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a b s t r a c t

The local rigid-body component of continuum deformation is typically characterized by
the rotation tensor, obtained from the polar decomposition of the deformation gradient.
Beyond its well-known merits, the polar rotation tensor also has a lesser known dyna-
mical inconsistency: it does not satisfy the fundamental superposition principle of rigid-
body rotations over adjacent time intervals. As a consequence, the polar rotation diverts
from the observed mean material rotation of fibers in fluids, and introduces a purely ki-
nematic memory effect into computed material rotation. Here we derive a generalized
polar decomposition for linear processes that yields a unique, dynamically consistent
rotation component, the dynamic rotation tensor, for the deformation gradient. The left
dynamic stretch tensor is objective, and shares the principal strain values and axes with
its classic polar counterpart. Unlike its classic polar counterpart, however, the dynamic
stretch tensor evolves in time without spin. The dynamic rotation tensor further de-
composes into a spatially constant mean rotation tensor and a dynamically consistent
relative rotation tensor that is objective for planar deformations. We also obtain simple
expressions for dynamic analogues of Cauchy's mean rotation angle that characterize a
deforming body objectively.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In continuummechanics, the now classic procedure for isolating the rotational component of the deformation gradient is
the polar decomposition. To describe this decomposition, we consider a deformation field t tX x x:t

t
00 ( )↦ ( ) defined on a

spatial domain t0
3( ) ⊂ over the time interval t t,0 1[ ] ⊂ . The trajectories tx( ) depend on the initial time t0 and the initial

position x0, but this will be suppressed for notational simplicity. By the polar decomposition theorem, the deformation
gradient F Xt t∇=τ τ (with t t t, ,0 1τ ∈ [ ]) has unique left and right decompositions of the form

F R U V R , 1t t t t t= = ( )τ τ τ τ τ

with a proper orthogonal matrix Rt
τ and symmetric, positive definite matrices Ut

τ and Vt
τ (Truesdell and Noll, 1965). Although

customarily suppressed in their notation, the rotation and stretch tensors do depend on the time interval t,τ[ ]. We keep this
dependence in our notation for later purposes. We also emphasize that we consider general non-autonomous deformation

fields for which the velocity field Xt
t
0

̇ may depend explicitly on the current time t, which therefore cannot be set to zero at
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arbitrary intermediate configurations for convenience.
In finite-strain theory, the polar rotation tensor Rt

τ is interpreted as solid-body rotation, while Ut
τ and Vt

τ are referred to as
right and left stretch tensors between the times τ and t (Truesdell and Noll, 1965). The tensor Rt

τ is generally obtained from
(1) after Ut

τ is computed as the principal square root of the right Cauchy–Green strain tensor C F Ft t T t= ( )τ τ τ .
As Boulanger and Hayes (2001) (see also Jaric et al., 2006) point out, there are in fact infinitely many possible rotation-

stretch decompositions of the form Ft ΩΔ=τ , where SO 3Ω ∈ ( ) is a rotation and Δ is a non-degenerate tensor whose singular
values and singular vectors coincide with the eigenvalues and eigenvectors of Ct

τ . Indeed, an infinity of such decompositions
can be generated from any given one by selecting an arbitrary rotation SO 3Ξ ∈ ( ) and letting

F , , . 2t TΩΔ Ω ΩΞ Δ Ξ Δ= ^ ^ ^ = ^ = ( )τ

Out of these infinitely many rotation-stretch decompositions, the left polar decomposition in (1) is uniquely obtained by
requiring Δ to be symmetric and positive definite. This convenient choice has important advantages, but is by no means
necessary for capturing the strain invariants of the deformation, given that Cs

t TΔ Δ= is always the case, even for a non-
symmetric choice of Δ. In addition, there is no a priori physical reason why the stretching component of the deformation
gradient should be symmetric. In particular, requiring UT

s
tΔ Δ= = does not render 1ΔΔ̇ − symmetric. In other words, the

evolution of Ut
τ is not spin-free.

The main advantage of the polar decomposition (1) is an appealing geometric interpretation of the particular rotation
generated by Rt

τ . Indeed, Rt
τ rotates the eigenvectors of Ct

τ into eigenvectors of the left Cauchy–Green strain tensor
B F Ft t t T= ( )τ τ τ , or equivalently, into eigenvectors of Ct

τ (Truesdell and Noll, 1965). This property distinguishes Rt
τ as a highly

plausible geometric rotation component for the deformation gradient between the times τ and t. A further remarkable
feature of the polar rotation tensor is that Rt

τ represents, among all rotations, the closest fit to Ft
τ in the Frobenius matrix

norm (Grioli, 1940; Neff et al., 2014).
These geometric advantages of Rt

τ , relative to a fixed initial time τ and a fixed end time t, however, also come with a
disadvantage for times evolving within t,τ[ ]: polar rotations computed over adjacent time intervals are not additive. More
precisely, for any two sub-intervals s,τ[ ] and s t,[ ] within t,τ[ ], we have

R R R , 3t
s
t s≠ ( )τ τ

unless U V V Us
t s s

s
t=τ τ holds (Ito et al., 2004). Us

t and Vs
τ , however, fail to commute even for the simplest deformations, such as

planar rectilinear shear (cf. formula (44)). This implies, for instance, that Rt
τ cannot be obtained from an incremental

computation starting from an intermediate state of the body at time s. We refer to this feature of the polar rotation tensor,
summarized in (3), as its dynamical inconsistency (see Fig. 1).

The dynamical inconsistency of Rt
τ does not imply any flaw in the mathematics of polar decomposition. Neither does it

detract from the usefulness of Rt
τ in identifying a static rotational component of the deformation between two fixed con-

figurations in a geometrically optimal sense. For configurations evolving in time, however, the polar decomposition is not an
optimal tool: the polar rotation tensor does not represent a mean material rotation (cf. below), and the polar stretch tensor
is not spin-free. As we shall see later (cf. Section 3), both these dynamical disadvantages stem from the relation (3), which
may be well-known to experts, but is rarely, if ever, discussed in the literature. This has led some authors to erroneously
assume dynamical consistency for Rt

τ (see, e.g., Freed, 2008, 2010).
In contrast, most textbooks in fluid mechanics introduce a mean material rotation rate for a deforming volume element.

This mean material rotation rate is defined by Cauchy (1841) as the average rotation rate of all material line elements
emanating from the same point. Cauchy's mean rotation rate turns out to be one-half of the vorticity at that point (see, e.g.,
Batchelor, 1967; Tritton, 1988; Vallis, 2006). Two-dimensional experiments indeed confirm that small, rigid objects placed in
a fluid rotate at a rate that is half of the local vorticity (Shapiro, 1961). There is, therefore, theoretical and experimental
Fig. 1. The action of the polar rotations Rt
τ , Rs

τ and Rt
τ , illustrated on two geometric volume elements Aτ and Bτ , based at the same initial point at time τ. The

evolution of Aτ is shown incrementally under the subsequent polar rotations Rs
τ and Rs

t . The evolution of the volume Bτ (with initial orientation identical to
that of Aτ) is shown under the polar rotation Rt

τ . All volume elements are non-material: they only serve to illustrate how orthogonal directions are rotated
by the various polar rotations involved.
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evidence for the existence of a well-defined and observable mean material rotation in continua that is free from the dy-
namical inconsistency (3). Yet a connection between this mean material rotation and the finite deformation gradient has not
been established at the level of mathematical rigor offered by the polar decomposition theorem underlying formula (1).

Indeed, a close link between the experimentally observed mean material rotation in fluids (Shapiro, 1961) and the ro-
tation tensor Rt

τ is only known in the limit of infinitesimally short deformations. To state this, we need the spin tensor field
tW x,( ) and the rate-of-strain tensor field tD x,( ), defined for a general velocity field tv x,( ), as

W v v D v v
1
2

,
1
2

, 4
T T= [∇ − (∇ ) ] = [∇ + (∇ ) ] ( )

with ∇ denoting the spatial gradient operation and the superscript T referring to transposition. With these ingredients, we
have the relationship

t t t tR W x U V D x, , , , 5
t

t
t

t
t

t
̇ | = ( ( ) ) ̇ | = ̇ | = ( ( ) ) ( )τ τ τ τ τ τ= = =

where the dot denotes differentiation with respect to t (Truesdell and Noll, 1965). Using the definition of the vorticity vector
vω ∇= × , one therefore obtains from (5) the formula

t tR e x e e, , 6
t

t
1
2

3ω̇ | = − ( ( ) ) × ∀ ∈ ( )τ τ=

for infinitesimally short deformations.
For deformations over a finite time interval t,τ[ ], the simple relationship between the polar rotation rate and the vorticity

is lost. Only the more complex and less illuminating relationship

⎡
⎣⎢

⎤
⎦⎥t tR W x R U U U U R R,

1
2 7

t t t t t t t T t1 1( ) ( ) ( )̇ = [ ( ( ) ) − ̇ − ̇ ]
( )τ τ τ τ τ τ τ τ

− −

can be deduced (see, e.g., Truesdell and Rajagopal, 2009).
An unexpected property of formula (7): it gives no well-defined material rotation rate R Rt t Ṫ ( )τ τ in a deforming continuum

at a given location x and given time t. Rather, the current polar rotation rate at time t depends on the starting time τ of the
observation (cf. Appendix A). This effect is not to be mistaken for the usual implicit dependence of kinematic tensors on the
reference configuration, entering through the dependence of the tensor on the initial conditions of its governing differential
equation. Rather, the effect arises from the explicit dependence of the differential equation (7) on the initial time τ through
Ut

τ . In other words, polar rotations do not form a dynamical system (or process): they satisfy a nonlinear differential
equation with memory (see Appendix A for details).

Here we develop an alternative to the classic polar decomposition which is free from these issues. Our dynamic polar
decomposition (DPD) applies to general, non-autonomous linear processes, as opposed to single linear operators. When
applied to the deformation gradient, the DPD yields a unique factorization F O Mt t t=τ τ τ , with a dynamic stretch tensor Mt

τ that is
free from spin, and a dynamic rotation tensor Ot

τ that is free from the dynamical inconsistency (3). We point out partial
connections and analogies between these dynamic tensors and prior work by Epstein (1962), Noll (1955) and Rubinstein and
Atluri (1983) in Remark 8 of Section 3.

The tensor Ot
τ is, in fact, the only dynamically consistent rotation tensor out of the infinitely many possible ones in (2).

Likewise, Mt
τ is the only spin-free stretch tensor out of the infinitely many possible ones in (2). Unlike the tensor pair R U,t t( )τ τ ,

the dynamic tensor pair O M,t t( )τ τ forms a dynamical system.
The dynamic rotation tensor reproduces Cauchy's mean material rotation rate, giving the rate t tO O W x ,

t t Ṫ ( ) = ( ( ) )τ τ for
both finite and infinitesimal deformations. This fills the prior mathematical gap between the deformation gradient and
numerical algorithms that rotate the reference frame incrementally (but not infinitesimally) at the spin rate (Hughes and
Winget, 1980; Rubinstein and Atluri, 1983) rather than at the polar rotation rate.

The dynamic rotation rate O Ot t Ṫ ( )τ τ eliminates the discrepancy of the rotation rate formula (7) with Shapiro's experiments,
Helmholtz's view on continuum rotation (Helmholtz, 1858), and Cauchy's local mean rotation rate over all material fibers.
We also show that Ot

τ admits a further factorization into a spatial mean rotation tensor and a dynamically consistent relative
rotation tensor, the latter of which is objective for planar deformations. Finally, we introduce dynamically consistent (i.e.,
temporally additive) rotation angles that extend Cauchy's classic mean rotation, and illustrate all these concepts on two- and
three-dimensional examples.
2. Dynamic polar decomposition (DPD)

Several generalizations of the classic polar decomposition to linear operators on various spaces are available (see, e.g.,
Douglas, 1966; Conway, 1990). These, however, invariably target single linear operators, as opposed to operator families, and
hence exhibit the dynamic inconsistency (3).

The only polar decomposition developed specifically for time-dependent operator families appears to be the one by
Munthe-Kaas et al. (2001) and Zanna and Munthe-Kaas (2001). This targets Lie groups, such as matrix–exponential
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solutions of linear autonomous systems of differential equations. The decomposition, however, is approximate and exists
only for small enough t τ− , i.e., for small deformations in our context. More importantly, the deformation gradient Ft

τ is
generally a two-parameter process (Dafermos, 1971), not a one-parameter Lie group, even if the underlying deformation
field has a steady velocity field.

In order to modify the classic polar decomposition to one with dynamic consistency, we first recall the notion of a
process. We formulate the original definition of a nonlinear process here specifically for linear systems. The definition for
nonlinear processes can be recovered by replacing the product of two linear operators in Definition 1 with the composition
of two general functions that depend on t and τ as parameters (cf. Appendix A).

Definition 1. A two-parameter family  T :t n n→τ , t,τ ∈ , of linear operators is a linear process if it is continuously dif-
ferentiable with respect to the parameters τ and t, and satisfies

s tT I T T T, , , , .t
t t

s
t s τ= = ∈τ τ

For any linear process, we can write

d
d

d
d

d
d

T T T T T T . 8
t t

t
t t

t
t t

0 0 0σ σ σ
̇ = = = ( )τ τ

σ
σ

σ
τ σ

σ
σ τ

+
=

+
=

+
=

Therefore, any linear process Tt
τ is the unique solution of a non-autonomous linear initial value problem of the form

t t
d

d
Z A Z Z I A T, ; . 9t

t
0

τ
σ

̇ = ( ) ( ) = ( )≔ ( )
σ

σ
+

=

Conversely, the solution of any non-autonomous linear initial value problem tZ A Z Z I, τ̇ = ( ) ( ) = is a linear process by the
basic properties of fundamental matrix solutions of linear differential equations (Arnold, 1978).

Example 1. The deformation gradient Ft
τ arising from a velocity field tv x,( ) is a linear process, as it satisfies the equation of

variations

t tZ v x Z, 10∇̇ = ( ( ) ) ( )

with initial condition Z Iτ( ) = , along the trajectory tx( ). If the velocity field v is irrotational ( v 0∇ × ≡ ), then its spin tensor
W vanishes, and hence t t t tZZ v x D x, ,1̇ = ∇ ( ( ) ) = ( ( ) )− is a symmetric matrix. Similarly, if the velocity field generates purely
rotational motion without Eulerian strain (D 0≡ ), then t t t tZZ v x W x, ,1̇ = ∇ ( ( ) ) = ( ( ) )− is a skew-symmetric matrix.

Motivated by Example 1, we introduce the following definitions for smooth, two-parameter families of operators:

Definition 2. Let nSkew( ), nSym( ), and SO(n) denote the set of skew-symmetric, symmetric and proper-orthogonal linear
operators on n, respectively. Also, let  T :t n n→τ be a smooth, two-parameter family of linear operators. Then

(i) Tt
τ is rotational if nT T Skewt t 1̇ [ ] ∈ ( )τ τ

− for all t,τ ∈ , or, equivalently, SO nTt ∈ ( )τ for all t,τ ∈ ;
(ii) Tt

τ is irrotational if nT T Symt t 1̇ [ ] ∈ ( )τ τ
− for all t,τ ∈ .

The equivalence of the two characterizations of time-dependent rotations in (i) of Definition 2 is broadly known, as
discussed, e.g., by Epstein (1966). The concept of an irrotational linear operator family in (ii) of Definition 2 serves as a
relaxation of the concept of symmetric operator families. Instead of requiring Tt

τ to be symmetric, we only require T Tt t 1̇ [ ]τ τ
− to

be symmetric, which guarantees Tt
τ to be the deformation field of a purely straining linear velocity field. We then obtain the

following result on the decomposition of an arbitrary smooth linear process Tt
τ into a rotational process and an irrotational

linear transformation family.

Theorem 1 (Dynamic polar decomposition (DPD)). Any linear process  T :t n n→τ admits a unique decomposition of the form

T O M N O , 11t t t t t= = ( )τ τ τ τ τ

where Ot
τ is an n-dimensional rotational process, while Mt

τ and Nt T( )τ are n-dimensional irrotational operator families that have
the same singular values as Tt

τ . Furthermore, with the operators

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥t tA T T T T A T T T T, ,

12
t

t t
T t T t

t t
T t T1

2
1
2( ) ( )( ) ( )( ) = ̇ − ̇ ( ) = ̇ + ̇

( )τ
τ τ

τ τ
τ τ

τ
− +

the factors in the decomposition (11) satisfy the linear differential equations
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t

t

d
d

O A O O I

M O A O M M I

N O A O N N I

, ,

, ,

, . 13

t t

t
t

t t

t T t
t

t T
t
t T( ) ( ) ( )τ

τ

̇ = ( ) =
̇ = [ ( ) ] =

= − [ ( ) ] = ( )

τ τ τ
τ

τ
τ

τ τ τ
τ

τ τ
τ

τ

−

+

+

Both tA ( )− and tA ( )+ are independent of τ, and hence A τ( )+ is independent of t.

Proof. See Appendix B.

Once the rotational process Ot
τ and one of the two irrotational operator families, Mt

τ and Nt
τ , are known, the other irrotational

operator family can be computed from the relationship (11).
3. DPD of the deformation gradient

Theorem 1 implies that the linear process Ft
τ (cf. Example 1) can uniquely be written as the product of left (and right)

rotational and irrotational operator families. Out of the two versions of this decomposition, the left irrotational operator
family also turns out to be objective, i.e., its invariants transform properly under Euclidean transformations of the form

t tx Q y b , 14= ( ) + ( ) ( )

where the matrix t SOQ 3( ) ∈ ( ) and the vector tb 3( ) ∈ are smooth functions of t (Truesdell and Noll, 1965). We summarize
these results in more precise terms as follows, using notation already introduced in (4).

Theorem 2 (DPD of the deformation gradient). For the deformation field t tX :t
t

0
3

0 ( ) ⊂ → ( ), with t t t,0 1∈ [ ], consider a
trajectory tx( ) with tx x0 0( ) = . Then for any initial time of observation t t,0 1τ ∈ [ ]:
(i) The deformation gradient F xt τ( ( ))τ admits a unique decomposition of the form

F O M N O , 15t t t t t= = ( )τ τ τ τ τ

where the dynamic rotation tensor Ot
τ is a rotational linear process; the dynamic right stretch tensor Mt

τ , and the transpose of the
dynamic left stretch tensor Nt

τ are irrotational families of transformations.
(ii) For any t,τ ∈ , the dynamic stretch tensors Mt

τ and N Mt
t

1= ( )τ
τ − are nonsingular, and have the same singular values and

principal axes of strain as Ut
τ and Vt

τ do.
(iii) The dynamic rotation tensor Ot

τ , and the dynamic stretch tensors Mt
τ and Nt

τ are solutions of the linear initial value
problems

t tO W x O O I, , , 16
t ṫ = ( ( ) ) = ( )τ τ τ

τ

t tM O D x O M M I, , , 17
t

t
t t( )̇ = [ ( ) ] = ( )τ

τ
τ τ τ

τ

d
d

N O D x O N N I, , . 18
t T t

t
t T

t
t T( ) ( ) ( ) ( )τ

τ τ= − [ ( ) ] = ( )τ τ
τ

τ

(iv) The left dynamic stretch tensor Nt
τ is objective (cf. Remark 4).

Proof. See Appendix C.

Remark 1. A physical interpretation of the left DPD in statement (i) Theorem 2 is the following. The deformation gradient Ft
τ

can uniquely be written as a product of two other deformation gradients: one for a purely rotational (i.e., strainless) linear
deformation field, and one for a purely straining (i.e., irrotational) linear deformation field. Specifically, tO at

a= ∂ ( )τ τ is the
deformation gradient of the strainless linear deformation ta a a; ,τ↦ ( )τ τ defined by

t ta W x a, , 19̇ = ( ( ) ) ( )

and tM bt
b= ∂ ( )τ τ is the deformation gradient of the irrotational linear deformation tb b b; ,τ↦ ( )τ τ defined by

t tb O D x O b, . 20t
ṫ = ( ( ) ) ( )τ
τ

A similar interpretation holds for the right DPD in statement (i) of Theorem 2.

Remark 2. Theorem 2 guarantees that the dynamic rotation tensor Ot
τ is the fundamental matrix solution of the classical

linear system of ODEs (16). As a consequence, Ot
τ forms a linear process (or linear dynamical system), thereby satisfying the

required dynamical consistency condition

s tO O O , , , . 21t
s
t s τ= ∀ ∈ ( )τ τ

By construction (cf. the proof of Theorem 2), Ot
τ is the unique dynamically consistent rotation tensor out of the infinitely

many possible ones in (2).
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Remark 3. The formula

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦t tU R v x R R U, 22
t t T t t T t( )̇ = [∇ ( ) − ̇ ] ( )τ τ τ τ τ

(see, e.g, Truesdell and Rajagopal, 2009) reveals that U Ut t 1̇ [ ]τ τ
− is not symmetric, and hence the evolution of the polar stretch

tensor is not free from spin. Therefore, the polar decomposition does not fully separate a purely spinning component from a
non-spinning component in the deformation. In contrast, the dynamic polar decomposition separates a purely spinning part
of the deformation gradient (cf. (19)) from a purely straining part with zero spin (cf. (20)). By construction (cf. the proof of
Theorem 2), Mt

τ is the unique spin-free stretch tensor out of the infinitely many possible ones in (2).

Remark 4. As seen from formulas (62)–(64) in the proof of Theorem 2, a general observer change (14) transforms the
dynamic rotation and stretch tensors to the form

t t tO Q O Q M Q M Q N Q N Q, ,
t T t t T t t T tτ τ τ˜ = ( ) ( ) ˜ = ( ) ( ) ˜ = ( ) ( )τ τ τ τ τ τ

in the y coordinate frame. Thus, the left stretch tensor Nt
τ is objective but the right stretch tensor Mt

τ is not. Analogously, the
left polar stretch tensor Vt

τ is objective but the right polar stretch tensor Ut
τ is not (cf. Truesdell and Rajagopal, 2009).

Remark 5. The relationship (11) gives

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦M O N O O N O O N O ,t
t

t t t t t t T t t1= = =τ
τ

τ τ τ τ τ τ τ τ
−

revealing that the right dynamic stretch tensor is just the representation of the left dynamic stretch tensor in a coordinate
frame rotating under the action of Ot

τ . Similarly, Eq. (17) shows that the stretch rate tensor M Mt t 1̇ [ ]τ τ
− is just the rate of strain

tensor D represented in the same rotating frame.

Remark 6. The stretch tensors Mt
τ and Nt

τ are also fundamental matrix solutions, yet M M Mt
s
t s≠τ τ and N N Nt

s
t s≠τ τ . This is

because the linear systems of ODEs (17) and (18) are not of the classical type: they have right-hand sides depending ex-
plicitly on the initial time τ as well. As a consequence, their fundamental matrix solutions do not form processes. However,
the nonlinear system of differential equations (16) and (17) has no explicit dependence on τ when posed for the dependent
variable H O M,t t t= ( )τ τ τ . As a consequence, the nonlinear process property

H H Ht
s
t s= ○τ τ

holds for this system of equations, and hence the pair O M,t t( )τ τ forms a nonlinear dynamical system. This is not the case for
the polar rotation-stretch pair R U,t t( )τ τ (cf. Appendix A).

Remark 7. The DPD of the deformation gradient in Theorem 2 replaces the requirement of symmetry for the polar stretch
tensors Ut

τ and Vt
τ with the requirement that the dynamic stretch tensors be deformations generated by purely straining

velocity fields. As noted in statement (ii) of Theorem 2, Mt
τ and Nt

τ still have the same singular values and corresponding
principal axes of strain as their polar equivalents. Thus, they continue to capture the same objective information about
stretch encoded in the right and left Cauchy–Green strain tensors, C F Ft t T t= ( )τ τ τ and B F Ft t t T= ( )τ τ τ .

Remark 8 (Connections with prior work). Without the claim of uniqueness, the first dynamic decomposition F O Mt t t=τ τ τ in
(15) and the two equations (16) and (17) could also be obtained by first extending Theorem 1 of Epstein (1962) on linear
differential equations to arbitrary initial times τ, and then applying this extension to the equation of variations (10). Also, the
finite rotation family generated by Eq. (16) is just the one considered by Noll (1955, p. 27) to derive isotropy-based in-
variance condition for general class of (hygrosteric) constitutive laws. In that context, however, Ot

τ was selected in an ad hoc
fashion out of infinitely many possible rotations because of the simplicity of its associated rotation rate O O Wt ṫ =τ τ . Finally,
Eq. (16) also appears formally in the work of Rubinstein and Atluri (1983) (see their Eq. (41)). They, however, propose this
ODE merely as one generating a plausible rotating frame in which to study deformation, as opposed to one deduced from a
systematic decomposition of the deformation gradient.
4. The relative rotation tensor

The left dynamic stretch tensor obtained from the DPD of the deformation gradient is objective, but the dynamic rotation
tensor is not. This is due to the inherent dependence of rigid body rotation on the reference frame. For deforming bodies,
however, there is a non-vanishing part of the dynamic rotation that deviates from the spatial mean rotation of the body. This
relative rotation is not only dynamically consistent, but also turns out to be objective for planar deformations.

To state this result more formally for a deforming body t Xt τ( ) = ( ( ))τ , we denote the spatial mean of any quantity
tx,(·)( ) defined on t( ) by

t
t

t dVx
1

vol
, ,

t
∫(·)( ) =

( ( ))
(·)( )

( )
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where vol( ) denotes the volume for three-dimensional bodies, and the area for two-dimensional bodies. Accordingly, dV
refers to the volume or area element.

Theorem 3 (Relative and mean rotation tensors).

(i) The dynamic rotation tensor Ot
τ admits a unique decomposition of the form

O , 23t t t t tΦ Θ Σ Φ= = ( )τ τ τ τ τ

where the relative rotation tensor tΦτ and the mean rotation tensors tΘτ and tΣτ satisfy the initial value problems

x t t tW W I, , , 24
t t( ) ( )Φ Φ Φ̇ = [ ( ) − ¯ ] = ( )τ τ τ

τ

tW I, , 25
t

t
t t( )Θ Φ Φ Θ Θ̇ = [ ¯ ] = ( )τ

τ
τ τ τ

τ

d
d

W I, . 26
t T t

t
t T

t
t( ) ( )τ

τΣ Φ Φ Σ Σ= [ ¯ ( ) ] = ( )τ τ
τ

τ

(ii) The relative rotation tensor tΦτ is a rotational process. For two-dimensional deformations, tΦτ is also objective.

Proof. See Appendix D.

The joint application of Theorems 2 and 3 gives four possible decompositions of the deformation gradient:

F M M N N .t t t t t t t t t t t t tΦ Θ Σ Φ Φ Θ Σ Φ= = = =τ τ τ τ τ τ τ τ τ τ τ τ τ

The relative rotation tensor tΦτ is dynamically consistent and objective in two dimensions; the right and left mean rotation
tensors, tΘτ and

tΣτ , are frame-dependent rotational operator families. While the relative rotation tensor tΦτ is generally not
objective for three-dimensional deformations, it still remains frame-invariant under all rotations tQ( ) whose rotation-rate
tensor t tQ QṪ ( ) ( ) commutes with tΦτ (cf. formula (78) of Appendix D).

Remark 9. From Eqs. (74), (76), (77) and (67) of Appendix D, we deduce the following transformation formulas for the
rotation tensors featured in Theorem 3, under observer changes of the form (14)

t t t tQ P P Q Q Q, , .t T t t T t t T tτ τΦ Φ Θ Θ Σ Σ˜ = ( ) ( ) ˜ = ( ) ( ) ˜ = ( ) ( )τ τ τ τ τ τ

Here the rotation tensor t SOP 3( ) ∈ ( ) satisfies the linear initial value problem

t t t tP Q Q P P Q, .t
T t τ τΦ Φ̇ ( ) = ̇ ( ) ( ) ( ) ( ) = ( )τ

τ

5. Dynamically consistent angular velocity and mean rotation angles

5.1. Angular velocity from the dynamic rotation tensor

By Eqs. (5) and (16), the time-derivatives of the rotation tensor and the dynamic rotation tensor agree in the limit of
infinitesimally short deformations, i.e.,

R O W.t
t

t
t

̇ | = ̇ | =τ τ τ τ= =

As noted in the Introduction, however, the polar rotation does not give a well-defined, history-independent angular velocity
for finite deformations. At the same time, the dynamic rotation gives the same angular velocity (deduced from W) both for
infinitely short and for finite deformations. This angular velocity equals the mean rotation rate of material fibers in two
dimensions (Cauchy, 1841). Here we show that the same equality holds for three-dimensional deformations as well.

Clearly, the rotation of an infinitesimal rigid sphere in a fluid differs from the rotation of infinitesimal material fibers in
the fluid. Each such material fiber rotates with a different angular velocity, even in the simplest two-dimensional steady
flows (see Examples 2 and 3 below). Nevertheless, for all two-dimensional deformations, Cauchy (1841) found that aver-
aging the angular velocity over all material fibers emanating from the same point gives a mean angular velocity equal to 1

2
ω

(see also Truesdell, 1954). This justifies the use of small spherical tracers to infer the rate of local mean material rotation in
two-dimensional continuum motion (see, e.g., the experiments of Shapiro, 1961 for fluids).

In three-dimensional continuum motion, the Maxey–Riley equations (Maxey, 1990) continue to predict 1
2

ω as the angular
velocity of small spherical particles. Experiments on three-dimensional turbulence confirm this result (see, e.g., Meyer et al.,
2013). One would ideally need, however, an extension of Cauchy's fiber-averaged angular velocity argument from two to
three-dimensions to justify equating the observed rotation rate of small rigid spheres with the local mean rate of material
rotation.

The main challenge for such an extension is that a one-dimensional material element has no well-defined angular
velocity in three dimensions. To see this, we let



Fig. 2. The unit vector te( ) tangent to a material fiber evolving along the trajectory tx( ).
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te
F e
F e

,
27

t

t

τ
τ

( ) = ( )
( ) ( )

τ

τ

denote a unit vector tangent to a deforming material fiber along the trajectory tx( ). This trajectory starts from the point xτ at
time τ, as shown in Fig. 2.

There exists then an open half-plane spanned by admissible angular velocity vectors ν such that the instantaneous
velocity ė of the evolving te( ) satisfies e eν̇ = × . The magnitudes of these admissible angular velocity vectors range from ė
to infinity, depending on the angle they enclose with e (see Fig. 3). There is, therefore, no unique angular velocity for the
evolving material fiber tangent to e.

We can nevertheless extend Cauchy's mean rotation result to three-dimension using the following construct. Let us
define the minimal angular velocity vector tx e, ,minν ( ) for the unit vector e as the admissible angular velocity in with the
smallest possible norm

tx e e e, , . 28minν ( ) = × ̇ ( )

We then define the material-fiber-averaged angular velocity tx,ν ( ) at the point x of a deforming body t( ) by the formula

x t t tx e x, 2 , , , , 29Semin x
2ν ν( )≔ ( ) ∈ ( ) ( )∈

with the Se x
2· ∈ operation referring to the mean over all vectors in the unit sphere Sx

2 centered at the point x. For a perfectly
rigid body, we recover from formula (29) the unique angular velocity of the body as the fiber-averaged angular velocity (see
Appendix E). For a general deformable continuum, tx,ν ( ) still turns out to be computable and equal to half of the vorticity.

Proposition 1 (Fiber-averaged angular velocity in 3D). For a general three-dimensional deforming body t( ), the material-fiber-
averaged angular velocity at a location tx ∈ ( ) at time t is given by

t tx x, , ,1
2

ν ω( ) ≡ ( )

where tx,ω ( ) denotes the vorticity vector field of t( ).

Proof. See Appendix F.

Proposition 1 extends Cauchy's mean material rotation rate result to three dimensions. It supports the expectation that a
self-consistent description of mean material rotation should yield an instantaneous angular velocity equal to half of the
vorticity for any finite deformation, just as the dynamic rotation tensor Ot

τ does.
Fig. 3. The plane of all admissible angular velocities ν that generate the same velocity ė for a unit vector e tangent to a deforming material element at x.
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5.2. Dynamically consistent mean rotation angles

Cauchy (1841) measures the magnitude of finite continuum rotation locally by computing the rotation angle of initially
co-planar line elements about the normal of their initial plane. This mean rotation angle obeys a complicated, coordinate-
dependent formula (Truesdell, 1954) that remained unevaluated and largely unused for a long time.

Remarkably, Zheng and Hwang (1992) and Huang et al. (1996) succeeded in evaluating the integral in Cauchy's mean
rotation angle for general planes, obtaining involved expressions defined on different angular domains. As an alternative
measure of mean rotation, Novozhilov (1971) proposed to evaluate the spatial mean of the tangent of Cauchy's mean ro-
tation angle, as opposed to the mean of the angle itself, over all initially co-planar material vectors. Invariant formulations of
this idea appeared later in Truesdell and Toupin (1960) and de Oliveira et al. (2005). While simpler to evaluate, Novozhilov's
version of the mean rotation angle suffers from singularities due to the use of the tangent function (de Oliveira et al., 2005).
Finally, Marzano (1987) proposed the mean of the cosine of Cauchy's angle as a measure of mean rotation.

For all these mean rotation measures, the total rotation is not well-defined beyond a range of angles due to the inherent
limitations of the inverse trigonometric functions used in their construction. A more important issue is, however, that even
fully invariant formulations of the mean rotation angle concept (e.g., Martins and Podiu-Guiduigli, 1992; Zheng et al., 1994)
extract the rotational component of a deformation gradient via polar decomposition between fixed initial and finite times.
As a consequence, these mean rotations are not material: they inherit the dynamic inconsistency (3) of the rotation tensor.

When evaluated along a material trajectory tx( ), with x xτ( ) = τ , any smooth unit vector field tg x,( ) defines a time-
varying axis t tg x ,( ( ) ). For any smooth rotation family sQ( ) defined along sx( ) for s t,τ∈ [ ], the total rotation angle tατ with
respect to the evolving axis s sg x ,( ( ) ) is equal to

q s s s dsx g g x; , ,t
t

∫α ( ) = ̇ ( )· ( ( ) )τ τ
τ

Fig. 4. The geometry of the dynamic rotation, relative dynamic rotation and intrinsic dynamic rotation obtained in Theorem 4. Top: a vector rτ , based at the
initial point xτ , is rotated by the dynamic rotation tensor Ot

τ into the vector tr( ), spanning the dynamic rotation angle x g;tφ ( )τ τ around an a priori defined
rotation axis family g. Middle: the same initial vector rτ is now rotated by the relative rotation tensor tΦτ into the vector tr̂( ), spanning the relative dynamic
rotation angle x g;tϕ ( )τ τ around the axis family g. Bottom: rτ is again rotated by the relative rotation tensor tΦτ into the vector tr̂( ), spanning the intrinsic
dynamic rotation angle x g;tψ ( )τ τ around the intrinsically defined rotation axis family – /ω ω ω ω( − ¯ ) − ¯ .



G. Haller / J. Mech. Phys. Solids 86 (2016) 70–93 79
where the angular velocity vector q ṡ ( ) of sQ( ) is defined by the relationship

qs s sQ Q e e e, .T 3̇ ( ) ( ) = ̇ ( ) × ∀ ∈

In line with our definition of dynamical consistency for rotation tensors, we say that the rotation angle tατ with respect to
the axis field tg x,( ) is dynamically consistent if it is additive along trajectories. Specifically, for all times t t t, , ,0 1τ σ ∈ [ ], the
angle tατ should satisfy

x g x g x g; ; ; 30t tα α α( ) = ( ) + ( ) ( )τ τ σ σ τ
σ

τ

for dynamical consistency. Note that the choice tQ Rt( ) = τ does not give a dynamically consistent angle by formula (3) (cf.
Remark 12 in Appendix G). The dynamic polar decomposition, however, provides several dynamically consistent rotation
angles, some of which are even objective. We keep the terminology used for Cauchy's angle, referring to these dynamically
consistent rotation angles as mean rotation angles. This is because they represent single-valued, overall fits to a continuum
of fiber rotation angles in a deforming volume element.

Theorem 4 (Dynamically consistent mean rotation angles).

(i) The rotation angle generated by the dynamic rotation tensor Ot
τ around the axis family g is given by the dynamic rotation

s s s s dsx g x g x;
1
2

, , , 31
t

t

∫ ωφ ( ) = − ( ( ) )· ( ( ) ) ( )τ τ
τ

which is a dynamically consistent rotation angle.
(ii) The rotation angle generated by the relative rotation tensor tΦτ around the axis family g is given by the relative dynamic

rotation

s s s s s dsx g x g x;
1
2

, , , 32
t

t

∫ ω ωϕ ( ) = − [ ( ( ) ) − ¯ ( )]· ( ( ) ) ( )τ τ
τ

which is an objective and dynamically consistent rotation angle.
(iii) The rotation angle generated by the relative rotation tensor tΦτ around its own axis of rotation is given by the intrinsic

dynamic rotation

⎛
⎝⎜

⎞
⎠⎟ s s s dsx x x;

1
2

,
33

t t
t

∫ω ω
ω ω

ω ωψ ϕ( )≔ − − ¯
− ¯

= ( ( ) ) − ¯ ( )
( )τ τ τ τ

τ

which is an objective and dynamically consistent rotation angle.

Proof. See Appendix G.

Fig. 4 illustrates the geometry of the dynamically consistent mean rotation angles described in Theorem 4.

Remark 10. The intrinsic dynamic rotation tψτ measures the full angle swept by the relative rotation tensor along the
evolving negative relative vorticity vector ω ω−( − ¯ ). This scalar measure is objective, even though the relative rotation tensor

tΦτ generating this angle is only objective in two dimensions. The intrinsic dynamic rotation rate

t tx x, 34
t 1

2
ω ωψ ̇ ( ) = ( ) − ¯ ( ) ( )τ

is also objective both in two- and three dimensions (cf. formula (87) in the proof of Theorem 4). The intrinsic dynamic
rotation rate is, therefore, a viable candidate for inclusion is rotation-rate-dependent constitutive laws. In another context, it
has already been used to define and detect rotationally coherent Eulerian vortices objectively in two-dimensional fluid flows
(Haller et al., 2015).

Remark 11. The angle tψτ is always positive: its integrand generates a positive angular increment, even if the orientation of
relative rotation changes in time due to a zero crossing of the relative vorticity. For instance, in the two-dimensional ex-
periments of Shapiro (1961), x e;t

3φ ( )τ τ gives precisely the observed net rotation of a small circular body placed in the fluid.
In contrast, xtψ ( )τ τ would report the total angle swept by the circular body relative to the total mean rotation of the fluid.
Both measures are objective, as stated in Theorem 4.
6. Dynamic rotation and stretch in two dimensions

For the material deformation induced by a two-dimensional velocity field v vv , T
1 2= ( ) , the spin tensor is of the form
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where v vx x3 2 11 2ω = ∂ − ∂ is the plane-normal component of the vorticity. The initial value problem (16) can then be solved by
direct integration to yield
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whereas the remaining two equations (17) and (18) take the form
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generally solvable only numerically.
If the deformation gradient Ft

τ , however, is explicitly known, then using the self-consistency property (21), we obtain the
solutions of (36) directly as
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In the present two-dimensional context, we select the rotation axis g to be the unit normal e3 to the x x,1 2( ) plane. With
this choice, the unique dynamically consistent, finite rigid-body rotation of the deformation field can be computed from (31)
as

s s dsx e x;
1
2

, . 38
t

t

3 3∫φ ω( ) = − ( ( ) ) ( )τ τ
τ

The two-dimensional, objective expression for the relative dynamic rotation defined in (32) is

⎡
⎣⎢

⎤
⎦⎥s s s dsx e x;

1
2

, ,
39

t
t

3 3 3∫ϕ ω ω( ) = − ( ( ) ) − ¯ ( )
( )τ τ

τ

while the intrinsic dynamic rotation in

s s s dsx x
1
2

, ,t
t

3 3∫ψ ω ω( ) = ( ( ) ) − ¯ ( )τ τ
τ

Below we evaluate the two-dimensional DPD formulas (35)–(37) and the dynamic rotation angle on the two examples of
Bertrand (1873), which he thought proved the inability of vorticity to characterize material rotation rates correctly (cf.
Truesdell and Rajagopal, 2009).
Example 2. Simple planar shear: Consider the incompressible velocity field a xv x , 0 T
2( ) = ( ( ) ) for some continuously differ-

entiable scalar function a x2( ). The corresponding planar shear deformation gradient is

⎛
⎝⎜

⎞
⎠⎟

a x t
F x

1
0 1

.
40

t
0 0

20( ) =
′( )

( )

The classic polar decomposition is generally prohibitive to calculate in the presence of parameters, even for the simple
deformation gradient (40). From the calculations of Dienes (1979), however, we obtain
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showing that the polar rotation angle t,β τ( ) satisfies
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The dynamic inconsistency (3) of polar rotations is already transparent in this simple example. Indeed, noting that
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we obtain from (41) and (43) that
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To compute the dynamic polar decomposition from Theorem 2, we first note that

t v x t a xx ,x3 1 2 202ω ( ( )) = − ∂ ( ( )) ≡ − ′( )

and hence the entries of the rate-of-strain tensor tD x( ( )) satisfy
Fig. 5. The classic polar rotation angle (red) and the dynamic rotation angle (blue) as a function of time for the deformation gradient (40) describing planar,
linear shear with a x x20 20( ) = . Also shown are the polar rotation angles computed from three different levels of discretization in time. At each time step, the
polar rotation angle is incrementally recomputed, with the current time taken as the initial time in Eq. (42). The new rotational increment is then added to
the rotation accumulated so far. With decreasing discretization step, the polar rotation angle computed in this incremental fashion necessarily converges to
the dynamic rotation angle by formula (7). Both the polar and the dynamic rotation angles represent an overall assessment of the local rotation; individual
material fibers all rotate by different angles. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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Therefore, formulas (35)–(37) give the dynamic polar decomposition factors
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Finally, by formula (38), the dynamic rotation is simply

a x tx e; ,t
0 0 3

1
2 20φ ( ) = − ′( )

which we plot in Fig. 5 for comparison with the rotation angle generated by the rotation tensor Rt
0 as a function of time. We

also show in the figure the consequence of the lack of additivity for the polar rotation, as verified in (44). Indeed, computing
the polar rotation angle as a superposition of finite sub-rotations, even from its analytic formula and hence without nu-
merical error, will give differing results.
By formula (39), the relative dynamic rotation is

⎡⎣ ⎤⎦a x a x tx e; ,t
0 0 3

1
2 20 20ϕ ( ) = − ′( ) − ′( )

with the overbar denoting spatial average over the domain of interest. Finally, the intrinsic dynamic rotation is

a x a x txt
0 0

1
2 20 20ψ ( ) = ′( ) − ′( )

We conclude from Fig. 5 that generic material elements rotate at the well-defined mean rate a xx e;t
0 0 3

1
2 20φ ̇ ( ) = − ′( ). This

is at odds with the polar mean rotation rate which tends to zero over time.
At first sight, it is the decaying polar rotation rate that agrees with one's physical intuition. Indeed, as Flanagan and Taylor

(1987) write about this example: “Clearly the body experiences rotations which diminish over time,…”. By the end of any
given finite deformation interval, the rotation of infinitely many material fibers indeed slows down. At the same time,
however, the rotation of infinitely many other material fibers is accelerating. For instance, at any given time t, material fibers
in vertical position are just reaching their maximal material rotation rate a x3

2 20− ′( ) (cf. formula (82)). Overall material fiber
rotation, therefore, does not die out.
We show a more detailed sketch of the behavior of material fibers in Fig. 6. The frame is fixed to the trajectory in the

middle, which then becomes a set of fixed points. At any given time, different material fibers rotate at different speeds; the
lengths of the arcs illustrate the magnitudes of angular velocities for the corresponding material fibers. Only horizontal
material fibers have zero angular velocity. The average material angular velocity is equal to a x t1

2 20− ′( ) by Cauchy's classic
result (Cauchy, 1841) or by the restriction of our Proposition 1 to two dimensions. An infinitesimal, rigid circular tracer
(shaded area) placed in the deformation field rotates precisely at this angular velocity. Most of this was already pointed out
by Helmholtz (1868) in his response to Bertrand (1873), but his observations have apparently not been interpreted in the
Fig. 6. Rotation of material lines in a parallel shear field.



Fig. 7. The classic polar rotation angle (red) and the dynamic rotation angle (blue) as a function of time for the deformation gradient (45) of an irrotational
vortex with α¼1. Also shown are the exact polar rotation angles computed incrementally for three different levels of discretization in time, as in Fig. 5. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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context of polar rotations.

Example 3. Irrotational vortex: Consider the two-dimensional, circularly symmetric, incompressible velocity field
⎛
⎝⎜

⎞
⎠⎟v x ,x

x x

x

x x

T
2

1
2

2
2

1

1
2

2
2( ) = α α−

+ +
, where α ∈ is a parameter. By direct calculation, we obtain the vorticity and displacement fields

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟xX x0,

cos sin

sin cos
,t

t t

t t

x x

x x

3 0 0 0
0

2
0

2

0
2

0
2

ω ≡ ( ) =
−α α

α α

as well as the deformation gradient

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜
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x

t x t x x t x t x x

t x t x x t x t x x
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+
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We also obtain from (35) to (37) the dynamic polar decomposition factors

⎛
⎝⎜

⎞
⎠⎟O M N F x1 0

0 1
, .t t t t

0 0 0 0 0= = = ( )

By formulas (38) and (39), the dynamic rotation, the relative dynamic rotation, and the intrinsic dynamic rotation all vanish

x e x e x; ; 0.t t t
0 0 3 0 0 3 0 0φ ϕ ψ( ) = ( ) = ( ) ≡
Fig. 8. Rotation of material line elements around an irrotational vortex.



G. Haller / J. Mech. Phys. Solids 86 (2016) 70–9384
We show this together with the numerically computed polar rotation angle in Fig. 7.
The vanishing dynamic rotation angle is consistent with the lack of rotation exhibited by circular tracers in irrotational

vortex experiments (Shapiro, 1961). Fig. 8 illustrates the translation of such a tracer (shaded area). While exceptional ma-
terial fibers tangent to trajectories rotate with the angular velocity of the trajectory, other fibers rotate in the opposite
direction due to shear. The average material angular velocity is equal to zero by Cauchy's classic result, as well as by the
restriction of our Proposition 1 to two dimensions. Again, these observations were already made by Helmholtz (1868) to
Bertrand (1873), but have apparently not been evaluated relative to the rotation predicted by the polar decomposition (see,
e.g., Dienes (1986), who mentions this example).
7. Dynamic rotation and stretch in three dimensions

For material deformation fields induced by three-dimensional velocity fields v v vv , , T
1 2 3= ( ) , the spin tensor can be

written as

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
t

t t

t t

t t

W x

x x

x x

x x

,

0 , ,

, 0 ,

, , 0

,

1
2 3

1
2 2

1
2 3

1
2 1

1
2 2

1
2 1

ω ω

ω ω

ω ω

( ) =

− ( ) ( )

( ) − ( )

− ( ) ( )

where v, ,1 2 3ω ω ω ω ∇= ( ) = × . The three-dimensional rotational process Ot
τ is the normalized fundamental matrix solution

of the non-autonomous, three-dimensional linear system of differential equations (16). At this level of generality, (16) must
be solved numerically.

As in the two-dimensional case, if both the rotational process Ot
τ and the deformation gradient Ft

τ are known, then the
remaining factors in the left and right DPD can be computed as

M O F N F O, . 46t
t

t t t
t= = ( )τ

τ
τ τ τ

τ

Finally, the dynamic rotation x g;tφ ( )τ τ , its relative part x g;tϕ ( )τ τ and the intrinsic rotation x g;tψ ( )τ τ obey the formulas
(31)–(33) without simplification.

Example 4. Three-dimensional, unsteady, parallel shear: For a smooth, unsteady parallel shear field in three dimensions, the
velocity field is in the general form

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟t

v x t
v x t

v t
v x,

,
, ,

1 3

2 3

3

( ) =
( )
( )

( )

where the velocity components are smooth functions of their arguments. The spin tensor and the deformation gradient can
be obtained by direct calculation as

⎛
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⎜⎜⎜⎜⎜⎜⎜
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τ

The dynamic rotation tensor Ot
τ , therefore, satisfies the non-autonomous system of differential equations
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Without further assumptions, this non-autonomous system can only be solved numerically, or via an asymptotic Magnus-
expansion (Magnus, 1954). For simplicity, we assume from now that v x t cv x t, ,2 3 1 3( ) ≡ ( ) for some constant c ∈ . In that case,
the coefficient matrix of (48) commutes with its own integral, and hence the fundamental matrix solution of (48) is just the
exponential of the integral of its coefficient matrix (Epstein, 1963). Indeed, we then have

⎛
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⎟⎟⎟⎟⎟
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τ

( ) ∂ ( ( ) )
τ

Then, from formulas (46), (47) and (49) we obtain the left and right DPD factors Mt
τ and Nt

τ explicitly, which we omit here for
brevity. With the vorticity vector

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟v c

1

0
,x 13ω = ∂ −

and with respect to a constant rotation axis defined by a unit vector g g gg , , T
1 2 3= ( ) , the frame-dependent dynamic rotation

angle is of the form

⎛
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1
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In contrast, the (objective) relative dynamic rotation is given by

⎜ ⎟
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and the (objective) intrinsic dynamic rotation is given by

⎜ ⎟⎛
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x

s
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τ τ

8. Conclusions

The classic polar decomposition of the deformation gradient is a broadly employed tool in analyzing continuum de-
formation. Given the deformation gradient, one obtains the polar rotation and stretch tensors from algorithms based on
straightforward linear algebra. Beyond computational simplicity, polar rotation offers a powerful and rigorous tool to
identify a static rotational component of the linearized deformation between fixed initial and final configurations.

Polar rotations computed over different time intervals, however, do not have the fundamental additivity property of
solid-body rotations. As a consequence, polar rotation does not identify a mean material rotation for volume elements
which is nevertheless experimentally observable in fluids (Shapiro, 1961). Polar rotation also suggests a mean angular
velocity distribution that depends on the length of the observation period, introducing an irremovable memory effect into
the deformation history on purely kinematic grounds (cf. Appendix A). Finally, the evolution of the polar stretch tensor is
not free from spin. In summary, the static optimality of the polar decomposition between two fixed configurations also
comes with dynamic sub-optimality for time-varying configurations.

To address these disadvantages, here we have extended the idea of polar decomposition from a single linear mapping
between two fixed configurations to a time-dependent process. The resulting dynamic polar decomposition (DPD) yields
unique left and right factorizations of Ft

τ into the deformation gradient of a purely rotating (strainless) deformation and the
deformation gradient of a purely straining (irrotational) deformation. The former deformation gradient, the dynamic ro-
tation tensor, is a dynamically consistent rotation family. The latter deformation gradient, the (left) dynamic stretch tensor,
is objective, just as its classic polar left stretch counterpart. The dynamic stretch tensors also reproduce the same Cauchy–
Green strains and principal strain directions between any two configurations, as the classic polar stretch tensors do. Unlike
the right polar stretch tensor, however, the right dynamic stretch tensor is spin-free.

The DPD provides a previously missing mathematical link between the deformation gradient and numerical algorithms
that rotate the reference frame incrementally at the spin rate (Hughes and Winget, 1980; Rubinstein and Atluri, 1983). The
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dynamic rotation tensor arising from the DPD reproduces precisely the mean material rotation rate of volume elements, as
defined by Cauchy (1841). This mean rotation rate is directly observable in two-dimensional fluids by placing a small
spherical tracer in the flow (Shapiro, 1961). The same experiment cannot be carried out for solids. Any possible experiment
in solids, however, with an ability to measure the average rotation rate of all fibers in a material volume element, necessarily
has to return the rate obtained from the DPD (cf. Proposition 1).

The DPD also provides new dynamic rotation angles for volume elements. These angles represent dynamically consistent
and simply computable alternatives to Cauchy's classic mean rotation angle, whose evaluation has been difficult using the
classic polar decomposition (cf. Section 5.2). The dynamic rotation angles also enable the extension of polar-rotation-based
material vortex detection in two-dimensional deformations (Farazmand and Haller, 2015) to DPD-based material vortex
detection in three-dimensions (Haller et al., 2015).

On the computational side, the DPD cannot be obtained from simple linear algebraic manipulations on the single linear
mapping Ft

τ , as is the case for the classic polar decomposition. Instead, one has to solve non-autonomous linear differential
equations over the time interval t,τ[ ] to obtain the DPD of Ft

τ . On the upside, this also means that the dynamic rotation-
stretch tensor pair O M,t t( )τ τ together satisfies an explicit system of differential equations, i.e., form a dynamical system that is
free from memory effects. This is not the case for their classic polar counterparts: R U,t t( )τ τ satisfy an implicit, nonlinear
system of differential equations, which does not define a dynamical system and has unavoidable memory effects (cf. Ap-
pendix A).

We believe that memory effects should enter models of the deformation process in a controlled fashion, through
parameters in the constitutive equations, rather than in an uncontrolled and un-parametrized fashion, through the rota-
tional kinematics. For this reason, we consider the intrinsic dynamic rotation rate tψτ̇ , defined in (34), a viable candidate for
inclusion in constitutive laws, given that it is simple, objective and memory-free. For two-dimensional deformations, the
rotation rate W Wt tΦ Φ̇ = − ¯

τ τ of the relative rotation tensor can also be used, as it is objective by Eq. (72).
Finally, we expect the DPD to be useful in experimental techniques producing time-resolved deformation with large

strains. An example is the Digital Image Correlation (DIC) applied to granular materials, where the classic polar rotation
tensor has been used so far to identify macroscopic rigid-body rotation components of the deformation field (see, e.g.,
Rechenmacher et al., 2011).
Acknowledgement

I acknowledge very helpful discussions with Alexander Ehret, Mohammad Farazmand, Florian Huhn, Edoardo Mazza and
David Öttinger. I am also grateful for the insightful suggestions of the two anonymous reviewers of this paper.
Appendix A. Polar rotations do not form a dynamical system

We start by recalling the well-known temporal evolution of the deformation gradient. Let us fix a material trajectory tx( ),
with tx x0 0( ) = . The deformation gradient along this trajectory obeys the differential equation (cf. Example 1)

t tF v x F, , 50
t t∇̇ = ( ( ) ) ( )τ τ

where tv x,( ) is the velocity field associated with the deformation. The time t t,0 1τ ∈ [ ] is arbitrary, labeling a reference
configuration from which an observer follows the deformation gradient up to time t t t,0 1∈ [ ]. The solution Ft

τ of the dif-
ferential equation (50), therefore, depends implicitly on the start time τ of the observation, without τ entering the differ-
ential equation explicitly.

A deformation rate tensor (analogous to the polar rotation rate) can also be defined for the deformation gradient as

t tF F v x , . 51
t t 1( ) ∇̇ = ( ( ) ) ( )τ τ

−

This gives a well-defined deformation rate at the point tx( ) of the deformed configuration at time t, independent of the
initial time τ at which the observer started monitoring the linearized deformation along the trajectory tx( ). One may, in
particular, select the start time of the observation as t τ= and obtain the same rate t tF F v x ,t

t
t
t 1 ∇̇ ( ) = ( ( ) )− .

We now show that this is not the case for the polar rotation rate. The differential equation for the polar rotation tensor
along the trajectory tx( ) is of the form

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥t tR W x R U U U U R R,

1
2

.
52

t t t t t t t T t1 1( ) ( ) ( )̇ = ( ( ) ) − ̇ − ̇
( )τ τ τ τ τ τ τ τ

− −

This gives the instantaneous rotation rate at the point tx( ), at time t, in the form

⎡
⎣⎢

⎤
⎦⎥t tR R W x R U U U U R,

1
2 53

t t T t t t t t t T1 1( ) ( ) ( ) ( )̇ = ( ( ) ) − ̇ − ̇
( )τ τ τ τ τ τ τ τ

− −
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for the observer monitoring the infinitesimal deformation along tx( ) from the initial time τ up to the present time t. Note
that this rate depends explicitly on the initial time τ of observation through Ut

τ . In particular, for an observation starting at

time t τ= , we obtain t tR R W x ,t
t

t
t 1̇ ( ) = ( ( ) )− , which is quite different from (53) with tτ ≠ . Therefore, the instantaneous polar

rotation rate at a given location and time is ill-defined when different start times for the observation are allowed.
There is, in fact, a deeper effect at play here. Rather than examining the rates F Ft t 1̇ ( )τ τ

− and R Rt t Ṫ ( )τ τ , let us simply examine if
the derivatives Fṫ

τ and Rṫ
τ are independent of the observational history. Note that the derivative of Ft

τ in (50) only depends on
the current time t and Ft

τ itself. Thus, in the language of differential equations, (50) is a non-autonomous dynamical system
(or a process; cf. Dafermos, 1971) for the deformation gradient Ft

τ , with its future evolution fully determined by its present
state. The defining properties of a process, spelled out for the tensor family Ft

τ , are

s t t tF F F F I, , , , , ,t
s
t s

t
t

0 1τ= ○ = ∀ ∈ [ ]τ τ

with the circle denoting the composition of two functions. By the linearity of (50), Ft
τ is actually a linear process, and hence

we simply have F F F Fs
t s

s
t s○ =τ τ . The linearity of the dynamical system (50), however, plays no role in our current argument.1

In contrast, the derivative of Rt
τ in (52) depends on the current time t, on the tensor Rt

τ itself, as well as on the initial time
τ of the observation through the quantity Ut

τ . As a consequence, the nonlinear differential equation (52) is not a dynamical
system (or process), because its future evolution is not determined fully by its present state, and hence

R R R 54t
s
t s≠ ○ ( )τ τ

holds. Thus, in addition to not being a linear process by (3), the polar rotation tensor also fails to be a nonlinear process by
property (54). Instead, Rt

τ satisfies a nonlinear differential equation with memory.
Even when considered together, the R U,t t( )τ τ tensor pair does not satisfy an explicit system of differential equations.

Rather, the pair satisfies a nonlinear implicit system of differential equations formed by (7)–(22) (albeit this system has no
explicit dependence on τ). As a consequence, the pair R U,t t( )τ τ generally does not form a nonlinear dynamical system (or
nonlinear process) either, and hence displays explicit memory effects beyond the customary implicit dependence on the
reference configuration.
Appendix B. Proof of Theorem 1

Substituting the decomposition in (11) into (12), and imposing the requirement that Ot
τ is rotational and Mt

τ is irrotational
(cf. Definition 2), we obtain that
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Expressing the derivatives of Ot
τ and Mt

τ from (55) proves the first two equations in (69). We also note that

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦T T M O O M M M ,t T t t T t T t t t T t= =τ τ τ τ τ τ τ τ

and hence Tt
τ and Mt

τ have the same singular values, as claimed.
Using the notation from Eq. (9) in Eq. (8), we can further write

t t tT T A A A ,t
t

̇ = ( ) = ( ) + ( )τ
τ − +

with t t tA A AT1
2

( ) = [ ( ) ± ( )]± . Therefore, tA ( )± are indeed independent of τ and hence A τ( )± are independent of t, as already
suggested by our notation.

From the now proven first equation of (69), we conclude that Ot
τ is indeed a linear process, as the fundamental matrix

solution of a classic non-autonomous system of linear ODEs (with no explicit dependence on the initial time τ). We also
conclude that Mt

τ is a two-parameter family of nonsingular operators, even though it is generally not a process. In particular,
Mt

τ does not form a process because the coefficient matrix of the second system of ODEs in (69) has explicit dependence on
the initial time τ. As a consequence, we generally have

M M .t
t1( ) ≠τ
τ

−

1 An example of a nonlinear process is a general deformation field, satisfying the nonlinear differential equation tX v X ,t ṫ = ( )τ τ . In this case, the non-
linear process properties take the form X X Xt

s
t s= ○τ τ and X It

t = , for all s t t t, , ,0 1τ ∈ [ ]. Here the function composition cannot be replaced by a simple product.
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To prove the left-polar decomposition involving Nt
τ in (11), we observe that

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦T T O M M O M O ,t
t t t t t t

t1 1 1 1 1( ) ( ) ( )= = = =τ
τ τ τ τ τ τ

τ
− − − − −

thus setting

N M , 56t
t

1( )= ( )τ
τ −

we conclude the existence of Nt
τ , as claimed. Interchanging the role of τ and t in the second equation of (69), we obtain the

differential equation

⎡
⎣⎢

⎤
⎦⎥

d
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M O A O M M I, .
57t

t
t t t

t

τ
τ= ( ) =

( )
τ

τ
τ τ+

By formula (56), we have

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

d
d

d
d

N M N M 0,t
t

t
tτ τ

+ =τ
τ

τ
τ

which together with (57) yields

⎡
⎣⎢

⎤
⎦⎥

d
d

N N O A O N I, .
58

t t t
t t

t

τ
τ= − ( ) =

( )τ τ τ
τ+

Taking the transpose of the expressions involved in the initial value problem (58) proves the last equation in (69). Finally,
the uniqueness of both decompositions in (11) follows from the uniqueness of the solutions of the initial value problems in
(69).
Appendix C. Proof of Theorem 2

Statements (i)–(iii) follow by a direct application of Theorem 1 to the process T Ft t=τ τ . To prove statement (iv), we apply
the time-dependent coordinate change (14) to the expression tx X xt( ) = ( )τ τ and obtain

⎡⎣ ⎤⎦t t ty Q X Q y b b . 59T t τ τ( ) = ( ) ( ( ) + ( )) − ( ) ( )τ τ

Differentiation of this equation with respect to yτ yields the transformed deformation gradient tF yt
y

˜ = ∂ ( )τ τ in the form

tF Q F Q , 60
t T t τ˜ = ( ) ( ) ( )τ τ

showing that the deformation gradient tensor is not objective (cf. Liu, 2004). Differentiating (60) with respect to time, and
first subtracting then adding the transpose of the resulting equation, yields the transformed spin and rate-of-strain tensors

t t t t t t t t t tW y Q W x Q Q Q D y Q D x Q, , , , , , 61
T T T( )˜ ( ) = ( ) ( ) ( ) − ( ) ̇ ( ) ˜ = ( ) ( ) ( ) ( )

respectively, indicating that W is not objective but D is objective.
Using the decomposition Ft

τ obtained from statement (i) in the original x-frame, we factorize the transformed de-
formation gradient (60) as

t tF Q O M Q O M O Q O Q M Q M Q, , . 62
t T t t t t t T t t T tτ τ τ τ˜ = ( ) ( ) = ˜ ˜ ˜ = ( ) ( ) ˜ = ( ) ( ) ( )τ τ τ τ τ τ τ τ τ

We want to show that this factorization is in fact the unique DPD of the transformed deformation gradient Ft˜
τ .

To this end, note that

⎡
⎣⎢

⎤
⎦⎥

t t t t t t t t

t t t t

O Q O Q Q O Q Q W x O Q Q O Q W y O

M Q M Q Q O D x O M Q O D y O M

, , ,

, , ,
63

t
T t T t T t T t t

t
T t T

t
t t

t
t t( )

τ τ τ τ

τ τ τ τ

˜ ̇ = ( ) ̇ ( ) + ̇ ( ) ( ) = ( ) ( ( ) ) ( ) + ̇ ( ) ( ) = ˜ ( ( ) ) ˜

˜ ̇ = ( ) ̇ ( ) = ( ) ( ( ) ) ( ) = ˜ ˜ ( ) ˜ ˜
( )

τ τ τ τ τ τ

τ τ
τ

τ τ
τ

τ τ

where we have used the identity Q Q Q QT Ṫ = − ̇ and the formulas from (61). Therefore, by (63), O
t˜
τ is a rotational process and

Mt˜
τ is an irrotational family of operators. By the uniqueness of the DPD, we conclude that (62) indeed represent the unique

dynamic polar decomposition of the transformed deformation gradient Ft˜
τ . By the relation M Q M Qt T tτ τ˜ = ( ) ( )τ τ , the trans-

formed dynamic stretch tensor Mt˜
τ is related to its original counterpart Mt

τ through a similarity transformation, and hence all

scalar invariants of Mt
τ are preserved in the new frame. We do not, however, have t tM Q M Qt T t˜ = ( ) ( )τ τ and hence Mt

τ is not
objective. Finally, rewriting the transformed deformation gradient as

t t t tF Q N O Q N O N Q N Q O Q O Q, , , 64
t T t t t t t T t t T tτ τ˜ = ( ) ( ) = ˜ ˜ ˜ = ( ) ( ) ˜ = ( ) ( ) ( )τ τ τ τ τ τ τ τ τ
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and repeating the rest of the above argument for the left dynamic stretch tensor Nt
τ completes the proof of statement (iv).

Note that Nt
τ is objective by the second formula in (64).
Appendix D. Proof of Theorem 3

To prove the first decomposition in (23), we write the rotation tensor Ot
τ in the form Ot t tΦ Θ=τ τ τ , with tΦτ ,

tΘτ SO 3∈ ( ),
IΦ Θ= =τ

τ
τ
τ yet to be determined. Differentiating this factorization with respect to t gives

O . 65
t t t t tΦ Θ Φ Θ̇ = ̇ + ̇ ( )τ τ τ τ τ

At the same time, we also rewrite the ODE (16) defining Ot
τ in the form

⎡⎣ ⎤⎦t t t tO W x W W, . 66
t t t t tΦ Θ Φ Θ̇ = ( ( ) ) − ¯ ( ) + ¯ ( ) ( )τ τ τ τ τ

Equating the first and second terms in the right-hand sides of (65) and (66) leads to the initial value problems (24) and (25)
proving the uniqueness of the first decomposition in statement (i). The relative rotation tensor is a rotational process, given
that it is the fundamental matrix solution of the classical system of ODEs (24), whose skew-symmetric right-hand side has
no explicit dependence on the initial time τ. By (25), the mean-rotation tensor tΘτ forms a rotational operator family.
However, tΘτ is generally not a linear process, given the explicit dependence of the right-hand side of (25) on the initial time
τ.

To prove the second decomposition of Ot
τ in (23), we observe that

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦O O ,t
t

T
t t

T
t

T
t

T
t

T t( ) ( ) ( )Φ Θ Θ Φ Θ Φ= = = =τ
τ τ τ τ τ τ

τ

thus setting

SO 3 , 67t
t

T( )Σ Θ= ∈ ( ) ( )τ
τ

we recover the left mean rotation tensor tΣτ , as claimed. Interchanging the role of τ and t in the second equation of (69), we
find that

⎡
⎣⎢

⎤
⎦⎥

d
d

W I, ,
68t

t
t t t

t

τ
τΘ Φ Φ Θ Θ= ¯ ( ) =

( )
τ

τ
τ τ

thus, using formula (67), we obtain

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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d
d

d
d

0.t
t

t
tτ τ

Σ Θ Σ Θ+ =τ
τ

τ
τ

This last equation together with (68) gives the initial value problem

⎡
⎣⎢

⎤
⎦⎥

d
d

W I, .
69

t t t
t t

t

τ
τΣ Σ Φ Φ Σ= − ¯ ( ) =

( )τ τ τ
τ

Taking the transpose of (69) proves the last equation in (26). Again, the uniqueness of both decompositions in (23) follows
from the uniqueness of solutions to (26). Finally, tΣτ is a rotational operator family, but not a process, as discussed already for

tΘτ .
To prove the last statement of the theorem, we first change coordinates under a general Euclidean transformation (14),

and use tilde, as in the proof of Theorem 2, to denote quantities in the y coordinate frame. We recall from formula (61) the
form of the transformed vorticity tensor

t t t t t tW y Q W x Q Q Q, , . 70T T˜ ( ) = ( ) ( ) ( ) − ( ) ̇ ( ) ( )

Taking the spatial mean of both sides in Eq. (70) over the body t( ), and noting that the transformation (14) preserves the
volume of t( ), we obtain

t t t t t tW Q W Q Q Q . 71T T˜̄ ( ) = ( ) ¯ ( ) ( ) − ( ) ̇ ( ) ( )

Subtracting (71) from (70) gives

⎡⎣ ⎤⎦t t t t t tW y W Q W x W Q, , . 72
T˜ ( ) − ˜̄ ( ) = ( ) ( ) − ¯ ( ) ( ) ( )

Next, using the decomposition of Ot
τ from statement (i) in the original x-frame, we factorize the transformed dynamic

rotation tensor O
t˜
τ obtained in Eq. (62) as

t t tO Q P P Q, , , 73
t t t t T t t t1 τΦ Θ Φ Φ Θ Θ˜ = ˜ ˜ ˜ = ( ) ( ) ˜ = ( ) ( ) ( )τ τ τ τ τ τ τ

−
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with the matrix tP( ) to be determined in a way that (73) gives the unique relative-mean rotation decomposition of O
t˜
τ in the

y coordinate frame. Both tΦ̃τ and tΦτ , as well as tΘ̃τ and tΘτ , are equal to the identity matrix at time t τ= , thus by (73), tP( )
must necessarily satisfy

P Q . 74τ τ( ) = ( ) ( )

To determine tP( ), we differentiate the expression for tΦ̃τ in (73), then use (24) and (72) to obtain

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

t t t t t t t t t t t t t t

t t t t t t

Q P Q P Q P Q P Q W x W P Q P

W y W Q P Q P

, ,

, . 75

t T t T t T t T t T t T t

t T t T t

Φ Φ Φ Φ Φ Φ Φ

Φ Φ Φ

˜ ̇ = ̇ ( ) ( ) + ( ) ̇ ( ) + ( ) ̇ ( ) = ̇ ( ) ( ) + ( ) ( ) − ¯ ( ) ( ) + ( ) ̇ ( )

= ˜ ( ) − ˜̄ ( ) ˜ + ̇ ( ) ( ) + ( ) ̇ ( ) ( )

τ τ τ τ τ τ τ

τ τ τ

The transformed relative rotation tensor tΦ̃τ is defined by the equation t tW y W,
t tΦ Φ˜ ̇ = [ ˜ ( ) − ˜̄ ( )] ˜τ τ in the y coordinates,

therefore (75) implies

t t t tQ P Q P 0,T t T tΦ Φ̇ ( ) ( ) + ( ) ̇ ( ) =τ τ

or, equivalently,

t t t tP Q Q P . 76t
T tΦ Φ̇ ( ) = ̇ ( ) ( ) ( ) ( )τ

τ

This linear system of differential equations has a skew-symmetric coefficient matrix, therefore tP( ) is a proper orthogonal
matrix, and hence

t tP P . 77T1( ) = ( ) ( )−

For two-dimensional deformations, the skew-symmetric tensor t tQ QṪ ( ) ( ) is always a scalar multiple of a rotation tensor,
and hence commutes with any other two-dimensional rotation tensor. Consequently, Eq. (76) can be re-written as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥t t t t t t t t

d
dt

t tQ P Q P Q P Q P Q P 0,
78

T t T t t T T t TΦ Φ Φ Φ̇ ( ) ( ) + ( ) ̇ ( ) = ̇ ( ) ( ) + ( ) ̇ ( ) = ( ) ( ) =
( )τ τ τ τ

implying that t tQ PT ( ) ( ) is a constant rotation. Therefore, by (74), we conclude from (78) for two-dimensional deformations
that t tP Q( ) ≡ ( ). Thus formula (73) gives

t tQ Q ,t T tΦ Φ˜ = ( ) ( )τ τ

proving statement (ii) of Theorem 3.
Appendix E. Fiber-averaged angular velocity of a rigid body

Consider a perfectly rigid body t( ), with a well-defined angular velocity vector trigidν ( ) (see Fig. 9a).
We seek to average tx e, ;minν ( ) over all vectors e ,ϕ ψ( ) taken from the spherically parametrized unit sphere Sx

2. Note the
cancellation of the averaged vector in radial directions normal to trigidν ( ) due to the circular symmetry shown in Fig. 9b.
a b

Fig. 9. (a) The geometry of the minimal admissible angular velocity tx e, ;minν ( ) at a point x and the actual angular velocity trigidν ( ) in case of an ideal rigid
body motion. (b) The radial components of the vector field tx e, ;minν ( ) along the circle average out to zero, and hence only the components normal to the
plane of contribute to the average tx e, , Se xmin 2ν ( ) ∈ .
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Further note from Fig. 9a that the projection of tx e, ;minν ( ) on the axis of rotation defined by trigidν ( ) is

t tx e, ; sin sin .rigidmin
2( )ν νψ ψ= ( )

From these considerations, we obtain that the average of the vector field tx e, ;minν ( ) over Sx
2 is

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥t t d d t dx e x e, ,

1
2

1
, ; ,

1
sin

79S rigidemin
0

2

0
min

0

2
x
2 ∫ ∫ ∫ν ν ν

π π
ϕ ψ ψ ϕ

π
ψ ψ( ) = ( ) = ( )

( )

π π π

∈

t tx e, ,
1
2

. 80S rigidemin x
2ν ν( ) = ( ) ( )∈

Therefore, for the material fiber-averaged angular velocity t x,ν ( ) defined in (29), we obtain

t tx, 81rigidν ν( ) = ( ) ( )

in the case of a perfectly rigid body.
Appendix F. Proof of Proposition 1

In order to calculate the fiber-averaged angular velocity tx,ν ( ) defined in (29), we first need a general expression for the
derivative tė( ) for an arbitrary unit vector te( ) tangent to an evolving material fiber. Differentiating the definition (27) of te( )
in time, and using Example 1, we obtain

t t
e

v x F e F e

F e

,
.

t t t t

t

v x F e F e

F e

, ,

2

t t

tτ τ

τ

∇
̇ =

( ( ) ) ( ) − ( )

( )

τ τ
τ τ

τ

τ

∇ ( ( ) ) ( ) ( )

( )

τ τ

τ

Setting τ equal to t in this last equation and using formula (4) gives

⎡⎣ ⎤⎦e W D e De I e, . 82̇ = + − ( )

This equation is broadly known (see, e.g., Chadwick, 1976), and has only been re-derived here for completeness and no-
tational consistence.

Taking the cross product of both sides with e and using the definitions (28) and (29), we obtain from (82) the general
expression

e We e De e De2 2 2 , 83S S Se e e
1
2x x x

2 2 2ν ω= × + × = + × ( )∈ ∈ ∈

where we have applied the relationship (81) to the rigid body rotation generated by the angular velocity tensor tW x,( ) with
angular velocity t tx,rigid

1
2

ν ω( ) = ( ).
Let tb x,i i 1

3{ ( )} = denote a positively oriented orthonormal basis for the rate-of-strain tensor tD x,( ), with corresponding
eigenvalues t t tx x x, , ,1 2 3σ σ σ( ) ≤ ( ) ≤ ( ). In this basis, the unit vector e has the classic spherical coordinate representation (cf.
Fig. 9b)

e b b bcos cos cos sin sin ,1 2 3ψ ϕ ψ ϕ ψ= + +

from which we obtain

e De b b bsin 2 sin sin 2 cos sin 2 cos .1
2 3 2 1

1
2 2 3 2

1
2 2 1

2
3( ) ( ) ( )σ σ ψ ϕ σ σ ψ ϕ σ σ ϕ ϕ× = − + − + −

This shows that

e De 0,Se x
2× =∈

thus formula (83) simplifies to t tx x, ,1
2

ν ω( ) = ( ), proving the statement of Proposition 1.
Appendix G. Proof of Theorem 4

By Theorem 2, we have

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

t t t t

t t t t t t

O O e W x e x e

e W x W e x e

, , ,

, , .

t t T

t t T

1
2

1
2

ω

ω ωΦ Φ

̇ = ( ( ) ) = − ( ( ) ) ×

̇ = ( ( ) ) − ¯ ( ) = − ( ( ) ) − ¯ ( ) ×

τ τ

τ τ
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Therefore,

s s s s ds s s s s ds s s s s dsx g x g x x g x x g x x g x g; , , , , , , ; ; ,t
t t

t1
2

1
2

1
2∫ ∫ ∫ω ω ωφ φ φ( ) = − ( ( ) )· ( ( ) ) = − ( ( ) )· ( ( ) ) − ( ( ) )· ( ( ) ) = ( ) + ( )τ τ

τ σ τ

σ

σ σ τ
σ

τ

and similarly,

x g x g x g; ; ; , 84t tϕ ϕ ϕ( ) = ( ) + ( ) ( )τ τ σ σ τ
σ

τ

proving the dynamical consistency of tφτ and tϕτ , and completing the proof of statement (i) of the theorem.
To complete the proof of statement (ii), we must prove the objectivity of the relative dynamic rotation x g;tφ ( )τ τ under a

Euclidean frame change of the form (14). As is well known (see., e.g., Truesdell and Rajagopal, 2009), the transformed
vorticity ty,ω̃( ) is related to the original vorticity tx,ω ( ) through the formula

t t t tx Q y q, , , 85ω ω( ) = ( ) ˜ ( ) + ̇ ( ) ( )

where the vector q̇ is defined via the identity q a QQ aT1
2

̇ × ˜ = ̇ ˜ for all a 3˜ ∈ , accounting for the additional vorticity introduced
by the frame change. Taking the spatial means of both sides in (85) over the evolving continuum t( ) gives

t t t tQ q , 86ω ω¯ ( ) = ( ) ˜̄ ( ) + ̇ ( ) ( )

because the volume of t( ) remains constant under the Euclidean frame change (14). Subtracting (86) from (85), we obtain
that

⎡⎣ ⎤⎦t t t t tx Q y, , . 87ω ω ω ω( ) − ¯ ( ) = ( ) ˜ ( ) − ˜̄ ( ) ( )

The vector field tg x,( ) is transformed under the frame change as

t t tg y Q g x, , . 88T˜ ( ) = ( ) ( ) ( )

We observe that in the rotating frame, g̃ is necessarily time-dependent, even if g was originally chosen as a time-in-
dependent constant direction. Using the formulas (87) and (88), we obtain that

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

s s s s s ds s s s s s s s ds

s s s s s ds

x g x g x Q y Q g x

y g x y g

;
1
2

, ,
1
2

, , ,

1
2

, , ; ,

t
t t

t
t

∫ ∫

∫

ω ω ω ω

ω ω

ϕ

ϕ

( ) = − ( ( ) ) − ¯ ( ) · ( ( ) ) = − ( ) ˜ ( ( ) ) − ˜̄ ( ) · ( ) ( ( ) )

= − ˜ ( ( ) ) − ˜̄ ( ) · ˜ ( ( ) ) = ( ˜ )

τ τ
τ τ

τ τ τ

which completes the proof of statement (ii) of the theorem. Statement (iii) then follows by setting g /ω ω ω ω= − ( − ¯ ) − ¯ .

Remark 12. The argument leading to (84) would not work for the polar rotation angle. Indeed, the angular velocity
q t,polar τ̇ ( ) of the polar rotations inherits explicit dependence on τ from R Rt t Ṫ ( )τ τ . As a consequence, for the polar rotation angle
defined as

q s s s dsx g g x; , , ,t
t

polar∫γ τ( ) = ̇ ( )· ( ( ) )τ τ
τ

we obtain

q q qs s s ds s s s ds s s s dsx g g x g x g x

x g x g x g

; , , , , , ,

; ; ; ,

t
t

polar polar

t

polar

t

∫ ∫ ∫γ τ τ τ

γ γ γ

( ) = ̇ ( )· ( ( ) ) + ̇ ( )· ( ( ) ) = ̇ ( )· ( ( ) )

+ ( ) ≠ ( ) + ( )

τ τ
σ τ

σ

σ

τ
σ

τ σ σ τ
σ

τ

because we generally have q qs s, ,polar polarτ σ̇ ( ) ≠ ̇ ( ) for τ σ≠ .
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