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Dynamics-based Machine Learning                    
for Nonlinearizable Phenomena
Data-driven Reduced Models on Spectral Submanifolds
By George Haller, Shobhit            
Jain, and Mattia Cenedese

Machine learning (ML) has been an 
inspiring development for all areas 

of applied science, with numerous success 
stories in static learning environments like 
image, pattern, and speech recognition. 
Yet effective modeling of dynamical phe-
nomena—such as nonlinear vibrations of 
solids and transitions in fluids—remains 
a challenge for ML, which tends to pro-
duce overly complex and uninterpretable 
dynamic models that are not reliable outside 
of their training range. A recent approach, 
however, integrates advanced dynamical 
systems concepts into elementary ML, ulti-
mately yielding fast and accurate reduced-
order models for nonlinear dynamics.

The idea—which we call dynamics-
based machine learning (DBML)—is to 
learn models directly from phase space 
structures that are inferred from data. 
Systems with very different physics often 
display the same key invariant sets in their 

phase spaces; instead of fitting models to 
individual trajectories (which are sensitive 
to perturbations and parameter changes 
anyway), robust reduced-order modeling 
should therefore target structurally stable 
invariant sets. DBML focuses specifically 
on identifying the dynamics of ubiquitous, 
low-dimensional attracting invariant mani-
folds, which were first noted in the non-
linear vibrations literature [6]. Subsequent 
work in dynamical systems theory inde-
pendently established the existence and 
properties of these manifolds, even for 
infinite-dimensional systems [1]. The forth-
coming formulation, a higher-dimensional 
computational algorithm, and a data-driven 
implementation of these results have only 
appeared very recently [2-4].

DBML assumes the existence of at least 
one stationary state 0 for a dynami-
cal system, which we take here to be 
finite dimensional for simplicity. To fur-
ther simplify the situation, we only con-
sider the case wherein 0 is an attract-
ing fixed point; similar results hold for 
repelling fixed points, periodic orbits, and 

quasiperiodic steady states. The linear-
ized dynamical system at 0 will admit 
eigenspaces E

j
 that are spanned by gen-

eralized eigenvectors of its j th distinct 
eigenvalue l

j
. We can order these eigens-

paces by their increasing real parts, so that 
Re Rel l

j j
< +1. As a consequence, solu-

tions of the linearized system within E
j
 

decay to the fixed point 
0
 increasingly 

quickly as the index j  grows.

By grouping some of the E
j
 eigenspaces 

together if necessary, we can build a hier-
archy E E1 2⊂ ⊂… of spectral subspaces 
(see Figure 1a). We construct these spectral 
subspaces from eigenspaces in a manner 
that ensures that all E j  are non-resonant. In 
particular, no positive-integer linear combi-
nation of the eigenvalues in E j  should equal 
any eigenvalue that falls outside of E j . 

Figure 1. Schematics of (1a) linear versus (1b) nonlinear model reduction near an attracting 
fixed point 

0
. Figure adapted from [2].

See Machine Learning on page 4

How to Boost Your Creativity
By Nicholas J. Higham               
and Dennis Sherwood

As a SIAM News reader, you are a cre-
ative person — you would not have 

gotten where you are today without being 
creative. However, you may not understand 
exactly how your creativity works or how to 
“turn it on” when you need it. You also might 
not know how to train others to be creative.

In this article, we describe the basic idea 
behind a six-step process for creativity that 
Dennis Sherwood developed over the last 20 
years. We have used this process together in 
creativity workshops during the last decade, 
working with groups ranging from the 
numerical analysis group at the University 
of Manchester to the SIAM leadership.

Our approach is based on the insight that 
creativity is not so much about creating 
something totally new as about identify-
ing something different. The search for 
something different is much easier than the 
search for something new, for “different” 
means “different from now” and “now” 
is visible all around us. So if we observe 
“now” very carefully, we might notice some 
feature of “now” that might be different and 

ideally better too, and from this feature an 
idea might spring. Creativity therefore does 
not necessarily require an act of genius, or 
a lightning strike out of the blue. Rather, 
good ideas can be discovered as the result of 
detailed observation coupled with curiosity, 
and can follow a systematic process that can 
be applied in any circumstance.

Two of the key steps in our proce-
dure are to write down every feature of 
the focus of attention (which could be a 
mathematical problem or something else 
entirely), and then ask “How might this be 
different?” for each one. Here we provide 
a glimpse into the process with an old 
and familiar example: iterative refinement 
for improving an approximate solution 
to a linear system Ax b= ,  where A  is a 
square, nonsingular matrix. The basic algo-
rithm in its original form is as follows, and 
we assume that it is carried out in double-
precision floating-point arithmetic:

1. Solve Ax b= .
2. Compute r b Ax= −  in quadruple  

  precision.
3. Solve Ad r= .
4. Update x x d← + .

Repeat from step 2 if necessary.

James H. Wilkinson programmed iterative 
refinement in 1948 using LU factorization 
with partial pivoting for the solves in steps 
1 and 3. For step 2, he took advantage of the 
ability of his computer—the Pilot Automatic 
Computing Engine at the National Physical 
Laboratory—to accumulate inner products 
in quadruple precision at no extra cost.

Iterative refinement became popular and 
was implemented in this way for the next 
25 years or so. Several textbooks from 
the 1960s and 1970s made statements 
such as “It is absolutely essential that the 
residuals be computed in extra precision,” 
and the method seemed to be set in stone. 
However, every aspect of iterative refine-
ment is amenable to the question “How 
might this be different?”, and the answers 
to this question have yielded a panoply of 
different versions of the method.

Here is a thumbnail sketch of some itera-
tive refinement variants, each of which is 
identified by the feature that distinguishes it 
from the aforementioned version. Specific 
references for these and other develop-
ments are given in [1, 2].

Precision of the Residual
The residual r  does not need to be com-

puted with extra precision, at least not if the 
aim is to improve the backward stability 
rather than the accuracy. This was realized 
in the 1970s, by which time most computers 
could no longer accumulate inner products 
in quadruple precision for free. This finding 
opened up the possibility of using a some-
what unstable solver.

Precision of the Factorization
The algorithm still works if step 1 uses 

an LU factorization that is computed in 
single precision, as long as A  is not nearly 
singular to single precision. This observa-
tion was made in the 2000s and was impor-
tant because processors were appearing on 
which single precision arithmetic was much 
faster than double precision arithmetic.

Participant at a creativity workshop adds ideas to a flip chart. Photo courtesy of Dennis Sherwood. See Creativity on page 3
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dimensional nonlinear evolution equations. 
Such transitions occur, for example, in the 
Navier-Stokes equations for planar Couette 
flows, which admit multiple steady states 
beyond their stable, constant-shear base 
state (see Figure 4).

Here we have illustrated a physical-
ly diverse group of dynamical data sets 
from which DBML constructs accurate 

and predictive reduced-order models 
for nonlinearizable dynamics on SSMs. 
These dynamics display coexisting stable 
and unstable steady states with transi-
tions among them, which cannot be simul-
taneously captured by a linear model. 
Promising ongoing extensions of SSM 
theory to more general 0  sets, external 

forcing types, and non-smooth effects will 
further enhance the power of DBML.
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Each E j  thus contains linearized solutions 
that do not exchange energy via resonanc-
es with higher members of the spectral 
subspace hierarchy.

The subspace E j  serves as an observed 
attractor for typical linearized trajectories 
until the components of those trajectories 
in E Ej j- -1 die out. At that point, E j-1 
becomes the observed attractor (see Figure 
1a, on page 1). The reduced dynamics on E j  
therefore provide the best possible reduced 
model of the linearized dynamics if we wish 
to filter out transients that are associated with 
all stronger decay exponents Rel



 for > j.
The fundamental result of spectral sub-

manifold (SSM) theory is that this hier-
archy of observed linear attractors also 
persists in a smoothly deformed form 
within the full nonlinear dynamical sys-
tem. Specifically, a nested family of SSMs 
W E W E( ) ( )1 2⊂ ⊂… exists such that 
W E j( ) is invariant under the full dynam-
ics, has the same dimension as E j , and 
is tangent to E j at the steady state 

0
. 

These SSMs are not unique; they share their 
invariance, dimensionality, and tangency to 
E j  with infinitely many other manifolds. 
Under the addition of small periodic or 

quasiperiodic forcing, both 
0
 and its 

SSMs persist smoothly and inherit the time 
dependence of the forcing.

Therefore, SSM-reduced dynamics pro-
vide a hierarchy of mathematically exact 
low-dimensional models for nonlineariz-
able behavior — even with the addition of 
moderate external forcing. Such behavior 
includes coexisting steady states, transi-
tions among them, and chaotic dynam-
ics. SSM-reduced models can be com-
puted in seconds or minutes and reveal the 
details of nonlinearizable, damped-forced 
responses in mechanical systems with tens 
or even hundreds of thousands of degrees 
of freedom. For example, the red curve 
in Figure 2 traces an accurate and highly 
accelerated prediction of forced response 
from a two-dimensional reduced model on 
W E( )1  for a 267,840-dimensional finite 
element model of an aircraft wing. Such 
a numerical prediction is currently impos-
sible for even the most advanced numerical 
continuation packages [4].

The SSMTool1 computations in Figure 
2 require explicit knowledge of nonlin-
earities in the governing equations, which 

1 https://github.com/haller-group/SSMtool
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is not available from com-
mercial finite element 
codes. Even the evaluation 
of functions that implicitly 
define the nonlinearities 
is costly. The prohibitive 
expense for long-term sim-
ulations of individual tra-
jectories means that model 
reduction is unavoidable.

One possible workaround 
is a fully data-driven algo-
rithm for SSM construction 
[2]. This algorithm—which 
is implemented in an open-
source MATLAB package 
called SSMLearn2—uses 
data to identify the dimen-
sion and spectrum of the 
dominant spectral subspace 
E j . The procedure then uti-
lizes regression to recon-
struct the SSM in the observ-
able space and computes a sparse normal 
form for the SSM-reduced dynamics.

This approach yields previously 
unthinkable computational speed-ups for 
dynamic finite element simulations. One 
can simply learn the unforced normal form 
on SSMs from a small number of decay-
ing, unforced trajectories, then use these 

low-dimensional models to predict full 
bifurcation curves of the forced response 
without any simulation. The blue curve 
in Figure 2 is an example of this type of 
nonintrusive, data-driven model reduction, 
which yields remarkably close agreement 
with the exact analytic predictions from 
SSMTool. Here, SSMLearn was trained on 
a single unforced trajectory and predicted 
the full forced response 
curve in only five minutes.

SSM-based model reduc-
tion has multiple other 
uses as well. It is equally 
applicable to experimental 
data with arbitrary physics, 
such as sloshing dynam-
ics in surface-wave experi-
ments that are relevant 
in the design of tanks on 
cargo ships and commercial 
trucks (see Figure 3). Data-
driven SSM reduction also 
provides low-dimensional 
reduced models for glob-
al transitions in infinite-

2 https://github.com/haller-
group/SSMLearn

Figure 2. Equation- and data-based predictions for the forced response curve (FRC) of a finite element model of an aircraft wing. Each trajec-
tory integration in the forced finite element model (black cross) requires approximately four days to cover roughly 20 seconds of physical 
model time. In contrast, an equation-driven, spectral submanifold (SSM)-based prediction by SSMTool [4] (red curve) for the full FRC takes 
about 40 minutes. Finally, a purely data-driven FRC prediction by SSMLearn [2] (blue curve) that is trained on a single unforced trajectory takes 
about five minutes. Dashed portions of the SSM-based FRC predictions, which indicate unstable periodic response, are unavailable to direct 
numerical integration. Figure courtesy of the authors.

Figure 3. Predictions for the forced horizontal oscillations of a sloshing fluid’s center of mass by a model that is 
trained on unforced experimental data. Figure adapted from [2] and left image courtesy of Kerstin Avilla.

Figure 4. Data-driven spectral submanifold (SSM)-based model and predictions for global transitions between 
stable and unstable states in a Couette flow. Figure adapted from [5].

as money in media circles. Speaking truth 
to power can thus have consequences, like 
the loss of funding or access to necessary 
information. Either of these outcomes can 
damage a career — as well as one’s ability 
to make a living.

“Back Off, Man, I’m a Scientist”
“It’s difficult when those in power are 

so ideologically removed from one’s own 
principles or worldview,” Al-Khalili said. 

“The model of just saying, ‘We are the 
experts, you are the empty vessels to be 
filled with our knowledge and wisdom,’ is 
not going to work.”

Instead of the Ghostbusters “Back off, 
man, I’m a scientist!” approach, Al-Khalili 
argued that scientists must explain their 
methodologies and expose their own 
humanity. Krummel expanded upon this 
viewpoint. “[Media] has popularized the 
scientist as white coat-wearing, bespec-
tacled, and very precise,” he said. “And 
there are realities to that. But many of us 
love the outdoors, many of us go to church 

Truth to Power
Continued from page 2

and are spiritual — all of this stuff is not 
part of the popular perception.”

Such commonalities can help bridge 
the divide. Krummel added that scientists 
should speak from the heart, verbalize how 
they feel about the issues at hand, and 
acknowledge that audiences respond to who 
they are as people, not just to their facts.

In short, science can provide the neces-
sary evidence to oppose ideologically-driv-
en assaults on climate change, LGBTQ+ 
rights and healthcare, the U.S. Supreme 
Court’s recent leaked stance on abortion, 
and other important issues. At the same 

time, the shared humanity between scien-
tists and non-scientists may be a more effec-
tive way for science to speak truth to power.
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