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ABSTRACT

We derive measures of local material stretching and rotation that are computable from individual trajectories without reliance on other
trajectories or on an underlying velocity field. Both measures are quasi-objective: they approximate objective (i.e., observer-independent)
coherence diagnostics in frames satisfying a certain condition. This condition requires the trajectory accelerations to dominate the angular
acceleration induced by the spatial mean vorticity. We illustrate on examples how quasi-objective coherence diagnostics highlight elliptic and
hyperbolic Lagrangian coherent structures even from very sparse trajectory data.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0044151

A vast amount of discrete tracer trajectory data is available for
fluid flows in the laboratory and in nature. All features of tracer
trajectories, however, including their shape, velocities, and loop-
ing, depend on the reference frame of the observer even though
the coherent flow structures one often tries to infer from tracers
are observer indifferent. Here, we develop quasi-objective coher-
ent structure diagnostics that can be computed from individual
single tracer trajectories without reliance on other trajectories.
A quasi-objective diagnostic approximates an objective diagnos-
tics in all frames of reference that satisfy certain conditions we
derive. We show how the single-trajectory quasi-objective scalar
fields highlight material coherent structures even from sparse tra-
jectory data sets on which multi-trajectory objective diagnostics
tend to perform poorly.

I. INTRODUCTION

We seek objective (i.e., observer-indifferent) diagnostics for
material stretching and rotation that can be evaluated on individual
trajectories without reliance on other trajectories or on the under-
lying velocity field. Applications calling for such diagnostics include
the analysis of observational drifter data, balloon data, and particle
tracks from particle tracking velocimetry (PTV).

All elementary features of particle paths are non-objective, i.e.,
depend on the observer. For instance, in a frame traveling with any
given particle, the particle becomes just a fixed point. All features of

the trajectory, such as velocity, acceleration, looping number, curva-
ture, and trajectory length, therefore, vanish in this frame. In con-
trast, Lagrangian coherent structures (LCS), the persistent features
of the material deformation field of the fluid as a moving contin-
uum, are objective by definition.27 Accordingly, any self-consistent
identification of LCS should be carried out using objective quanti-
ties. Indeed, objectivity as a minimal requirement for flow-feature
identification was already identified in the 1970s4,10,11,34 and a num-
ber of recent approaches conform to this requirement (see Refs. 17,
22, 27, 29, and 39 for reviews).

Objective geometric quantities used in LCS identification are,
however, based on the gradient of the flow map whose compu-
tation requires a large number of trajectories to be released from
an initial grid. Examples of such quantities include the finite-time
Lyapunov exponent (or FTLE21) for hyperbolic LCS and the polar
rotation angle (or PRA12) for elliptic LCS in two dimensions. The
computation of these diagnostics is only feasible if the velocity field
is known over, or can at least be interpolated onto, a regular grid
over a full flow domain.27 For the special case of closed (or elliptic)
LCSs, alternative probabilistic methods have been developed that
seek regions enclosed by such LCSs as coherent sets.13,14 These objec-
tive methods do not technically require differentiation of the flow
map but their implementations utilize box-counting methods that
only converge for large numbers of densely spaced trajectories. More
recent clustering methods for coherent set detection are, in princi-
ple, applicable to sparse trajectory data, but still require a reason-
ably high number of evenly placed trajectories to give meaningful
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results.15,18,44 None of these methods offer a coherence indicator that
is computable on a single trajectory. On the contrary, the coher-
ence measures assigned to individual trajectories by probabilistic
and statistical methods will change if the position and number of
the other trajectories used in the algorithm change—even though the
underlying fluid flow and its coherent structures remain the same.

Notable exceptions to this trend are two objective indicators
of the complexity of individual trajectories: the correlation dimen-
sion and the ergodicity defect proposed in Ref. 43 for LCS extraction.
While these objective diagnostics can be computed from single tra-
jectories, their connection to material attributes of fluid trajectory
motion, such as material stretching and rotation, is unknown. Abso-
lute dispersion,40 trajectory length,36 and maximal trajectory extent37

are also attractively simple single-trajectory diagnostics, but they are
not objective and their relationship to material stretching and rota-
tion is also unknown. In contrast, the Lagrangian-averaged vorticity
deviation (LAVD) is an objective single-trajectory diagnostic25 but
requires the knowledge of the full velocity field for the purposes of
computing the vorticity along trajectories. A further non-objective,
single-particle diagnostics for LCS identification is the Lagrangian
spin parameter,47 which relies on the calibration of an additional
stochastic model for the velocity field. Yet, another approach adapts
the wavelet ridge analysis method of Ref. 8 to Lagrangian tra-
jectory analysis.32,33 While physically insightful, this technique is
non-objective either, as it fits a time-varying ellipse model to identify
signatures of coherent eddies based on the looping characteristics of
trajectories.

While all identifiable features of individual trajectories are
non-objective, trajectory data are often the only available infor-
mation about fluid flows. It is, therefore, essential to assess what
trajectory-based quantities (if any) can still be tied mathemati-
cally, at least in qualifying frames, to established and objective LCS
diagnostics. Answering this question would enable, for instance, a
mathematically justifiable and physically self-consistent extraction
of Lagrangian jets, fronts, and eddies from NOAA’s Global Drifter
Program, which comprises more than 20 000 trajectories.35 Such an
extraction should then lead to a systematic assessment of the per-
formance of promising nonobjective trajectory-based methods, such
as Ref. 33, in avoiding false positives and negatives in elliptic LCS
detection.

Here, we address this challenge by deriving objective coherence
diagnostics for material stretching and rotation that are computable
solely from single-particle trajectory data. Each diagnostic approxi-
mates a related objective, material coherence measure in frames that
satisfy certain computable conditions. We refer to the approximate
coherence diagnostics developed here as quasi-objective under those
conditions. Physically, the quasi-objectivity condition we obtain
requires the trajectory accelerations to dominate the angular accel-
eration induced by the spatial mean vorticity in the given frame.
We illustrate the power of quasi-objective stretching and rotation
measures on two- and three-dimensional examples.

II. OBJECTIVE LAGRANGIAN STRETCHING AND

ROTATION MEASURES

Consider particle motions generated by a differential equation

ẋ = v(x, t), (1)

with a continuously differentiable velocity field v defined for times
t ∈ [t0, tN] on a spatial domain U ⊂ R

n of dimension n ≥ 1. Let
x(t; t0, x0) be a trajectory with initial condition x(t0; t0, x0) = x0. The
flow map induced by trajectories is Ft

t0
: x0 → x(t; t0, x0), mapping

initial conditions at time t0 to their current positions at time t.
When t0 and x0 are fixed and hence do not need to be carried
in our arguments, we will also use the shorthand notation x(t)
:= x(t; t0, x0).

A Lagrangian scalar fieldP(x0) is called objective46 if it remains
invariant under all Euclidean observer changes of the form

x = Q(t)y + b(t), (2)

with a proper orthogonal tensor Q(t) ∈ SO(n) and a vector b(t).
Specifically, under all such transformations, the transformed scalar

field P̃ in the y-frame satisfies P̃(y0) ≡ P(x0).
Consider a material curve, γ (t; s) = Ft

t0
(γ (t0; s)) ⊂ U, at time

t, which has evolved from an initial curve γ (t0; s) parameterized by
the scalar parameter s ∈ R. Any tangent vector,

ξ(t; s) = ∂sγ (t; s), (3)

of γ then satisfies the evolution equation

ξ̇(t; s) = ∂tξ(t; s) = ∂t∂sγ (t; s) = ∂s∂tγ (t; s) = ∂s∂tF
t
t0

(γ (t0; s))

= ∂sv(γ (t; s), t) = ∇v(γ (t; s), t)∂sγ (t; s).

Therefore, the tangent vector ξ(t; s) of the material curve γ (t; s)
satisfies the classic equation of variations3

ξ̇ = ∇v (x(t), t) ξ (4)

along the trajectory x(t) with x(t0) = γ (t0; s).

A. Objective stretching measures

We now fix the parameter s along the material curve γ (t; s)
such that γ (t0; s) = x0. We then seek to characterize the time-
evolution of the tangent vector |ξ(t)| at γ (t; s) with an exponent λ

as

|ξ(t)| ∼ eλ(t−t0)
∣

∣ξ 0

∣

∣ (5)

for ξ 0 6= 0. This leads us to define the averaged stretching exponent

λ
tN
t0

(x0, ξ 0) :=
1

tN − t0

log
|ξ(tN)|
∣

∣ξ 0

∣

∣

, (6)

sometimes called the finite-time Lyapunov exponent associated with
the initial vector ξ 0 at the initial location x0 (see, e.g., Ref. 38). Under
any Euclidean observer change (2), we obtain

ξ̃ = QTξ ,

whose substitution into (6) shows that the Lagrangian scalar

field λ
tN
t0

(x0, ξ 0) is objective, i.e., remains invariant under arbitrary
observer changes of the form (2). We recall that the maximum of
λ > 0 with respect to the direction ξ 0 is the finite-time Lyapunov
exponent (FTLE) associated with the initial point x0 by definition.27

If the instantaneous growth exponent satisfies λ < 0 at time
t in a two-dimensional incompressible flow, then a normal vec-
tor ξ⊥

(t; s) to ξ(t; s) at the same point of the trajectory will have a
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growth exponent equal to |λ| > 0. Similarly, in three-dimensional
incompressible flows, λ < 0 implies that the instantaneous growth
exponent of the area in a plane normal to the material line γ (t; s)
is equal to |λ| > 0. Therefore, |λ| is a measure of the strength of
hyperbolicity experienced by a trajectory in an incompressible flow.
To measure the temporal average of |λ| along the trajectory x(t), we
define the averaged hyperbolicity strength

λ̄
tN
t0

(x0, ξ 0) :=
1

tN − t0

∫ tN

t0

∣

∣

∣

∣

∣

d

dt
log

|ξ(t)|
∣

∣ξ 0

∣

∣

∣

∣

∣

∣

∣

dt, (7)

where x(t0) = x0. While the quantity λ
tN
t0

measures the average net
stretching (including shrinkage) in the direction of ξ(t) over the

time interval [t0, tN], the quantity λ̄
tN
t0

accounts for all (positive)
stretching experienced either parallel or normal to ξ(t). For this

reason, λ̄
tN
t0

is a measure of the average strength of hyperbolicity
experienced by a trajectory of an incompressible flow. By the same

considerations that we have applied to λ
tN
t0

(x0, ξ 0), the scalar field

λ̄
tN
t0

(x0, ξ 0) is also objective.

B. Objective rotation measures

To introduce our second class of trajectory-based diagnostic
tool, we normalize the material tangent vector ξ(t) defined in (3)
to the unit tangent vector

e(t) =
ξ(t)

|ξ(t)|

of the material line γ (t; s); we will denote by e0 := e(t0) = ξ 0/
∣

∣ξ 0

∣

∣

the initial position of e(t) at time t0.
Under any Euclidean observer change (2), we then obtain

ẽ(t) = QT(t)e(t). (8)

Over the time interval [t0, tN], the net rotation angle α
tN
t0

(x0, e0) per
unit time experienced by ξ 0 along the trajectory starting from x0

= γ (t0; s) can be computed as

α
tN
t0

(x0, e0) =
1

tN − t0

cos−1 〈e(t0), e(tN)〉 . (9)

Formula (8) shows that αt
t0

is not an objective scalar because

e0 = e(t0) is rotated by QT(t0) under an observer change (2),
whereas e(tN) is rotated by QT(tN). Still, rotations commute in
two dimensions; therefore, if we have αt

t0
(x01, e01) = αt

t0
(x02, e02) for

two different initial positions x01 and x02 with corresponding ini-
tial material tangent unit vectors e01 and e02, then we also have
αt

t0
(y01, ẽ01) = αt

t0
(y02, ẽ02) for their transformed counterparts. This

is because the angle between e1(t0) and e1(tN) will be altered by the
spatially independent rotation tensors QT(t0) and QT(tN) in the new
frame by the same amount as the angle between e2(t0) and e2(tN)

will be altered by the same rotation tensors. We conclude that the
set of level curves of (9) is objective (i.e., invariant under observer
changes), even though the value of αt

t0
(x0, e0) on them changes from

one frame to the other. We stress that the same statement does not
hold in three dimensions unless the vector field v itself is objective.
These properties mimic the objectivity properties of the PRA.12

We now seek to construct a quantity that objectively character-
izes the rotation of unit vectors in both two and three dimensions.
To this end, we consider the deviation of ė from the domain-average
of the local mean velocities of all unit material tangent vectors ema-
nating from the same point. We first recall the result from Ref. 23
that the local mean angular velocity of material fibers at a point x at
time t equals

ν(x, t) =
1

2
ω(x, t), (10)

with ω = ∇ × v denoting the vorticity field. We also recall that
under a frame change (2), vorticity transforms into

ω̃ = QT
(

ω − q̇
)

, (11)

where q̇ is the vorticity of the frame change defined by the identity

1

2
q̇ × e = Q̇QTe

for all vectors e ∈ R
3.

By Eq. (10), the deviation of ė from the spatially averaged local
velocities of material unit vectors, or relative tangent velocity, is

ε̇ = ė −
1

2
ω̄(t) × e = ė − W̄(t)e, (12)

with ω̄(t) denoting the spatial average of the vorticity over the
domain U and with W̄(t) denoting the spatial average of the spin
tensor

W =
1

2

[

∇v − [∇v]T
]

= −WT (13)

over the same domain. Under the frame change (2), formula (11)
shows that ε̇ transforms as

˙̃ε = ˙̃e −
1

2
¯̃ω × ẽ = QT

[

ė − Q̇QTe
]

−
1

2
QT

(

ω̄ − q̇
)

× QTe

= QT

[

ė −
1

2
q̇ × e

]

−
1

2
QT

(

ω̄ − q̇
)

× QTe

= QT

[

ė −
1

2
q̇ × e −

1

2

(

ω̄ − q̇
)

× e

]

= QT

[

ė −
1

2
ω̄ × e

]

= QTε̇,

implying that the relative tangent velocity ε̇ of ξ is an objective
vector. Consequently,

ᾱ
tN
t0

(x0, ξ 0) :=
1

tN − t0

∫ tN

t0

|ε̇(t)| dt

=
1

tN − t0

∫ tN

t0

∣

∣

∣

∣

ė(t) −
1

2
ω̄(t) × e(t)

∣

∣

∣

∣

dt, (14)

with e(t) = ξ(t)/ |ξ(t)|, is an objective measure for the average rota-
tion speed experienced by the tangent vector ξ during its evolution
along the trajectory starting from x0. Indeed, this rate of change is
entirely due to the rotation of ξ , unaffected by any change in the
length of ξ .

We have used the ᾱ
tN
t0

notation in (14) to point out that this
quantity (the averaged norm of an angular velocity) has the same
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relation to α
tN
t0

(an average angular velocity) as the averaged norm of

the stretching rate λ̄
tN
t0

has to the average stretching rate λ
tN
t0

. Unlike

λ
tN
t0

, however, α
tN
t0

is not objective and that is why the definition

of ᾱ
tN
t0

contains a subtracted mean rotation rate that makes ᾱ
tN
t0

objective.

III. QUASI-OBJECTIVE TRAJECTORY STRETCHING AND

ROTATION IN STEADY FLOWS

We will call a Lagrangian scalar field P(x0) computed from
{x(ti)}N

i=0 quasi-objective under a condition (A) if there exists an
objective Lagrangian scalar field P(x0) such that

P(x0) ≈ P(x0) (15)

in any x-frame in which condition (A) holds. The accuracy of the
approximation indicated by the symbol ≈ in (15) depends on the
extent to which the condition (A) is satisfied.

In other words, a frame-dependent scalar field P(x0) is quasi-
objective under a condition (A) if it happens to approximate the
same objective scalar field P(x0) in any frame in which condition
(A) is satisfied. P(x0) will generally not approximate an objective
field in all frames, as condition (A) is generally frame-dependent
and hence will not hold in all frames. In Secs. III A and III B, we will
derive quasi-objective measures of material stretching and rotation
with computable formulas for their corresponding quasi-objectivity
condition.

Our first quasi-objectivity conditions for our upcoming deriva-
tions will be the assumption that the velocity field is steady in the
current frame, i.e.,

(A1)

|∂tv(x, t)| = 0,

holds. We will remove this assumption in our later extension of our
results to unsteady flows.

Assumption (A1) enables us to rewrite (1) as the autonomous
dynamical system

ẋ = v(x). (16)

Trajectories of two-dimensional steady flows (n = 2) coincide with
streamlines and already provide detailed information about coher-
ent structures without further analysis. For this reason, the present
discussion is mostly of interest for three-dimensional flows (n = 3).
Although the flow map and trajectories of the autonomous differ-
ential equation depend on the elapsed time t − t0 and hence t0 = 0
could be fixed, we still keep the explicit dependence on the cur-
rent time t and initial time t0 in our formulas to facilitate their
later extension to the unsteady case in which (A1) will no longer
be assumed.

A. Trajectory-based approximations of stretching

measures

Consider now the Lagrangian velocity vector

v(t) := v(x(t)),

which satisfies the homogeneous linear evolution equation

v̇ = ∇v(x(t))v. (17)

Note that this formula relies heavily on our assumption (A1); oth-
erwise, the extra term ∂tv(x(t), t) would appear on the right-hand
side, making (17) an inhomogeneous linear system of differential
equations.

A comparison of Eqs. (4) and (17) shows that v(t) evolves as
a material tangent vector in the given coordinate frame. Therefore,
for the choice of the initial material tangent vector ξ 0 = v0 := v(x0)

6= 0, the averaged stretching exponent and averaged hyperbolicity
strength can be written as

λ
tN
t0

(x0, v0) =
1

tN − t0

log
|v (x(tN))|

|v0|
,

λ̄
tN
t0

(x0, v0) =
1

tN − t0

∫ tN

t0

∣

∣

∣

∣

d

dt
log

|v (x(t))|
|v0|

∣

∣

∣

∣

dt.

(18)

The right-hand sides of the formulas in (18) give close approxi-
mation for the objective expressions (6) and (7) with ξ 0 = v0 in
the frame where assumption (A1) holds for the velocity field. In

other words, λ
tN
t0

(x0, v0) and λ̄
tN
t0

(x0, v0) are quasi-objective under
condition (A1).

If discretized trajectory data {x(ti)}N
i=0 is available for the tra-

jectory x(t), then formulas (18) yield the following result, with the
trajectory velocities ẋ(tj) computed from finite differencing or spline
interpolation.

Theorem 1. Under assumption (A1), the trajectory stretching
exponents (TSEs), defined as

TSE
tN
t0

(x0) =
1

tN − t0

log
|ẋ(tN)|
|ẋ(t0)|

,

TSE
tN
t0

(x0) =
1

tN − t0

N−1
∑

i=0

∣

∣

∣

∣

log
|ẋ(ti+1)|
|ẋ(ti)|

∣

∣

∣

∣

(19)

for all ẋ(ti) 6= 0, i = 0, . . . , N, are quasi-objective measures of trajec-
tory stretching and hyperbolicity strength.

The following remarks are in order regarding Theorem 1:

1. While two-dimensional steady flows can already be fully under-
stood from streamlines generated by trajectory plots, the anal-
ysis of three-dimensional steady flows benefits from the TSE
diagnostics.

2. The TSE metrics are only quasi-objective, not objective. One
manifestation of this is that they depend on trajectory veloci-
ties that are not objective. That said, the TSE metrics give the
correct stretching of velocity vectors in case those vectors evolve
materially in a given frame, which is guaranteed by condition
(A1).

3. The TSE metrics can generally be used to highlight hyperbolic
invariant manifolds of an autonomous vector field. That vec-
tor field does not have to be a fluid velocity field, and hence,
unlike fluid velocity fields, it may be objective. For such objec-
tive autonomous vector fields, the TSE metrics are objective, not
only quasi-objective, given that assumption (A1) is satisfied in
any observer frame. Examples of objective autonomous vector
fields include the active barrier vector fields x′ = w(x; t) derived
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in Ref. 26, with the prime denoting differentiation with respect
to a parameter along a barrier curve. With respect to this param-
eter, the vector field w(x; t) is autonomous. Under observer
changes of the form (2), w(x; t) remains autonomous and trans-
forms objectively as y′ = w̃(y; t) = QT(t)w(x; t). Invariant man-
ifolds of w(x; t) are shown in Ref. 26 to coincide with time t
positions of objective material barriers to vorticity and momen-
tum in the underlying fluid flow. In Sec. V C, we show the
application of the TSE metrics to the computation of objective
momentum transport barriers in the unsteady ABC flow.

4. By its construction, the TSE field is expected to reproduce fea-
tures of the FTLE field but without the computational burdens
associated with the FTLE field. Indeed, unlike the FTLE, the TSE
can be computed even for a single trajectory.

5. For N = 1, ridges (or trenches) of the TSE yield single-
trajectory-based approximation for hyperbolic (or parabolic)
objective Eulerian coherent structures (or OECS45), which are
the instantaneous limits of hyperbolic (or parabolic) LCSs.

B. Trajectory-based approximations of rotation

measures

Consider now the normalized Lagrangian velocity vector

ev(t) =
v(t)

|v(t)|
.

Equation (12) shows that if 1
2
ω̄(t) × e is much smaller in norm

than ė, then ε̇ is approximately equal to ė. Therefore, if assumption
(A1) holds [thus ev(t) evolves as a material unit vector e(t)] and, in
addition,

(A2)

∣

∣

∣

∣

1

2
ω̄(t) × ev(t)

∣

∣

∣

∣

� |ėv(t)|

holds in the given frame, then the relative tangent velocity

ε̇v = ėv −
1

2
ω̄ × ev

of v(t) satisfies

|ε̇v| ≈ |ėv|.

Note that assumption (A2) requires the Lagrangian accelerations to
dominate the angular acceleration of the trajectory induced by the
spatial mean vorticity. Consequently, if assumptions (A1) and (A2)
hold in the frame in which the trajectory data x(t) are given, then

ᾱ
tN
t0

(x0, v0) :=
1

tN − t0

∫ tN

t0

|ėv(t)| dt (20)

approximates the average of |ε̇v|.

To see the physical meaning of ᾱ
tN
t0

(x0, v0) more specifically, we
set t0 = t and tN = t + δ in formula (9) to obtain

cos
(

αt+δ
t δ

)

= 〈ev(t), ev(t + δ)〉 (21)

for the angle αt+δ
t δ between ev(t) and ev(t + δ). Differentiating (21)

with respect to δ leads to the expression

−
∣

∣αt+δ
t

∣

∣

2
δ + O(δ2) = 〈ev(t), ėv(t + δ)〉,

where we have assumed that limδ→0

∣

∣αt+δ
t

∣

∣ exists and is bounded.
Dividing both sides by (−δ) and taking the δ → 0 limit gives

∣

∣αt
t

∣

∣

2 = lim
δ→0

[− 〈ev(t), ëv(t + δ)〉] = |ėv(t)|2, (22)

where the last equality follows from differentiating the identity
〈e(t), e(t)〉 ≡ 1 twice with respect to t. Formula (22) shows that
limδ→0

∣

∣αt+δ
t

∣

∣ indeed exists and is bounded, as assumed. Using this
formula in (20) then gives

ᾱ
tN
t0

(x0, v0) =
1

tN − t0

∫ tN

t0

∣

∣αt
t

∣

∣ dt, (23)

showing that ᾱ
tN
t0

(x0, v0) is the time-average of
∣

∣αt
t

∣

∣. If only dis-

cretized trajectory data {x(ti)}N
i=1 are available, then a discretized

approximation of (23) leads to the following result.
Theorem 2. Under assumptions (A1) and (A2), the trajectory

angular velocity, defined as

TRA
tN
t0

(x0) =
1

tN − t0

N−1
∑

i=0

cos−1 〈ẋ(ti), ẋ(ti+1)〉
|ẋ(ti)| |ẋ(ti+1)|

(24)

for all ẋ(ti) 6= 0, i = 0, . . . , N, is a quasi-objective measure of total
trajectory rotation.

Indeed, the ith term of the sum in (24) measures the angle
between the velocity vectors ẋ(ti) and ẋ(ti+1), returning always a pos-
itive value to account for the modulus sign in (23). As already noted,
the trajectory velocities ẋ(ti) can be computed from finite differenc-
ing or spline interpolation performed on the subsequent trajectory
positions x(ti).

We make the following remarks regarding Theorem 2:

1. For the objective autonomous vector fields mentioned in
Remark 3 after Theorem 1, the unit vector field ev(t) is already
objective and hence one does not need to use its modified ver-
sion, εv(t). As a consequence, assumption (A2) is no longer

necessary for such vector fields and TRA is objective without
further assumptions (see Ref. 26 for examples of such vector
fields). For any v(x), the net rotation speed α

tN
t0

defined in (9)
is also an objective vector field and can be approximated from
trajectories as

TRA
tN
t0

(x0) =
1

tN − t0

cos−1 〈ẋ(t0), ẋ(tN)〉
|ẋ(t0)| |ẋ(tN)|

(25)

in both two and three dimensions (see Sec. V C for an applica-
tion).

2. Assumption (A2) will automatically hold for any trajectory with
nonzero acceleration if ω̄(t) ≈ 0. The mean vorticity ω̄(t) has
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been found to vanish, up to a very good approximation, in large
enough ocean regions.1,7,23

3. By their construction, the TRA and TRA fields are expected to
reproduce features of the PRA field but without the computa-
tional challenges of the PRA field. Indeed, unlike the PRA, the

TRA and TRA can be computed even for a single trajectory.

4. For N = 1, closed level curves of the TRA yield single-
trajectory-based approximation for elliptic OECS,45 the instan-
taneous limits of elliptic LCSs.

In order to verify assumption (A2), one can compute ẍ(t) by finite
differencing as we already noted in Sec. III A. In addition, one needs
an estimate for the averaged vorticity ω̄(t), which may either be
generally known for the underlying velocity field or needs to be
estimated from the available trajectory data (see, e.g., Ref. 41).

IV. QUASI-OBJECTIVE COHERENCE MEASURES FOR

UNSTEADY FLOWS

We now extend the results of Sec. III to unsteady flows. The
idea is to consider trajectory motion in the extended phase space
of positions and times, in which trajectories are always governed
by a steady velocity field. Each trajectory is a material curve in the
extended phase space. One may, therefore, track the relative stretch-
ing and rotation of the tangent vectors of such curves using the
measures we introduced in Sec. III for steady flows. Apart from
the work of Ref. 5 on an extension of the Q-criterion, coherent
structures have apparently not been studied in the extended phase
space.

The quantities x, t, and v generally have physical units, but
our upcoming discussion requires non-dimensionalized variables.
To this end, we select a dimensional characteristic length L > 0 and
a dimensional characteristic time T > 0 for the flow defined by (1)
and introduce the new quantities

y :=
x

L
, τ := τ0 +

t − t0

T
, v0 :=

L

T
,

u(y, τ) := v
(

Ly, t0 + T (τ − τ0)
)

,

(26)

where y is a non-dimensional position variable, τ is a non-
dimensional time, v0 is a characteristic (dimensional) velocity for the
velocity field v(x, t), and u(y, τ) is the non-dimensionalized veloc-
ity field. If the variables in (1) were non-dimensional to begin with,
then one can simply set L = T = v0 = 1, τ = t, y = x, and u ≡ v in
all our formulas below.

The non-dimensionalized trajectories satisfy the differential
equation

y′ = u(y, τ), (27)

with y ∈ V ⊂ R
n and τ ∈ [τ0, τN]. We introduce the extended phase

space

V =
{

Y =
(

y
z

)

: y ∈ V, z ∈ R

}

,

in which (1) becomes an autonomous dynamical system of the form

Y′ = U(Y), U(Y) :=
(

u(y, z)
1

)

, Y ∈ V . (28)

Note that without non-dimensionalization, different components of
the extended quantities Y and U would have different physical units.

The autonomous dynamical system (28) is of the general form
(1) with n = 3 (planar flows) or n = 4 (three-dimensional flows).
An extended material curve in this system is of the form

0(τ ; s) =
(

γ (τ ; s)
γz(s)

)

=
(

Fτ
τ0

(γ (τ0; s))

s

)

. (29)

The initial tangent vector 40 = ∂s0(τ0; s) to this material curve
evolves under the extended equation of variations

4′ = ∂YU(Y(τ ))4. (30)

The relationship between the extended material tangent vector 4(τ )

and the tangent vector ξ(t) of a material curve γ (t; s) advected by the
original velocity field v(x, t) is

4(τ ) =
(

T
L
ξ(t)
1

)

=
1

v0

(

ξ(t)
v0

)

, (31)

with v0 denoting the characteristic velocity introduced in the non-
dimensionalization (26).

We can apply the general Lagrangian stretching and rotation
measures introduced in Sec. II to track the stretching and rotation
of 4(τ ). As we have seen, these measures, λτN

τ0
(Y0, 40), λ̄

τN
τ0

(Y0, 40),
and ᾱτN

τ0
(Y0, 40), will remain invariant under all time-dependent,

formally extended Euclidean transformations

Y = Q(τ )Ỹ + B(τ ), Q(τ ) = Q
−T(τ ) ∈ SO(n + 1) (32)

of the extended phase space. In particular, the extended stretch-
ing and rotation measures for 4(τ ) remain invariant under the
physically relevant subset of the transformations (32),

Q(τ ) =
(

Q(τ ) 0
0T 1

)

, B(τ ) =
(

b(τ )

0

)

,

which represent physical observer changes for the non-dimension-
alized system (27).

Assumption (A1) is always satisfied for the autonomous
extended velocity field (28). To evaluate assumption (A2), we denote
the normalized extended velocity vector and the extended averaged
spin tensor, respectively, by

EU :=
U

|U| , W :=
(

Wu 0
0T 0

)

= −W
T
,

Wu =
1

2

[

∂yu −
(

∂yu
)T

]

with bar denoting spatial averaging over the domain V. In terms
of these quantities, assumption (A2) applied to the extended sys-

tem takes the form
∣

∣WEU

∣

∣ �
∣

∣E′
U

∣

∣, or, equivalently,
∣

∣W̄ev

∣

∣ � |ėv|,
which is just the original form of assumption (A2) in dimen-
sional coordinates. Theorems 1 and 2 then become applicable in the
present setting, without the requirement (A1), but have to be stated
for the extended Lagrangian velocity

Y′(τi) =
(

T
L
v(x(ti), ti)

1

)

=
(

1
v0

v(x(ti), ti)

1

)

.

Substituting these fields into formulas (19) and (24), we can summa-
rize the main results for unsteady flows as follows.
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Theorem 3. (i) The extended trajectory stretching exponents
(TSEs), defined as

TSE
tN
t0

(x0; v0) =
1

tN − t0

log

√

|ẋ(tN)|2 + v2
0

|ẋ(t0)|2 + v2
0

,

TSE
tN
t0

(x0; v0) =
1

tN − t0

N−1
∑

i=0

∣

∣

∣

∣

∣

∣

log

√

|ẋ(ti+1)|2 + v2
0

|ẋ(ti)|2 + v2
0

∣

∣

∣

∣

∣

∣

,

(33)

are objective measures of trajectory stretching and hyperbolicity
strength in the extended phase space. (ii) Under assumption (A2), the

extended trajectory angular velocity (TRA), defined as

TRA
tN
t0

(x0; v0) =
1

tN − t0

N−1
∑

i=0

cos−1 〈ẋ(ti), ẋ(ti+1)〉 + v2
0

√

|ẋ(ti)|2 + v2
0

√

|ẋ(ti+1)|2 + v2
0

,

(34)
is a quasi-objective measure of total trajectory rotation in the
extended phase space.

The TSE, TSE, and TRA defined in Theorem 3 differ from
their counterparts defined in Theorems 1 and 2. This difference only
arises because the same underlying stretching and rotation metrics
are evaluated on the velocity field v in Theorems 1 and 2, whereas
they are evaluated on the extended velocity field (v, 1) in Theorem
3. Setting the characteristic velocity v0 to zero in the formulas of
Theorem 3, one recovers the formulas of Theorems 1 and 2, which,
however, are only valid under assumption (A1).

We stress that the TSE measures defined in Theorem 3 are
objective without any particular assumption but in the extended
phase space. This means that they always approximate an objec-
tive measure of material stretching for the material curve defined
by the extended trajectory (x(t), t). The TSE measures, however,
are not objective in the original phase space of the x variable, and
they are only quasi-objective in that phase space under assumption

(A1), as we discussed in Theorem 1. In contrast, the extended TRA
measure defined in Theorem 3 is quasi-objective in the extended
phase under assumption (A2) and quasi-objective in the origi-
nal phase space under assumptions (A1)–(A2), as we discussed in
Theorem 2.

V. EXAMPLES

A. Two-dimensional, unsteady ocean surface velocity

(AVISO) data set

We first evaluate the proposed quasi-objective, single-particle
LCS diagnostics in a two-dimensional, satellite-altimetry-derived
ocean-surface current product (AVISO)16 that has been the focus of
several coherent structure studies (see, e.g., Refs. 2, 6, 18, and 25).
The geostrophic component v = (v1, v2) of ocean currents is calcu-
lated from the sea-surface height anomaly via the formulas

fv2 =
1

ρ

∂p

∂x
, fv1 = −

1

ρ

∂p

∂y
,

1

ρ

∂p

∂z
= −g, (35)

where ρ is the density of water, p is the pressure as calculated from
the sea-surface height, g is the constant of gravity, and f is the Cori-
olis parameter. A global daily-gridded version of this data is freely

available from the Copernicus Marine Environment Monitoring
Service.

We first verify the minimal differences between the objec-
tive continuous and the quasi-objective discrete formulations of the
stretching and rotation metrics developed in Sec. IV. Our analysis
focuses on the Agulhas leakage region

U =
{

(x, y) ∈ [−2.5◦, 5◦] × [−40◦, −30◦]
}

, (36)

where strong hyperbolic and elliptic coherent structures have been
previously identified. Our default rectangular initial grid for gen-
erating trajectories in U will contain 250 × 250 points. Using an
integration time of 25 days, we find the characteristic velocity of U,

v0 =
1

NM

M
∑

j=1

N−1
∑

i=0

∣

∣v(xj, ti)
∣

∣ = 0.2 m s−1, (37)

where j is an index over all initial positions x0 ∈ U.
As already noted in Remark 4 after Theorem 2, condition

(A2) is expected to hold for surface currents on large enough
ocean domains. We nevertheless verify (A2) on trajectory data gen-
erated by the AVISO velocity field. Along individual trajectories
originating in U, we compute the ratio

δA2(x0, t0, tN) =

∫ t1
t0

∣

∣

∣

1
2
ω̄(t) × v(t)

|v(t)|

∣

∣

∣
dt

∫ t1
t0

∣

∣

∣

d
dt

v(t)
|v(t)|

∣

∣

∣
dt

, (38)

which reflects the trajectory-averages of the quantities featured
in assumption (A2). If δA2 � 1 holds, then (A2) is satisfied on
average along the trajectory data serving as a basis of our analy-
sis. We find that on the domain U defined in (36), δA2(x0, 0, 25)
< 0.01 for 98.9% of all initial positions and δA2(x0, 0, 25) < 0.1
for all fluid particles. In comparison, on the smaller subdomain
U′ = [2◦, 4◦] × [−33◦, −31◦], highlighted as an inset in Fig. 2, the
relation δA2(x0, 0, 25) < 0.1 holds for only 55% of the initial posi-
tions and δA2(x0, 0, 25) < 0.01 holds for only 0.3% of them. This is
because this domain contains only a single coherent structure with
substantial average vorticity that does not represent the near-zero
average vorticity of the background flow surrounding the coherent
structures.

Ridges of the forward-time FTLE provide an effective diagnos-
tic for identifying repelling LCSs,27 but their computation relies on
spatial differentiation of the flow map over a regular grid, which can-
not be carried out from randomly placed single trajectories. For a
fair comparison, we will restrict our calculations of the FTLE to the
same grid resolution as our underlying flow; i.e., we do not inter-
polate to a refined grid for spatial differentiation. Another objective
LCS diagnostic we will consider in our comparison is the single point
(squared) relative dispersion20

d2(xi0, t0, t) =
|xi(t) − x−i(t)|2

|xi0 − x−i0|2
, (39)

where xi and x−i are trajectory pairs with initial conditions xi0 and
x−i0 that are initially close at time t0 (e.g., |xi0 − x−i0| = r0 � 1).
While dividing by the initial distance makes no difference for a uni-
form grid of initial conditions, we still include this normalization
to allow for small deviations in r0 under a random subsampling
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FIG. 1. Stretching metric comparisons for AVISO ocean surface current fields. The top row shows computations at full resolution with the lower rows having progressively
reduced resolution by randomly subsampling with fewer trajectories.

of the initial conditions that mimics real-life sparse trajectory data.
We note that the temporal behavior of ensemble averages of relative
dispersion is a commonly studied statistic in oceanography.30

To highlight the significant advantages of TSE and TRA (as
defined in Theorem 3) on sparse and non-uniform data, we perform
a progressive random subsampling of the grid of initial positions to
degrade the resolution of trajectories in a manner typical of what is
found in experimental data. Computations of d2 can accommodate
this subsampling if we choose an r0 value for which every initial posi-
tion xi0 has a suitable match x−i0. The FTLE, however, practically

requires a regular grid of initial conditions for the spatial differen-
tiation of the flow map. To this end, we mimic the standard FTLE
computation over an irregular grid by creating a C1-interpolant of
final positions and then computing the deformation gradient from
those interpolations. Alternative methods for unstructured meshes
have been suggested for FTLE but are not the focus of this study
(see, e.g., Ref. 31).

The first row of Fig. 1 shows the full-resolution computation of

TSE25
0 (x0; 0.2), d2(xi0, 0, 25), and FTLE25

0 (x0), with an inset zoom of a
front that separates two recirculation regions in the flow. Successive
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FIG. 2. Rotation metric comparisons for AVISO ocean surface current fields. The top row shows computations at full resolution with the lower rows having progressively

reduced resolution by randomly subsampling with fewer trajectories. We display
√
d2 here for clarity.

rows gradually degrade from 10% to 0.1% of the full resolution.
In these rows, we replace the stretching diagnostic TSE25

0 (x0; 0.2)

with the hyperbolicity strength diagnostic TSE
25

0 (x0; 0.2), which is
a more robust single-trajectory indicator for sparse data. The high-
lighted repelling LCS is evident in the top row as a ridge in all three
diagnostics. The quality of FTLE quickly degrades as interpolations
between final positions of particles oversimplify the flow dynamics.
The FTLE ridge of interest is still evident at the 10% subsam-
pling, but it disappears below that resolution along with many other
previously distinguishable features. The relative dispersion d2 does
a good job of approximating FTLE ridges at full resolution and

provides a hint at some circulation patterns at lower resolutions but
displays no clear separating feature reminiscent of a ridge at any
degree of subsampling.

As TSE values at a given location do not rely on any nearby
neighbors, their pointwise values remain unchanged and their fea-
tures are more resilient under subsampling in comparison with
those of multi-trajectory objective LCS metrics. Boundaries of multi-
ple vortical features in the flow, such as those shown in the inset, can
be tracked through multiple reductions in resolution as transitions
between blue elliptic features and the surrounding green turbulent
regions. In fact, at 0.1% of the full resolution, there is still evidence
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FIG. 3. Comparison of TRA
25

0 (x0; 0.2) with the MEEX
25
0 (x0) diagnostic fields proposed in Ref. 37, calculated in the zonal and meridional directions for the Agulhas leakage.

Blue boxes indicate the location of frontal features from Fig. 1, and red boxes highlight the vortex from Fig. 2.

of several of the original major Lagrangian eddies in blue, as well as
the front in our inset.

Next, we evaluate the ability of the TRA, as defined in
Theorem 3, to identify vortical features. We apply the same method

of random subsampling to compare TRA
25

0 to the polar rota-
tion angle, PRA25

0 , whose features (i.e., level curves) are objective
in two dimensions.12 In order to compute the flow map for the
purposes of calculating PRA from sparse data, we employ the
same C1 interpolant on final trajectory positions that we used
for computing FTLE25

0 . No objective, sparse-data rotation-specific

metric is available, which prompts us to use d2 instead in our
comparison of rotation metrics. We do expect d2 to highlight

elliptic LCSs as coherent Lagrangian vortices, as observed first by
Ref. 40.

Figure 2 focuses on the same time period and the Agulhas
region as Fig. 1. The inset in each plot is a zoom on a region
with a vortex previously identified by exact mathematical meth-
ods as a black-hole-type elliptic LCS (see, e.g., Ref. 24). In the first

row of plots, at full resolution, all three metrics [TRA
25

0 (x0; 0.2),
d2(xi0, 0, 25) and PRA25

0 (x0)] highlight this vortex, as well as sev-
eral other elliptic LCSs in the flow. The degree of detail provided by
the objective, multi-trajectory diagnostic, PRA, is not matched by

the trajectory rotation metric TRA
25

0 , which nevertheless correctly
highlights the vortex.
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FIG. 4. Elliptic and hyperbolic LCSs in the unsteady ABC flow (41). The plots compare quasi-objective, single-trajectory metrics [TSE
50
0 (x0; 1) and TRA

50

0 (x0; 1)] with objective

LCS metrics [FTLE50
0 (x0) and LAVD

50
0 (x0)] that require multiple neighboring trajectories or detailed knowledge of the velocity field.

The insensitivity of TRA
25

0 (x0; 0.2) to small details becomes
an advantage at lower resolutions, as shown by subsequent rows

of Fig. 2. Indeed, TRA
25

0 (x0; 0.2) retains much of its structure with
progressive random subsamplings. As a result, it is still possible to
recognize three of its maxima on the right-hand-side, correspond-
ing to multiple vortices, even at the lowest resolution. Some strong
rotational features can be tracked below 10% resolution in the PRA
fields, but the elliptic LCS quickly becomes indistinguishable. Sim-

ilarly, distinguishing coherent structures in the
√

d2 plots becomes
unfeasible quickly under progressive subsampling.

For a comparison with a non-objective diagnostic suggested for
sparse geophysical data, we consider the mean of extrema extents
(MEEX) diagnostic proposed by Ref. 37. As we noted in Sec. I,

this diagnostic has no known relation to material stretching or
rotation, but its evaluation is compellingly simple. Indeed, for a par-

ticle trajectory initiated at x0 ∈ U, the MEEX
tf
t0
(x0) field is simply

defined as

MEEX
tN
t0

(x0) =
mint∈[t0 ,tN] φ(x(t)) + maxt∈[t0 ,tN] φ(x(t))

2
, (40)

where [t0, tN] is the observation interval and φ(x) is a scalar-valued
observable. The fluid particle zonal (longitudinal) or meridional
(latitudinal) extent (measured in km) was suggested in Ref. 37 as
a suitable φ for sparse ocean drifter data.

The left column of Fig. 3 shows TRA
25

0 (x0; 0.2) calculated over
the same spatial-temporal domain as Fig. 2, with the same degrees
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FIG. 5. Elliptic and hyperbolic LCS in the randomly subsampled unsteady ABC flow (41). The plots compare quasi-objective single-trajectory metrics [TSE
50

0 (x0; 1) and

TRA
50

0 (x0; 1)] with LCS metrics [FTLE50
0 (x0) and PRA50

0 (x0)], whose computation requires multiple neighboring trajectories. The initial condition grid for trajectories is
randomized, and its density is gradually decreased to 0.1% of its initial value.

of data degradation. The middle column shows MEEX25
0 (x0) with φ

equal to the zonal distance of fluid particles from the prime merid-
ian, and the right column shows MEEX25

0 (x0) with φ equal to the
meridional distance from the −35◦ line of latitude. As expected from
Ref. 37, the middle column corresponds with the best performing
version of MEEX for full-resolution current data in the Agulhas
region. The blue boxes in each subplot correspond with the front
highlighted in the previous TSE comparison (Fig. 1), and the red
boxes correspond with the vortex in Fig. 2.

Overall, the MEEX diagnostics show correlations with the
Lagrangian features revealed by objective diagnostics in Fig. 2 and
confirmed by particle advection in various earlier studies of the
same data set.2,6,18,25 This is to be expected, as any generic observable
evaluated on trajectory positions will be influenced by LCSs, as
demonstrated by Ref. 19 on several examples. The details of the
MEEX patterns and their closeness to LCSs, however, depend on the
choice of φ(x).

Under subsampling of the data, the hyperbolic and elliptic

structures persist in the TRA
25

0 (x0; 0.2) field, and several patterns

in MEEX25
0 (x0) are also resilient. However, while patterns suggest-

ing elliptic LCSs are initially visible in the full-resolution zonal and
meridional MEEX25

0 fields, they tend to disappear in the degraded
data. The mixing behavior across the front in the blue box is also dif-
ficult to interpret in the MEEX25

0 fields, with no indication of a major
transport barrier at or below 1%. Combining interpretations of the
two MEEX25

0 fields presents a further challenge due to the seemingly
contradictory patterns that arise from the different choices of spatial
directions for the observable φ(x).

B. Unsteady ABC flow

As a second example, we consider the three-dimensional
velocity field

v(x, t) = e−νt





A sin x3 + C cos x2

B sin x1 + A cos x3

C sin x2 + B cos x1



 , (41)

a viscous, unsteady version of the steady ABC flow,9 defined on the
triply periodic spatial domain U = [0, 2π]3. As in Ref. 12, we use
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FIG. 6. Elliptic and hyperbolic barriers of instantaneous linear-momentum transport in the unsteady ABC flow (41). The plots compare the objective single-trajectory metrics

[TSE
50

0 (x0) and TRA
50

0 (x0); see Remarks 3 and 1, after Theorems 1 and 2, respectively] with the objective LCS metrics FTLE50
0 (x0) and PRA

50
0 (x0), whose computation

requires multiple neighboring trajectories or detailed knowledge of the velocity field.
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FIG. 7. Same as Fig. 6 but under subsampling of the unsteady ABC flow (41). The initial conditions are random subsamplings of the full resolution grid, and their density is
gradually decreased to 0.1% of its initial value.

the parameter values A = 1, B =
√

2/3, C =
√

1/3, with the added
viscosity value ν = 0.01.

The unsteadiness of the flow necessitates the use of Theorem 3.
By the triple periodicity of v(x, t) on U, we also have ω̄(t) ≡ 0 and
hence condition (A2) is also satisfied on U. We conclude that both
TSE metrics are objective in the extended phase space, and the

TRA(x0; v0) metric is quasi-objective in the extended phase space
in the frame of (41). As the ABC flow is a dimensionless set of
equations, we use v0 = 1.

In Fig. 4, we show plots of the TSE50
0 (x0; 1), TSE

50

0 (x0; 1), and

TRA50
0 (x0; 1) metrics computed from Theorem 3 over trajectories

launched from an initial grid of 200 × 200 × 200 points, integrated
from time t0 = 0 to tN = 50. Values of the FTLE and LAVD are also
included for comparison. (We did not compute PRA for this exam-
ple as level sets of the PRA are not objective in three dimensions.)
We conclude that the quasi-objective, single-trajectory diagnostics

(TSE50
0 , TSE

50

0 , TRA50
0 ) perform just as well as the multi-trajectory,

objective metric, the FTLE50
0 , and the single-trajectory, objective, but

velocity-field-reliant metric, the LAVD50
0 .

To evaluate the performance of the quasi-objective metrics
under a random degradation of the initial grid, we employ the same
random subsampling method as in Sec. V A. Even though level sets
of the PRA are not objective in three-dimensions, we include PRA
here in our comparison. This is because there is no systematic or
widely accepted procedure for accurately approximating vorticity
from sparse Lagrangian trajectories for LAVD calculations.

Figure 5 shows that TSE
50

0 and TRA
50

0 continue to provide

information on dominant flow features even as trajectory data
become substantially sparse. Specifically, as we keep the bounds on
the colormaps constant, the separation between rotational regions

remains clear from TSE
50

0 and TRA
50

0 when compared with FTLE50
0

and PRA50
0 , down to a random selection of trajectories consisting

of 0.1% of the original computation grid. We conclude that even in
three-dimensional unsteady flows, it is possible to observe a con-
sistent range of stretching and rotation rates with single-trajectory,
quasi-objective metrics from very sparse and randomly positioned
data. Furthermore, interpolating between randomly oriented TSE
and TRA metrics provides a diagnostic that highlights time-varying
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coherent structures to an extent that is unreachable by prior LCS
methods.

C. Momentum barriers in the unsteady ABC flow

As our third example, we consider the linear-momentum
barrier field equations, as defined in Ref. 26, for the unsteady ABC
flow (41). As shown in Ref. 26, at a time t, the instantaneous barriers
to momentum transport are invariant manifolds of the autonomous
dynamical system

x
′ = w(x; t) = νρ1v(x, t), (42)

with prime denoting differentiation with respect to a fictitious time
(barrier time) parameterizing the curves forming the barrier surface.
At time t = 0, Eq. (42) simplifies to x

′ = −νρv(x, 0) in the case of
the unsteady ABC flow defined in (41). This autonomous dynamical
system provides a steady flow field on which we can compute coher-
ent structure diagnostics to highlight instantaneous barriers to the
transport of momentum in the underlying fluid flow. This allows
us to compare the steady versions of the (now objective) single-

trajectory metrics TSE
50

0 (x0), TSE50
0 (x0), and TRA

50

0 (x0), as defined
in Theorems 1 and 2, with the objective LCS metrics FTLE50

0 (x0)

and LAVD50
0 (x0). As these active barrier vector fields are objective,26

we can now also include a comparison with objective TRA50
0 (x0),

as defined in (25) [see Remarks 3 and 1 after Theorems 1 and 2,
respectively, on the objectivity of these metrics for w(x; t)]. In our
comparison, we will use the same parameters as in Sec. V B for the
flow (41).

Figure 6 shows the ability of the single-trajectory metrics to
accurately represent the elliptic and hyperbolic structures in the
active barrier vector field (42) for trajectories with initial positions
on the same rectangular grid in the domain U as in Sec. V B. When
compared with FTLE50

0 , we find that the steady version of TSE50
0

provides a great degree of detail, highlighting hyperbolic regions
of the flow as before. In addition, TRA50

0 is able to provide a com-
parable amount of detail for elliptic features. As we degrade the
resolution with the same random subsampling of initial positions,

Fig. 7 shows that TSE
50

0 and TRA
50

0 are again robust and able to high-
light hyperbolic and elliptic transport barriers down to 0.1% of the
original resolution. Calculations of FTLE50

0 and PRA50
0 from sparse

trajectory data on the steady barrier field perform comparably to the
unsteady flow example, showing a quick deterioration in quality and
interpretability.

VI. CONCLUSIONS

Coherent structures, such as fronts, jets, and vortices, are best
viewed as material objects. Indeed, these structures are most reli-
ably identified in experiments and observations from their signa-
tures in material tracer fields. By definition, such material coherent
structures are indifferent to the observer and hence can only be self-
consistently identified from objective quantities. In contrast, flows
of practical relevance are mostly known from trajectory data, which
is inherently non-objective. Specifically, all features of trajectories
(including their length, curvature, velocity, and acceleration) are
dependent on the observer. The question, therefore, naturally arises:

How can one still use trajectory data to extract reliable information
from material coherent structures in a flow?

We have addressed this question here by introducing the
notion of quasi-objectivity. We call a scalar-, vector-, or tensor-field
quasi-objective under a condition if the field approximates another,
objective field in all frames in which that condition is satisfied. We
have derived quasi-objective measures of trajectory stretching (TSE

and TSE) that approximate objective material stretching exponents
in frames where the flow is steady, i.e., satisfies condition (A1).
We have also derived quasi-objective measures of trajectory rota-

tion (TRA and TRA) that approximate objective material rotation
under conditions (A1) and (A2). The latter condition requires tra-
jectory accelerations to dominate the angular acceleration induced
by the spatial mean vorticity. Viewing general unsteady flows as
steady flows in their extended phase space (space-time), we have also
obtained objective TSE metrics and quasi-objective TRA metrics
under assumption (A2) in the extended phase space. These extended
metrics track the stretching and rotation of tangent vectors to fluid
trajectories in space-time.

We have tested these quasi-objective diagnostics on two-
dimensional mesoscale ocean surface velocity data (AVISO)
obtained from satellite altimetry. Condition (A2) is clearly satisfied
in regions large enough to contain several mesoscale eddies. Accord-
ingly, we have found the quasi-objective metrics to perform very
well. As a further test case, we have considered an unsteady version
of the classic ABC flow,26 which is an exact solution of the three-
dimensional unsteady Navier–Stokes equation. This flow satisfies
condition (A2) in its triply periodic domain of definition. We have
also considered the steady version, which satisfies assumption (A1).

On trajectories generated by these example velocity fields from
sufficiently dense grids, the trajectory stretching exponent (TSE)
faithfully reproduced features of the FTLE field. This is notable
because TSE is a single-trajectory-based diagnostic whose pointwise
value is independent from the number and location of other trajec-
tories in the data set. For sparse and irregularly spaced trajectory

data, the trajectory hyperbolicity strength (TSE) returned distinct
indications of coherent structures even when FTLE and relative dis-
persion computations gave no meaningful results. Similarly, we have
found that on well-resolved trajectory data from objective vector
fields, the trajectory rotation angle (TRA) accurately reproduced
details of the PRA field, even though TRA is a single-trajectory-
based diagnostic. For sparse and irregularly spaced trajectory data,

the cancelation-free total rotation angle (TRA) gave a clear indica-
tion of coherent structures even when PRA computations were no
longer feasible. All of these suggest great potential for TSE and TRA
in visualizing coherent structures in 3D particle tracking velocime-
try experiments, in which tracer concentrations are generally low
(see, e.g., Refs. 28 and 42). In contrast, TSE and (for objective vec-
tor fields, such as the barrier equations in Ref. 26) the TRA are
useful in reducing computational costs relative to multi-trajectory
LCS diagnostics when trajectories from a well-resolved initial grid
are available.

Further applications of the quasi-objective diagnostic involve
the detection of barriers to the transport of dynamically active
vector fields, such as the momentum and the vorticity.26 These barri-
ers are invariant manifolds of appropriate steady, volume-preserving,
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and objective vector fields, the barrier vector fields. The computa-
tion of these barrier vector fields requires two spatial differentia-
tions of the underlying velocity field, and hence, their analysis via
FTLE and PRA is numerically challenging given that the latter two
methods involve further differentiation. In this setting, condition
(A1) is always satisfied, and (A2) can be waived without any loss
of generality, as we have pointed out. Consequently, the use of TSE
and TRA promises to bring a major improvement in computational
efficiency for the detection of active transport barriers in
three-dimensional unsteady flows.
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