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ABSTRACT

Recent studies have shown that aerial disturbances affecting landing aircraft have a coherent signature in

the Lagrangian aerial particle dynamics inferred from ground-based lidar scans. Specifically, attracting La-

grangian coherent structures (LCSs) mark the intersection of localized material upwelling within the cone of

the lidar scan. This study tests the detection power of LCSs on historical landing data and corresponding pilot

reports of disturbances fromHongKong International Airport. The results show that a specific LCS indicator,

the gradient of the finite-time Lyapunov exponent (FTLE) field along the landing path, is a highly efficient

marker of turbulent upwellings. In particular, in the spring season, projected FTLEgradients closely approach

the efficiency of thewind shear alert system currently in operation at the airport, even though the latter system

relies on multiple sources of data beyond those used in this study. This shows significant potential for the

operational use of FTLE gradients in the real-time detection of aerial disturbances over airports.

1. Introduction

The short-term prediction of disturbances encoun-

tered by aircraft in the last minutes of landing provides

safer and more comfortable flight for passengers. Here

we evaluate the performance of a recently proposed

Lagrangian (i.e., particle based) algorithm for the de-

tection of such disturbances using historical landing data

and pilot reports fromHong Kong International Airport.

Topography-induced wind shear accounts for about

70% of reported disturbances on landing aircraft at Hong

Kong InternationalAirport (HKIA) (ShunandChan2008).

While radars detect wind shear due to thunderstorms, they

may miss high levels of wind shear in nonrainy weather.

Such clear-air turbulence, by contrast, is well captured by

Doppler lidars currently in operation at HKIA (Shun and

Lau 2002; Chan et al. 2006; Shun and Chan 2008).

Lidars measure air velocity from reflections of a laser

beam on aerosols using the Doppler effect. Although

individual lidar returns only provide line-of-sight ve-

locity components, variational schemes are available to

reconstruct full two-dimensional velocity components in

the conical surface spanned by the rotating lidar beam

(Chan and Shao 2007). This velocity field is updated

every 2min, providing a time-resolved input for auto-

mated algorithms that seek to detect aerial turbulence.

One such algorithm locates critical values of the ve-

locity fluctuation, defined as the difference of the mea-

sured air velocity from an averaged background velocity

(Chan et al. 2006;Chan andLee 2012).Another approach

is based on eddy dissipation rate, an internationally

adopted metric for turbulence intensity (Chan 2010).

Finally, the autocorrelation of scanned velocity in dif-

ferent sectors has also been employed in wind shear de-

tection (Chan and Lee 2012).

These wind shear detection methods are fundamen-

tally Eulerian, inferring flow features from instanta-

neous air velocity. As such, they are sensitive to transient

errors in velocity measurement and reconstruction. To
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de-emphasize such errors and anomalies, one may in-

stead look for the signatures of sustained wind shear in

the two-dimensional virtual particle dynamics generated

by the reconstructed velocity field on the cone of the

lidar scan. This Lagrangian averaging approach has

been developed in a series of papers by Tang et al. (Tang

et al. 2010, 2011a,b), serving as a basis for the present

study.

Tang et al. located attracting Lagrangian coherent

structures (LCSs)—that is, locally most attracting ma-

terial lines—in the Lagrangian flow over the lidar cone.

They obtained LCSs as select ridges of the backward-

time finite-time Lyapunov exponent (FTLE) field,

which characterizes the rate of convergence of virtual air

particles. These results confirm the ability of backward-

time FTLE ridges to pinpoint the location of intense

three-dimensional material updrafts between rolling

vortices from two-dimensional lidar scans (Tang et al.

2011a). The extracted attracting LCSs were insensitive

to instantaneous velocity fluctuations, and correlated

well with wind shear jumps measured on landing fixed-

wing research aircraft.

Here we present a more systematic study to assess the

power of LCS analysis in real-time wind shear detection

for commercial aircraft. We analyze roughly 11 months

of continuous velocity data from long-range lidars based

at HKIA as well as actual pilot reports of wind shear

from commercial aircraft during the same period. Using

receiver operating characteristic (ROC) graphs, we as-

sess various metrics for the aviation hazard posed by

a given LCS. Out of this comparison, the gradient of the

FTLE field projected along the runway emerges as

a reliable wind shear detection tool, with high hit rates

and relatively low alert durations.

For the spring-season part of the available dataset, our

FTLE-based wind shear detection scheme is found to

compare very favorably with the algorithm currently in

operation at HKIA, even though the latter also uses

additional information from dedicated short-range

glide-path scans and radars. Our method shows consis-

tent but more modest performance for the remaining

two seasons. In these seasons, the current operational

algorithm prevails because of its additional sources of

input, which continue to provide reliable velocity scans

in the presence of rain as well.

The organization of this paper is as follows. In section 2,

we review the topography of HKIA, its lidar installation,

and the dataset used in our study. Section 3 summarizes

themain elements of LCS theory and FTLE analysis, and

outlines the Lagrangian metrics we test for quantifying

the aviation hazard of a given FTLE ridge. In section 4,

we employ ROC graphs to evaluate these metrics, and

compare them with the wind shear detection scheme

currently in use at HKIA. We present a summary and

outlook in section 5.

2. Data used in this study

a. Topography of Hong Kong International Airport

Shown in Fig. 1, HKIA is built on Chek LapKok Island,

surrounded by ocean on three sides and by Lantau Island

to the south. This island has a mountainous terrain, with

peaks of 1000m above sea level. Prevailing easterly winds

tend to generate rolling vortices off the peaks, creating

major aerial disturbances in the form of updrafts, down-

drafts, and close-to-ground planar shear. Indeed, pilot re-

ports recorded at HKIA show that one in about 500 flights

experiences significant wind shear (Shun and Chan 2008).

Figure 1 also indicates the location ofHKIA’s northern

runway (25RA) and those of two long-range lidars. A

second runway in the southern part of the island is not

considered in this study.

b. Lidar scans, reconstructed velocity,
and pilot reports

The two long-range lidars at HKIA have been in

round-the-clock operation since 2002, providing three

types of scans: plan position indicator (PPI) scans, glide-

path scans, and vertical scans (Shun and Lau 2002). In

a PPI scan, the elevation angle is fixed while the lidar

beam performs a full 3608 rotation, providing updated

velocities every 2min. To stay close to common flight

paths in the last minutes of landing, the scans use the

elevation angles 1.48 and 38.
Figure 2 shows the PPI scan geometry for the northern

lidar, whose scans are used in the present study. This

lidar operates at a wavelength of 2mm,with pulse energy

of about 2mJ. Its range resolution of 100m with 1024

range bins is appropriate for the detection of typical wind

shear features, reported to be between 400m and 4km in

length (Fujita 1978; Proctor et al. 2000; ICAO 2005).

Lidars provide line-of-sight (LOS) velocity compo-

nents along the rays in their conical span. To reconstruct

the two-dimensional projection of the full air velocity

field onto the cone of the scan, we use the variational

algorithm discussed in Chan and Shao (2007). Our study

period comprises historical velocity data from the year

2010 for the following three time intervals:

1) spring: 1 January–8 April,

2) summer: 1 May–31 August, and

3) fall: 1 September–29 November.

We also utilize reports of observed wind shear cases,

as recorded at HKIA during our study period. In aviation

meteorology, wind shear refers to a sustained change
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(one lasting more than a few seconds) in the headwind

or tailwind of the aircraft. Conventionally, a velocity

change of 15 kt (1 kt5 0.51m s21) or more is considered

significant wind shear. In our study period, the follow-

ing numbers of significant wind shear were reported

by pilots for runway 25RA: spring: 79 reports; summer:

90 reports; fall: 38 reports.

Since rain is known to negatively impact lidar per-

formance, the amount of continuously available velocity

data in a given season correlates with the amount of

clear days in that season. As a result, all three study

periods contain time periods (ranging from minutes to

a couple of days) with no reliable lidar scans because of

rain. Another cause for missing data was lidar compo-

nent malfunction. All in all, the highest-quality data

were available for the spring period, but we did carry out

our study for the summer and fall periods to uncover any

potential significant seasonal dependence in our analysis.

3. LCS analysis

a. Mathematical setup

Particles advected under a three-dimensional velocity

fieldV5 (u, y,w) satisfy the following equation ofmotion:

_X5V(X, t) , (1)

withX(t)2R
3 denoting particle positions at time t. Even

in steady flows, the Lagrangian structures organizing

the behavior of particles can have complex geometry,

leading to chaotic trajectories (Ottino 1997). Lagrangian

dynamics in time-periodic flows are equally or more

complicated, but they can at least be efficiently visual-

ized via the iteration of Poincare maps—that is, stro-

boscopic pictures of the trajectory evolution taken at

multiples of the time period. Both for steady flows and

Poincare maps, stable and unstable manifolds of fixed

points are known to be the organizing centers for evolv-

ing tracer patterns (Ottino 1997).

By contrast, visualizing the organizing centers of La-

grangian behavior in temporally aperiodic flow data is

a challenge. LCSs have been found to form such centers,

providing a generalization of stable and unstable mani-

folds for nonperiodic flows. Attracting LCSs are locally

the most attracting material surfaces in the flow, along

which tracer blobs elongate in forward time (Haller

2001). Similarly, repelling LCSs are locally most repelling

material surfaces, acting as dividing lines between regions

of different particle behavior.

FIG. 1. Topography of HKIA and its surroundings. Also shown are the lidar installations (blue dots) and the runway 25RA (red)

considered in this study. Axis unit are in meters; the origin is the midpoint between the two lidars.
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Mathematical theories and numerical methods for

detecting LCSs have been constantly improving (Peacock

and Dabiri 2010). The currently most advanced methods

take a variational approach, providing high detail but also

requiring high spatial resolution in the velocity data

(Haller 2011; Haller and Beron-Vera 2012). Here we

detect LCSs from FTLEs, which are well suited to handle

the relatively low spatial and temporal resolution of the

available lidar scans.

The conical scans are well approximated as planes due

to their low-elevation angles. In this approximation, we

replace the full 3D air velocity field V(X, t) with a two-

dimensional planar field:

_x5 u(x, t) , (2)

with u 5 (u, y), x 5 (x, y) The flow map Ft
t0
(x0)5

x(t; t0, x0) associated with (2) maps initial positions x0
at time t0 to the later positions x(t; t0, x0) at time t along

trajectories of (2). As such, Ft
t0
(x0) describes a projected

virtual flow, because real air particles do not remain

confined to the lidar cones. We use this virtual flow to

average out anomalies from the velocity field, and

locate the intersection of three-dimensional LCSs with

the lidar cones.

We start by computing the Cauchy–Green strain ten-

sor field:

Ct
t
0
5 [$Ft

t
0
]*$Ft

t
0
, (3)

with [�]* denoting matrix transposition. At each initial

position x0, the eigenvectors ji(x0) of the positive defi-

nite tensor Ct
t0
(x0) satisfy Ct

t0
ji 5 liji, with the strain

eigenvalues li(x0) ordered as l2 $ l1 . 0. The rate at

which trajectories of (2) diverge from each other is

measured by the FTLE field as shown:

Lt
t
0
(x0)5

1

jt2 t0j
logk$Ft

t
0
(x0)k5

1

2jt2 t0j
logl2(x0, t0, t) .

(4)

Recent results show (Haller 2011; Tang et al. 2011b;

Farazmand and Haller 2012) that ridges of the FTLE

field computed in backward time (i.e., for t , t0) mark

attracting LCSs if they are approximately normal to the

dominant strain eigenvector field j2(x0). Computations

FIG. 2. Geometry of scans by the northern lidar atHKIA,with elevation angles of 1.48 (green) and 38 (blue).All spatial dimensions are in

meters, with the origin of the coordinate system based at the midpoint between the two lidars. For better visibility, only parts of the full

conical scans are shown.
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in Tang et al. (2011b) confirmed that most LCSs relevant

in the detection of updrafts at HKIA tend to satisfy this

near-orthogonality condition. The low number of FTLE

ridges not satisfying the near-orthogonality condition

corresponds to horizontal shear, which may impose

a horizontal jolt on landing aircraft. Here we only focus

on identifying the FTLE ridges accurately and assessing

the level of aviation hazard they pose.

An alternative indicator for three-dimensional attract-

ing material structures is the Lagrangian divergence:

LDt
t
0
(x0)5

1

jt2 t0j
ðt
t
0

$ � u[x(s; t0, x0), s] ds , (5)

computed along trajectories of (2). As argued in Tang

et al. (2011a,b), large values of LDt
t0
(x0) necessarily

signal significant three-dimensional stretching or com-

pression, given that the full three-dimensional velocity

field (1) is practically incompressible. Accordingly, in

low-altitude scans, large negative values of LDt
t0
(x0)

indicate highly localized updrafts, with air particles be-

ing sucked into the updraft along horizontal directions.

Similarly, large positive values of LDt
t0
(x0) obtained

from low-angle lidar scans indicate localized down-

drafts, with air particles leaving the location of the

downdraft along horizontal directions.

b. Computation of LCSs

The two-dimensional velocity field (2), reconstructed

from LOS velocities via the variational algorithm of

Chan and Shao (2007), is available on a Cartesian grid of

15 km 3 15 km, centered at the midpoint between the

two lidars shown in Fig. 1.

We calculate the FTLE distribution Lt
t0
(x0) and the

Lagrangian divergence distribution LDt
t0
(x0) from initial

particle positions x0 seeded along runway 25RA, as

shown in Fig. 3. These initial grids include the runway

and part of a typical flight path during the last few

minutes of landing. Integrating the differential (2) be-

tween a current time t0 and a past time t , t0, for all

points x0 in the initial grid, yields a discrete approxi-

mation for the backward-time flowmap Ft
t0
(x0). We carry

out this integration using a variable step size Runge–Kutta

method.

The end time of backward integration is t5 t0 2 300 s

for each present time t0. Given that the velocity field is

updated every 2min, about three scans are used in each

advection. We have found empirically that this time

scale is short enough to reveal transient Lagrangian ef-

fects while still yielding well-pronounced FTLE ridges.

Trajectories leaving the computational domain during

the integration are advected further by a smooth, linear,

and divergence-free extension of the original velocity

field. As shown in Tang et al. (2010), this method elim-

inates artificial FTLE ridges created by edge effects that

arise if trajectories are stopped at the boundary.

We apply finite differencing to the discretized Ft
t0
(x0)

field to obtain the Cauchy–Green strain tensor field

Ct
t0
(x0), as defined in (3). For each initial position x0, the

dominant strain eigenvalue l2(x0) is computed explicitly

from the entries of the matrix Ct
t0
(x0). The FTLE field

Lt
t0
(x0) and the Lagrangian divergence field LDt

t0
(x0) are

FIG. 3. (left) Computational domain near runway 25RA. Red dots denote the initial grid domain for FTLE calculations. Within this,

cyan dots mark the domain for LD. Units are in meters. (right) Magnified computational grid containing the initial conditions x0 for the

functions Lt
t0
(x0) and LDt

t0
(x0).
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then obtained as defined in (4) and (5), respectively. A

sample result for the FTLE field is shown in Fig. 4.

c. Lagrangian and Eulerian metrics for wind shear
intensity

The FTLE field Lt
t0
(x0) measures the average expo-

nential rate of separation that nearby air particles ex-

hibit in the flow (2). An airplane flying in a uniform strain

or shear field would not experience aerial disturbance, no

matter how high the corresponding uniform FTLE fields

were. Instead, we expect jolts on the aircraft to correlate

with sharp inhomogeneities (steep ridges) in the

backward-time FTLE field, which mark highly local-

ized updrafts.

Correspondingly, j$Lt
t0
(x0) � ej, the length of the pro-

jection of$Lt
t0
(x0) onto the unit vector e alignedwith the

glide path, should be a relevant measure of the wind

shear experienced by landing aircraft. Figure 5 supports

this point by comparing a case of no reported wind shear

(left) to a case of reported wind shear (right). In both

cases, backward-time FTLE ridges with comparable

Lt
t0
(x0) and j$Lt

t0
(x0)j values intercept the glide path,

while their angles with the glide path (and hence the

magnitude of j$Lt
t0
(x0) � ej) are markedly different. In

the second case, the near-orthogonal FTLE ridges gen-

erate high j$Lt
t0
(x0) � ej values. Indeed, in this case, high

levels of wind shear leading to a missed approach were

reported.

While the two events shown in Fig. 5 confirm basic

intuition, we will still assess the efficacy of Lt
t0
(x0),

j$Lt
t0
(x0)j, and j$Lt

t0
(x0) � ej as wind shear indicators

more systematically, by evaluating them on the entire

spring dataset, the best-quality part of our full dataset.

We further compare these FTLE-based indicators to

jLDt
t0
(x0)j as well as to a common Eulerian metric for

wind shear, the jump in nearby velocities along the glide

FIG. 4. A sample FTLE distribution over the initial grid shown

in Fig. 3.

FIG. 5. (left) FTLE distribution at 1222 UTC 2 Feb 2010, when no wind shear was reported. (Parallel horizontal lines on the FTLE plot

indicate a typical glide path.) Note how projection on the glide path reduces the peak in the FTLE gradient along the rightmost ridge that

encloses a small angle with the flight path. (right) As in (left), but for 1718UTC 8 Feb 2010, when amissed approach due to wind shear was

reported. Note how projection onto the glide path preserves the high peak in the FTLE gradient at ridges that are nearly orthogonal to the

flight path.
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path (Haynes 1980; Jones and Haynes 1984). For this

Eulerian metric, let GP denote the glide path (a 7-km-

long line) with the fixed orientation defined by the unit

vector e. Then the velocity jump distribution j(x0, t; h) is

defined as the velocity difference between a point x0 2
GP and the point that is in a distance h away from x0 in

the direction of e:

j(x0, t; h)5 j[u(x0 1he, t)2 u(x0, t)] � ej .

If x01 he falls outside the actual length of the glide path,

then we set j(x0, t; h) 5 0. The velocity jump metric is

then obtained by taking the maximum of j(x0, t; h) over

all x0 2 GP, and over all ramp lengths h in the set:

H 5 f100m, 200m, 400m, 800m, 1600m, 3200 mg:

Dy(t)5 max
h2H

max
x
0
2GP

j(x0, t;h) .

A version of this velocity jump metric is currently imple-

mented on glide-path scans in the Lidar Wind Shear

Alerting System (LIWAS) algorithm at HKIA (Shun

and Chan 2008).

Figure 6 shows a comparison of the various wind shear

metrics on data from the early morning hours of 15

January 2010. These time series illustrate that Lagrangian

metrics are insensitive to isolated, instantaneous jumps in

the velocity field. All FTLE-based criteria show good

performance, peaking near the wind shear reports and

staying near zero otherwise.

We discuss a more systematic evaluation of these

metrics over the full dataset in the next section.

4. Performance comparison for wind shear metrics

We evaluate the Lagrangian and Eulerian wind shear

metrics discussed in section 3 using the spring, summer,

FIG. 6. Time evolution of the normalized maximum values of (top to bottom) Lagrangian and Eulerian metrics along the glide path,

including a period of repeated wind shear reports on 15 Jan 2010. (All quantities are normalized by their maximum values within the time

interval considered.)
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and fall datasets described in section 2b. For all times

and for each metric, we generate a 5-min wind shear

alert if the given metric returns a maximum value ex-

ceeding a critical threshold (model parameter) over the

glide path.

a. Definition of ROC graphs

We consider a wind shear metric to perform well if its

model parameter can be tuned to yield a high number of

hits and a low number of misses. To quantify the per-

formance of each metric we use ROC graphs, following

the terminology and convention introduced by Fawcett

(2006). To this end, we define the following four cases in

our detection:

1) True positive: The pilot reported wind shear and

there was a 5-min alert in effect some time during the

landing.

2) True negative: The pilot reported no wind shear and

there was no 5-min alert in effect any time during the

landing.

3) False positive: The pilot reported no wind shear, but

there was a 5-min alert in effect some time during the

landing.

4) False negative: The pilot reported wind shear, but

there was no 5-min alert in effect any time during the

landing.

The two classic quantities used in assessing a particular

detection scheme are the following:

hit rate5
true positives

true positives1 false negatives
, (6)

false alarm rate5
false positives

false positives1 true negatives
. (7)

The ROC graph of a wind shear metric is obtained by

plotting the hit rate as a function of the false alarm rate

for each tested value of the model parameter. The

resulting graph shows the trade-off between benefits (hit

rate) and costs (false alarm rate), enabling a comparison

between different wind shear metrics, and the optimi-

zation of the model parameter for each metric under

various performance objectives.

In our study, negative instances would be obtained

from null reports—that is, pilot reports of wind shear not

exceeding 15 kt. In practice, however, pilots rarely re-

port the lack of wind shear after an uneventful landing,

which results in an artificially low number of null reports.

This necessitates a modification in the ROC curve: we

replace the false alarm rate with the alert duration as the

independent variable of the graph (Chan and Lee 2012).

The alert duration is defined as the percentage of time in

which a wind shear alert would have been generated by

the given wind shear metric. This is just the sum of 5-min

windows around wind shear alerts, expressed as a per-

centage of the length of the total study period.Using alert

duration instead of the false alarm rate eliminates the

issue caused by the lack of a statistically significant number

of null reports.

b. Computation of ROC graphs

For each wind shear metric introduced in section 3c,

we compute the metric along the flight path for the

5-min window before each reported wind shear event. If,

within these 5min, the value of the metric exceeds the

model parameter, then the wind shear report (instance)

is marked as a true positive. The total number of these

true positives divided by the total number of wind shear

reports in the study period gives the hit rate, as defined

in (6).

For alert duration, we calculate each metric in every

minute of the entire study period (this is achieved by

linearly interpolating between two actual lidar scans,

which are 2min apart). If the value of themetric exceeds

the model parameter, then a wind shear alert is gener-

ated for the following 5min. The alert duration is then

obtained as the total length of these 5-min alerts divided

by the length of the entire study period.

For each metric, these computations yield a single

point of the ROC graph for a fixed value of the model

parameter. Varying the model parameter of the metric

and recomputing the hit rate and alert duration will yield

further points in the graph. To restrict the analysis to

feasible values of the model parameter, we normalize

each metric by the historical mean of its maximal values

(computed for the given season) during each landing

event. This historical mean of maxima is extracted from

an initial sample period, the first two weeks of our study

period. After normalization by this mean, we only vary

the model parameter for eachmetric in the [0, 1] interval.

The historical means of maxima obtained in this

fashion for the spring are as indicated in Table 1 (with

bars referring to spatially averaged values along the

glide path and with the gradients nondimensionalized by

the length of the runway).

c. Results

Figure 7 shows theROC graphs obtained by evaluating

our metrics over the summer period (from 1 January

to 8 April 2010), containing 79 reported cases of wind

shear. As seen in the figure, FTLE-based metrics out-

perform Lagrangian divergence (LD) in the detection

of aerial disturbances. This extends the conclusions of

Tang et al. 2011b (established for vertical accelerations

on fixed-wing research aircraft from 20 data points) to
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over 3 months of actual pilot reports from commercial

aircraft. Indeed, LD maxima can only mark three-

dimensional stretching, whereas FTLE ridges can also

be created by two-dimensional strain or shear, both of

which may produce jolts on landing aircraft.

Notably, the performance of the Eulerian velocity

jump metric is the weakest among all metrics considered,

even though it mimics the highly effective glide-path

shear alert generation algorithm (GLYGA) currently in

operation at HKIA. The reason for this discrepancy is

that GLYGA has been developed and optimized for

dedicated glide-path scans. By contrast, the velocity jump

algorithm used here is implemented on PPI scans that

deviate from actual flight paths. The poor performance of

the velocity jump algorithm in our setting underlines the

robustness of Lagrangian detection methods, which per-

form well even on PPI scans.

Within the class of FTLE-based metrics plotted in

Fig. 7, the projected FTLE gradient emerges as the

statistically most efficient wind shear indicator. This is in

agreement with our discussion in section 3c, extending

our conclusions from the single daily time series of Fig. 6

to the entire spring period.

For comparison, the brown triangle in Fig. 7 marks the

current working point of the GLYGA, computed for the

spring period. With an alert duration of 2.5% and a hit

rate of 68.9%, this algorithm is currently used in the

operational wind shear alerting system at Hong Kong

International Airport (Chan and Lee 2012). In addition

to detecting velocity jumps from long-range lidar scans,

the well-tested and optimized GLYGA also incorporates

dedicated glide-path scans as well as scans from ground-

based radars.

TABLE 1. Historical means of maxima for various wind shear

metrics.

FTLE FTLE gradient PFG LD Velocity jump

Lt
t0

k$(Lt
t0
)k j$(Lt

t0
) � ej LDt

t0
Dy(t0)

0.6133 113.824 92.261 0.0076 5.5157 (m s21)

FIG. 7. ROC graphs derived for the spring study period (3 months and 8 days, starting from

1 Jan 2010). The brown triangle marks the performance of the GLYGA, currently in opera-

tional use at HKIA. The brown circle shows the closest point obtained from the PFG metric.

The corresponding dimensionless model parameter is 39.67.
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In the absence of more specific performance objec-

tives, a natural choice for our optimal model parameter

value is the one that produces the ROC graph point

closest to the current operating point of the GLYGA at

HKIA. In Fig. 7, this closest point is encircled, with an

alert duration of 4.2% and a hit rate of 67.6%. The

corresponding model parameter (i.e., nondimensionalized

critical threshold for j$(Lt
t0
) � ej) is 39.67.

Remarkably, the projected FTLE gradient (PFG) al-

gorithm developed here produces performance levels

closely approaching that of the operational GLYGA.

The latter algorithm has been optimized for years, and

relies on additional measurements (glide-path scans,

radar scans, and anemometer readings) unavailable for

our study.

Finally, in Fig. 8, we compare the ROC curves for the

PFG algorithm for the scanning angles 1.48 and 3.08. In
the same figure, we also show the ROC curve for a sim-

ple combined PFG algorithm that monitors both scans,

and triggers an alert if the PFG exceeds the model pa-

rameter in either scan.

We conclude from Fig. 8 that the PFG algorithm ap-

plied to the 1.48 scan gives significantly better perfor-

mance than the 38 scan. This result is expected, because
lower-angle scans are closer to typical flight paths, and

hence will bemore in sync with pilot reports. In addition,

updrafts between two rolling vortices generate more

pronounced attracting LCSs in lower-angle scans, given

the intense convergence of particles near the ground [cf.

Tang et al. (2011b) for a more detailed description of the

three-dimensional geometry of such updrafts].

Also shown in Fig. 8, the quality of the PFG metric

computed from both scanning angles approaches and

ultimately surpasses that of the 1.48 scan for increasing

alert durations. A combined PFG metric with different

threshold parameters for each scanning angle might ul-

timately outperform the 1.48 scan across the board, but

the design of such a metric will not be pursued in our

present study.

Given the above-mentioned findings for the best-

quality spring data period, we focus our study on FTLE-

based detection metrics and 1.48 scans for the somewhat

FIG. 8. The performance of the PFG metric, j$(Lt
t0
) � ej, for the scanning angles 1.48 and 3.08

as well as for their combination (for the latter, both scans must be over the same threshold to

trigger a wind shear alert).
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lower-quality summer and fall datasets. In each of these

datasets, we had intervals of no coverage totaling more

than 3 days. Missing data intervals longer than 10min

were left out of the analysis. Those lasting less than

10minwere handled by interpolation fromavailable scans.

The results for these datasets are shown in Fig. 9. We

conclude that the efficiency of our PFG algorithm rela-

tive to the current operational algorithm at HKIA was

slightly lower in the summer than in the spring dataset.

The efficacy further decreases in the fall data, with the

somewhat surprising emergence of the FTLE maximum

as the best metric. Overall, lidar-based Lagrangian wind

shear detection shows the highest accuracy for the spring

period. The performance of two remaining seasons

are also promising, given that no additional velocity data

beyond lidar scans was used in these alerts.

The results of Figs. 7 and 9 are better understood in

the context of regional climate. The spring season in

Hong Kong is relatively dry, securing mostly reliable

operating conditions for lidars. While fog spreads often

from the South China Sea along eastern and southeast-

erly winds, these winds are blocked by Lantau Island,

leaving the skies over the airport clear. The resulting

high viewing quality for lidar scans is clearly reflected in

the performance of our algorithm over the spring data-

set. By contrast, the summer section of the data fully

overlaps with Hong Kong’s rainy season, which starts in

May and ends in September.Degraded lidar performance

due to frequent rain in this period explains the somewhat

weaker performance of our algorithm on the summer

data. Finally, the weakest performance in the dry months

of October and November should be due to the low

number of wind shear reports available from this period.

This is expected to weaken the ability of ROC to assess

the performance of our algorithm reliably.

5. Conclusions

Using over three seasons of historical data fromHong

Kong International Airport (HKIA), we have assessed

the power of Lagrangian coherent structure (LCS)

analysis in detecting aerial turbulence for landing air-

craft. The data used include 11 months of time-resolved

long-range lidar scans over runway 25RA as well as

time-stamped reports of 207 significant wind shear

events reported by pilots in the same period.

We have found that the projection of the gradient of

the finite-time Lyapunov exponent (FTLE) field along

the runway is an efficient metric for quantifying the LCS

signature of reported aerial disturbances. Specifically,

calling a wind shear alert when the projected FTLE

gradient (PFG) exceeds a critical threshold value, we

achieve a historical hit rate of 67.6% over an alert dura-

tion of 4.2% for our spring study period. For the summer,

the same approach yielded a hit rate of 65%over a 13.0%

alert duration. In the fall season, FTLE magnitude

emerged as the leading indicator, yielding a moremodest

58% hit rate, but from a very short 3.8% alert duration.

FIG. 9. ROC graphs derived for the summer and fall study periods. Again, brown triangle marks the performance of the operational

GLYGA detection algorithm at HKIA. Brown circles show the closest point obtained from the PFG and maximum FTLE metrics,

respectively. The corresponding dimensionless model parameters are 16.0 and 0.374, respectively.
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For the spring season, the current operational algo-

rithm atHKIAproduced only a slightly higher hit rate of

68.9% over a slightly lower alert duration of 2.5%. This

operational algorithm, however, also incorporates mul-

tiple sources of input, including dedicated scans along

the glide path, radar scans, and anemometer readings.

These additional inputs all act to mitigate the effect of

lidar equipment failure and rain. Given that the present

study did not benefit from these inputs, our results show

significant potential for the PFG algorithm.

Parallel to lidar measurements, HKIA also operates

an anemometer-based wind shear–alerting system called

Anemometer-BasedWind shearAlertingRules—Enhanced

(AWARE). With an alert duration of 0.4%, AWARE

reached a hit rate of 26% over the period of January–

November 2010. This low value indicates the strength of

lidar-based wind shear assessment technologies over

anemometer-based ones.

Improvements to the PFG algorithm are mainly

expected from more frequent and more accurate ve-

locity updates. Indeed, the current scanning frequency

of 2min misses short-term turbulent features that have

recently been observed from short-range lidar scans

targeting the glide path (Chan and Lee 2012). Further

increase in the frequency of velocity updates is expected

from future advances in lidar technology, from the de-

ployment of several lidars at the same time and from

backup velocity scans from radars in case of rain.

Additional improvements should result from a more

careful processing of the reconstructed velocity field.

Indeed, sector blanking of the lidar beam and optical

anomalies in the lidar return lead to velocity jumps that

cause large Lagrangian particle separation over the lidar

cone. This in turn may lead to spurious FTLE ridges, some

of which trigger false alarms under the PFG algorithm.

The development of a high-end filtering methodology that

eliminates spurious velocity jumps is currently underway.
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