
0 · · · 0 0 0
0 · · · 0 0 0




. (A9)

The resulting SDE has the desired form of Eq. (A7), and the
coefficients retain the analytic properties of the functions f and σ ,
i.e., they remain measurable and have bounded derivatives. This
means we can apply the result of Ref. 47 to obtain the following
first-order expansion

Xε
t = X0

t + εX1
t + ε2R2(t, ε) (A10)

for the solutions. The coefficients in the expansion are governed by
the following set of linear SDEs:

dX0
t = µ(X0

t ) dt,

X0
t=t0

= (x0, t0, 0),

dX1
t = ∇µ(X0

t )X
1
t dt +

∂6ε

∂ε

∣∣∣∣
X0

t

dWt,

X1
t=t0

= (0, t0, 0).

Setting X0
t = (x0

t , t, 0), X1
t = (ηt, t, 0) and keeping only the the

first n entries of the vectors yield the following expansion for the
nonautonomous system (4.2):

dx0
t = f0

(
x0

t , 0
)

dt,

x0
t=t0

= x0,

dηt = ∇f0
(
x0

t , t
)
ηt dt + g

(
x0

t , t; 0
)

dt + σ
(
x0

t , t
)

dWt,

ηt=t0 = 0, (A11)

as claimed.

3. Proof of Theorem 3

We seek a solution of the inhomogeneous, linear SDE (4.7)
using the method of “variation of constants” on the solution of
the homogeneous equation. Let the solution of the corresponding
homogeneous equation be

xH(t, x0) = ϕ(t)x0. (A12)

Here, ϕ(t) is the (linear) flow map of Eq. (3.8), mapping initial
conditions at time t0 to their position at time t. By the method of
variation of constants, let ηt be of the form ηt = ϕ(t)xt for some
random variable xt. We now compute the differential dηt, keeping
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in mind that ηt is a vector-valued stochastic process, requiring the
use of Itô’s formula. However, since ηt = η(t, x) is only linear in the
x variable, we simply have

dηt = ϕ̇(t)xtdt + ϕ(t)dxt. (A13)

Substituting Eq. (4.7) into Eq. (A13) and noting that ϕ is the
fundamental matrix-solution to the equation of variations (3.8) yield

dηt = ϕ̇(t)xt dt + ϕ(t) dxt = ∇f0
(
x0

t , t
)

xt dt + ϕ(t) dxt,

ϕ(t)dxt = g
(
x0

t , t; 0
)

dt + σ
(
x0

t , t
)

dWt,

dxt = ϕ(t)−1
[
g
(
x0

t , t; 0
)

dt + σ
(
x0

t , t
)

dWt

]
.

(A14)

The last expression in Eq. (A14) is an Itô-integral, which can be
evaluated as

xt =
∫ t

t0

ϕ(s)−1g
(
x0

s , s; 0
)

ds +
∫ t

t0

ϕ(s)−1σ
(
x0

s , s
)

dWs. (A15)

Using the form of ηt and observing that φt
s

(
x0

s

)
= ϕ(t)ϕ(s)−1 is the

normalized fundamental matrix solution to Eq. (3.8), we obtain

ηt =
∫ t

t0

ϕ(t)ϕ(s)−1g
(
x0

s , s; 0
)

ds

+
∫ t

t0

ϕ(t)ϕ(s)−1σ
(
x0

s , s
)

dWs

=
∫ t

t0

φt
s

(
x0

s

)
g
(
x0

s , s; 0
)

ds +
∫ t

t0

φt
s

(
x0

s

)
σ
(
x0

s , s
)

dWs, (A16)

which proves the statement of Eq. (4.8).

4. Proof of Theorem 4

First, we compute E(N2). By the properties of the Itô-integral,
the expected value of the mixed term in Eq. (4.9) is 0, and hence

E(N2) = E(N2
d) + E(N2

s ) + 2E(Nm)

= N2
d + E(N2

s ) + 2

(∫ t

t0

φt
s

(
x0

s

)
g
(
x0

s , s; 0
)

ds

)
E

×
(∫ t

t0

φt
s

(
x0

s

)
σ
(
x0

s s
)

dWs

)

= N2
d + E(N2

s ). (A17)

For the stochastic part of the mean-squared leading-order tra-
jectory uncertainty, we utilize Itô’s isometry component-wise to

obtain

E(N2
s ) = E

[(∫ t

t0

φt
s

(
x0

s

)
σ
(
x0

s , s
)

dWs

)2
]

= E

[(∫ t

t0

φt
s

(
x0

s

)
σ
(
x0

s , s
)

dWs

)(∫ t

t0

φt
s

(
x0

s

)
σ
(
x0

s , s
)

dWs

)]

= E


∑

i,j,k,l,m

(∫ t

t0

(φt
s)ijσjk (dWs)k

)(∫ t

t0

(φt
s)ilσlm (dWs)m

)


=
∑

i,j,k,l,m

E

[(∫ t

t0

(φt
s)ijσjk(φ

t
s)ilσlm

[
(dWs)k, (dWs)m

])]
.

(A18)

The notation
[
(dWs)k, (dWs)m

]
refers to the quadratic covariation58

of the processes (dWs)k and (dWs)m. Since the components of the
n-dimensional Wiener process are assumed to be independent, we
have (by Itô’s isometry)

E

(∫ t

t0

(φt
s)ijσjk(φ

t
s)ilσlm

[
(dWs)k, (dWs)m

])

= E

(∫ t

t0

(φt
s)ijσjk(φ

t
s)ilσlmδkm ds

)
, (A19)

where δkm is the Kronecker-delta. Denoting the Frobenius-norm by
|| · ||F : R

n×n → R
+, we have ||A||2F =

∑
i,j |Aij|2 = tr(ATA). There-

fore,

E(N2
s ) =

∫ t

t0

||φt
sσ ||2F ds,

ε2
E
[
Ns(t)

2
]

≤
∫ t

t0

ε2||φt
s||2F ds max

s∈[t0 ,t]

∥∥σ
(
x0

s , s
)∥∥2

F

=
∫ t

t0

tr
[
Ct

s

(
x0

s

)]
ds 1σ

∞(x0, t). (A20)

In Sec. III A, we also concluded in Eq. (3.12) that δ(x0, t)

= εNd(t) ≤
∫ t

t0

√
3t

s(xs) ds 1∞(x0, t). Substituting Eqs. (3.12) and

(A20) into Eq. (A17) implies

ε2
E
[
N(t)2

]
≤
(∫ t

t0

√
3t

s

(
x0

s

)
ds

)2

12
∞(x0, t)

+
∫ t

t0

tr
[
Ct

s

(
x0

s

)]
ds 1σ

∞(x0, t), (A21)

as claimed.

5. Proof of Theorem 5

Using the small-noise expansion (4.4) for the mean-squared
trajectory uncertainty, for ε < ε̄, we obtain

E
(
|xε

t − x0(t)|2
)

= E
(
|εηt + ε2R(t, ε)|2

)
. (A22)
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Using the Minkowski inequality, we also find that
√

E (|xε
t − x0(t)|2) ≤

√
ε2E(|ηt|2) +

√
ε4E(|R(t, ε)|2). (A23)

Since the second order remainder term in Eq. (4.4) is bounded in the
mean-squared sense, we have, for some K0 < ∞,

sup
t∈[t0 ,t1]

E(|R(t, ε)|2) ≤ K2
0. (A24)

To bound E(|ηt|2), we use Theorem 4 in the form of Eq. (4.11) to
obtain

ε2
E(|ηt|2) ≤ MSt

t0
(x0, r)1

2
∞(x0, t). (A25)

Substituting bounds (A24) and (A25) into the original expres-
sion (A22), we have

√
E (|xε

t − x0(t)|2) ≤
√

MSt
t0
(x0, r)12

∞(x0, t) +
√

K2
0ε

4. (A26)

Since x0 is taken from a compact domain U ⊂ R
n, we can

choose the constant K0 to be independent of x0. After rearranging
the terms, we obtain

√
E (|xε

t − x0(t)|2)

≤
√

MSt
t0
(x0, r)1∞(x0, t) + 1∞(x0, t)

K0ε
2

1∞(x0, t)

=
(√

MSt
t0
(x0, r) +

K0ε
2

1∞(x0, t)

)
1∞(x0, t). (A27)

Comparing (4.13) to (A27), we obtain the statement of Theorem 5
after setting

ε0 := min



 max

t∈[t0 ,t1]
x0∈U

√
1∞(x0, t)δ

K0

, ε̄



 . (A28)

DATA AVAILABILITY
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