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Abstract: We consider a class of dynamical systems that arise frequently in multi-mode
truncations and discretizations of partial differential equations, including the perturbed
NLS. We develop a general method to detect the existence of multi-pulse solutions
that are doubly asymptotic to an invariant manifold with two different time scales. We
use our method together with some recent results of Li and McLaughlin to show the
existence of several families of multi-pulse orbits for the Ablowitz-Ladik discretization
of the perturbed NLS. These orbits includépulse heteroclinic orbits and/-pulse
Silnikov-type orbits for arbitrarily largev.

1. Introduction

In this paper we study a class of multi-degree-of-freedom dynamical systems which
arise in modal truncations of partial differential equations on periodic domains. One
usually arrives at these equations when looking for small amplitude solutions of a PDE
with parametric forcing terms. An important prototype example is the damped-forced
sine-Gordon equation, which we discuss briefly below for motivation.

As shown in, e.g., Bishopt al. [5], a small amplitude approximation to the sine-
Gordon equation leads to a perturbed nonlinear &tihger Eq. (NLS). For a range of
parameters, the integrable limit of the NLS admits one linearly stable and one unstable
mode together with infinitely many neutrally stable modes. These latter modes can be
further decomposed into a mode of plane waves (i.e., solutions with no spatial structure)
and an infinite number of neutrally stable, i.e., oscillatory modes. A finite dimensional
approximation to the problem is a well-known discretization of the NLS that produces
anintegrablesystem in the unperturbed limit (see Ablowitz and Ladik [1], Bogolyubov
and Prikarpatskii [7], and Milleet al.[36]).
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In the discretized NLS the plane of spatially independent solutions is invariant under
both the perturbed and the unperturbed dynamics. For zero dissipation and forcing,
the plane contains a circle of fixed points which is surrounded by a one-parameter
family of periodic solutions. Furthermore, the invariant plane lies in a codimension two
center manifold that accounts for the non-planar oscillatory modes. The center manifold
is normally hyperbolic as it admits a one-dimensional stable and a one-dimensional
unstable subspace at each of its points. This hyperbolicity is due to the presence of the
stable and unstable modes mentioned above, and gives rise to codimension one stable
and unstable manifolds to the center manifold. These invariant manifolds then coincide
in two homoclinic manifolds in the integrable limit of zero forcing and damping. This
phase space geometry is quite remarkable as it is a precise finite dimensional model of
the phase space structure of the original PDE (see, e.g., Erevianj8], Ercolani and
McLaughlin [9], and Li and McLaughlin [30] for details).

A similar analogy exists between the phase space structure of the perturbed NLS
equation and its two-mode approximation (see Bisabal. [5, 6]). This fact inspired
a great deal of work on modal truncations of the perturbed NLS, although all rigorous
results so far are only concerned with the two-mode approximation that excludes the
oscillatory modes (see Bishepal. [5, 6], KovaCic and Wiggins [27], Haller and Wiggins
[16], McLaughlinet al. [34], and Haller and Wiggins [19]). Other examples with the
modal truncations of the same class include parametrically forced surface wave problems
(Holmes [22], and Kambe and Umeki [25]), the dynamics of forced and damped thin
plates (Feng and Sethna [10]), inextensional beams (Nayfeh and Pai [37], Feng and Leal
[12]), and resonantly driven coupled pendula (Miles [35], Becker and Miles [4], and
Kovati¢ and Wettergren [28]). All these problems can be recast in the form of Eq. (1)
below. Our basic goal in this paper is to study the existence of nontrivial homoclinic and
heteroclinic behavior in these systems by including an arbitrary high but finite number
of modes.

The main result of the paper is the construction of a class of complicated solutions
in multi-mode truncations or discretizations. These solutions admit three different time
scales and correspondtoirregular “jumping” around the pianéspatially independent
modes. In our general formulation we in fact allow for the presence of-@Znensional
manifold I7 which contains amn-torus of equilibria in the unperturbed limit.

In backward time the solutions we construct asymptote to some gétwhich
is born out of the perturbation of the torus of fixed points of the unperturbed limit. In
forward time, after making several jumps away frémthe solutions asymptote to other
structures in the center manifold that lie in the vicinity of the manifbldWe give a
criterion for the existence of such solutions, which is a generalization eftbey-phase
methoddeveloped in Haller [15] and Haller and Wiggins [19] for two-degree-of-freedom
systems.

Under certain conditions, the solutions we construct will ultimately asymptote to
some invariant set within the manifold. If their w and a-limit sets coincide, then
we obtain a multi-pulse orbit homoclinic to this set. An important special case arises
when this set is an equilibrium that is a sink for the dynamics on the codimension two
center manifold. We call the resulting multi-pulse orbit/grpulseSilnikov-type orbit
Such orbits seem to have a prominent role in creating complicated or chaotic dynamics
in modal equations. While single-puléﬁlnikov orbits can also be obtained in these
problems applying a modified Melnikov method (see Kowand Wiggins [27], Feng
and Sethna [10], Feng and Wiggins [11], Tien and Namachchivaya [38],dkoead
Wettergren [28]), and Li and McLaughlin [31], such orbits generically exist for a single
codimension one surface in the space of system parameters. In contrast, our methods
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typically yield multi-pulseéilnikov-type orbits on an intricate web of the parameter
space (see Haller and Wiggins [19] for a two-mode example).

The main techniques we use in this paper include the perturbation theory of nor-
mally hyperbolic invariant manifolds, their stable and unstable manifolds, and stable
and unstable foliations. We do not explicitly assume that in the limit of zero forcing
and damping the modal equations are integrable. We do, however, assume the presence
of particular structures in this limiting geometry, which are not typical in nonintegrable
cases. Our strategy is to follow trajectories in the unstable manifold of the manhifal
they leave and repeatedly return to a neighborhood of the center manifold. The control
over individual trajectories is achieved by obtaining estimates on their location as well as
on their energies before and after their intermediate passages near the center manifold.
This amounts to studying the properties of an appropriately defined local Pomeaar.

The results of this study are summarized in the Passage Lemma (Lemma 7.1), which sets
the stage for a final implicit function argument in Theorem 7.3 of Sect. 6. This argument
is subtle since the equation satisfied by multi-pulse homoclinic orbits becomes unde-
fined in the limit of the vanishing perturbation parameter. We circumvent this problem
by defining an extension to the local map at this limit, and use the Passage Lemma to
conclude that this extension is of clags. We use the main result formulated in Theo-
rem 7.3 on multi-pulse orbits to give conditions for the existence of multi-pulse orbits
homoclinic to the manifoldl in Theorems 7.4-8.1 of Sect. 6. We study the “disintegra-
tion” of the unstable manifold of the plaré via repeated jumping in Sect. 7. We give

a useful reformulation of our method in Sect. 8 for the case when one of the invariants
of the unperturbed limit is more convenient to use than the unperturbed Hamiltonian.
An application of the results to a near-integrable discretization of the perturbed NLS is
given in Sect. 9. Finally, we present some conclusions in Sect. 10.

2. Setting and assumptions

The class of modal truncations listed in the Introduction can be written in the general
form
& = W [DHo(z) + eDHi(2)] + (), )

wherez € P C R+ with n > 0, m > 1, ande > 0 is a small parameter. The
functionsHy andH, are assumed to be of clag$* in their arguments with > 5 and

they generate the Hamiltonian part of the vector field (1) through the symplectic form
w on the phase spa@@ The mapy?: T*R2*m*1) _, R2(+m+1) gppearing in (1) is the
inverse of the mag — {w[z](¢, -)} with z € R20*™*D and¢ € T,R2* ™+, The
functiong is of classC™ and it corresponds to the dissipative part of the perturbation to
the unperturbed limi¢ = 0. We make the following basic assumptions on system (1):

(H1) There exists a2—dimensional manifold/ c P which is invariant under the
flow of (1) fore = 0. Furthermore, the manifolff is symplectic, i.e., the restricted
two-form

wi =wl

is nondegenerate.

(H2) Fore = 0, system (1) restricted tf becomes am-degree-of-freedom, completely
integrable Hamiltonian system, i.e., it admitsindependent integrals which are
in involution with respect to the Poisson bracket induced by the symplectic form
wir -
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By assumption (H2), the Liouville-Arnold-Jost theorem (see, e.g., Arnold [3]) guar-
antees the existence of an open A&tC II on which we can introduce canonical
action-angle variabled (¢) € R™ x T™. (If the level surfaces ofiy are not compact
within the set\/, then we have) € R", but all of our forthcoming results are still valid.)
We assume that the frequency vecatoranishes on one of these tori, i.e.,

(H3) Fore = 0 there exists am-dimensional toru€ C A given by = Iy which is
completely filled with equilibria of system (1). Furthermore, for any ppiat I7,
the Jacobian/ = Dw* Hy(z)|.=, admits preciselyn pairs of zero eigenvalues,
a pair+Xp of nonzero real eigenvalues, andgairs of simple, purely imaginary,
nonzero eigenvalu@s\y, ..., i\,.

This assumptionimplies the presence of a stable, an unstablepanedially stable
directions transverse to the manifdlflin the unperturbed limit of system (1). We stress
that in (H3) we assumed the eigenvalues and eigenvectats taf be independent of
the pointp € C.

Since the normal bundle of the tor@iss trivial within 17, the independence of stable,
unstable and center subspaces of pointg @tlows us to introduce local coordinates
y = (y1,72) € R?andz € R?" in a neighborhood, C P of the set\/. The coordinates
are such that Eq. (1) can be rewritten in the form

§=Ay+Y(y, 21, ¢;€),
’;f/: A§+Z(yvzala¢;6)a

I=cB(y.21,60), @)
¢ =Foly,z,1,9) +eFe(y, 2,1, ¢ e).
HereA is adiagonal matrix with eigenvalugs\, andA hasthe eigenvaluési, . . . ;i\,.
Hence there exists a constari > 0 such that
|et2] < Calzl. (©)
Note that in the local coordinates we introduced the manifdlgatisfies the equations

y=0andz=0.
Our next major assumption is that

(H4) Fore =0, the torug” admits a unigue, codimension two center manifold
Mo={ (v, 1,0) | y=9°(z1,9), (z,1,4) € V C R¥" ™M},
where the function®(z, I, ¢) is of classC".

By the uniqueness of this center manifald,C Mo must hold (at least locally near

C), which implies

%0, 1,¢) = 0.
We note that the existence and uniquenesefis usually easy to verify if the unper-
turbed part of system (2) is integrable. In all applications we know of, this integrability is
due to the fact that the system is invariant under rotatiogs in such cases the function
y° has no explicit»-dependence.

Taking V' small enough, we can ensure thiety is a normally hyperbolic invariant
manifold which admits codimension one stable and unstable manifolds of €lass
denotediV ¢ (M) andW*(M,), respectively.

Our next assumption is the existence of a homoclinic structure in the unperturbed
problem. In particular, we assume that
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(H5) The manifoldsi¥¢(Mg) andW *(M,) coincide and form two homoclinic mani-
folds W (Mo) andW (Mo).

These homoclinic manifolds are foliated by orbits doubly asymptotic to the center
manifold M. Based on the applications we are interested in, our next main assumption
is that

(H6) Each of the two homoclinic manifolds contains a one-parameter family of hetero-
clinic orbits that connect points on the tor@sin other words, the torus has its
ownm + 1-dimensional stable and unstable manifolds that form two homoclinic
manifoldsiW (C) andW, (C). Furthermore, the heteroclinic orbits in baify (C)

andW, (C) connect the same pair of points, i.e., the phase shift vector

Ay 0
Az = Jim a0 -0 = | 47 | = 5 @
A¢ lim o &" (1) — 6" (1)

is the same for any solutiar () in W5 (C) U Wy (C).

We would like to ensure that a manifold close fib survives the perturbation. If
n =0, i.e., there are no “oscillatory modes” for the linearized dynamics, then M,
is normally hyperbolic, hence it smoothly perturbs to a nearby invariant manifold. For
n > 0, however,I in general does not persist. Motivated by the examples listed in
Sect. 1, we then require the perturbation to be such that it presArves

(H7) If n > 0, then the manifold? remains invariant under the flow of system (1) for
e > 0.

Based on assumptions (H1)-(H7), we can guarantee the persistence of certain in-
variant manifolds fore > 0 sufficiently small. The following theorem describes the
properties of these manifolds.

Theorem 2.1. Suppose that assumptions (H1)-(H7) hold. Then there exists0 such
that for 0 < € < ¢ the following are satisfied:

() There exists a unique, codimension-two, locally invariant manifeld of class
C" which depends on the parametan a C" fashion. Ifn. > 0, then the manifold
M. contains the invariant manifoldl which satisfieg) = 0andz = 0. If n = 0,
then Mg = I1.

(i) The manifold M. has codimension-one local stable and unstable manifolds
Wi (M) and W (M.) that are of classC” in the variables(y, z, I, ¢) and
€.

(iii) The local unstable manifold».(M.) is foliated by a negatively invariant family
FU = Upem, ["(p) of C" curvesf(p), i.e., F* = Wi (M.) and F~* (f“(p)) C
[ (F~(p)) foranyt > 0Oandp € M, (here F* denotes the flow generated by
system (1). Moreover, the fibef%(p) are of clas<”" in e andp, andf“(p)Nf*(p’) =
(), unlessp = p’. Finally, there existC,,, A, > 0 such that if; € f“(p) then

| F~q) = F~' () ||< Cue™ ",

foranyt > 0.
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(iv) The local stable manifoldilS (M) admits a positively invariant foliatiotF® =
Upem. f™(p) with similar properties.

Proof. The statements of the theorem follow from a direct application of the invariant
manifold results of Fenichel [13, 14]. We only note that the uniqueness of the perturbed
manifold M. impliesII C M. in statement (i). O

For simplicity, from now on we will not distinguish between the casesO0 (i.e., no
oscillatory modes for the unperturbed linearized flow near the maniigledndn > 0.
As a result, when we refer to the invariant maniféldfor the perturbed system (e
meanll = M. in the case of. = 0.

3. Fenichel Normal Form Near.M,

In this section we derive a normal form which describes the dynamics of system (1)
near the normally hyperbolic invariant manifold . which exists by Theorem 2.1. The
normal formis a specific form of a result of Fenichel [14], or more precisely, of the normal
form appearing in Tin [39] (see also Jones and Kopell [23]). Since this construction has
appeared in several recent papers, we omit the details of the derivation of the normal
form. For a detailed proof, the reader may consult Haller [21].

We first introduce the scaling

I=1Iy+/en, )

to blow up a neighborhood of the torus of equilibfidJsing the coordinateg(z, , ¢),
we obtain the following result.

Lemma 3.1. There existsg > 0 such that fol0 < ¢ < ¢y, a C” change of coordinates
7. (y, z,n, ¢) — (w, (, p,v) (with aC" inverse) defined near the manifol ., which
puts system (1) in the form

’Li}]_ = [_>\ + <Yla w> + <}/é7 C> + \ﬁyé]wb

wy = [ A+ (Ya,w) + (Ys, () +/eYe]wa,
(= AC+H(Z1Q) C + VeZo( + Zgwrwo, (6)
b= VeE.
1/) = (F]_C) C + \/EFZ + Fywiwy.

Here the functiond®, Yz : P x [0, e0] — R?, Y2, Ys: P x [0, o] — R??, Y3, Y5: P x
[0,¢0] = R, B, %, F3: Px[0,e] — R™, Zz: Px[0,e0] — R?", Z>: Px[0, 0] —

R, and the 3-tensorgy: P x [0, eg] — R?**2"%2n andFy: P x [0, ¢g] — R™*?*2ngre

all of classC”~#in their arguments, and, -) denotes the usual Euclidean inner product.
Moreover,

DwZ1=0, DuwZ,=0, Dy Fi=0, D,F,=0. @)

Proof. Based onthe references cited above, the proof of this theorem is a routine exercise
following the steps outlined in Fenichel [14]. These steps involve changes of coordinates
that “straighten out” the manifold$A1. , W;5.(M.), and Ws.(M.), as well as their
invariant foliations. For a detailed proof we refer the reader to Haller [21][]
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4. Dynamics Near the Manifold M .

In this section we use the normal form (6) to study trajectories in a neighborhood of the
manifold M.. The trajectories of interest lie in the unstable manifidiét(M.) and do
not intersect the local stable manifdiid; .(M.) upon entering a small neighborhood of
M.. Since M. is of “saddle-type”, such trajectories pass near the manifold and leave
its neighborhood. The question is how the coordinates (p, ¢)) change during this
passage and how the change depends on their initial values upon entry.

By Lemma 3.1, the flow of system (1) near the manifdi¢l is C"-conjugate to
the flow of the normal form (6) in a neighborhood of the et 0. In other words, for
€ < ¢o the normal form is related to the original system within some fixed open set

SO = {(waC,Pﬂ/)) ‘ "U}| < Kun K‘ < KC) \/g|p| < KI’ 'IZ) eT™ }7

where K., K,, and K; are fixed positive constants. We shall primarily be interested
in solutionsz(t) = (w(t), ¢(t), p(t), 1 (t)) of the normal form which enter a small, fixed
“box”
K, Ky
= [ < 6 = S 5 K 9 S K -
Uo = { (0, € 5ol funl < 60 < o [6] < 60 < K, ol < K, < L]

with positive constant§, and K ,. Since the functions on the right-hand-side of (6) are
of classC™ 4, on the closure 0 they obey the estimates

Yil, 1], |B], [Fi| < Bo, .
‘DYZ‘v |DZj|7 |DE|, ‘DFk| < BO,

for all 0 < e < ¢y and for appropriatésy > 0. We want to follow a solutior(¢) which
enters the sdt/y by intersecting its bounda@U, within the domain

8lU'O = {(W7C7P,¢) € an | |C| < 6O> |P| S Kp}

attimet = 0. For such a solution we haug(0) = dg, and we assume that ford ¢ < ¢,
the rest of the coordinates of the entry pai®) obey theentry conditions

Co€ C3€
€O < e, T < w0 < T O] < e < K, ©)

for fixed positive constants, .. ., ¢4 and for some powe% < B <1

The second inequality in (9) implies that the solutigr) enterd/, close to the local
stable manifold¥,3.(M.). Such solutions spend a long time witltip, and hence their
¢(t) component does not necessarly remain under control on such time scalegt)i.e.,
may not exitl/y through the domain, U, of its boundary. An exit through, Uy means
that |¢| remains bounded b§y while z(t) is in Up. Our first result shows that this is
indeed the case.

Lemma 4.1. Suppose that for a solutiar(t), the entry conditions in (9) are satisfied.
Then for any fixed constaptwith % < 3 < 1, there exist; > 0 andd; > 0 such that
forall 0 < §p < 61 and0 < €y < €3 there existg™ > 0 with z(T™) € 9:Uy. Moreover,
the minimal such tim&* obeys the estimate

T* <T.==log—2. (10)
Co€
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Proof. We start by picking constant8; anda with B, > ¢; > 0 andf < o < 1.
Then, by the smoothness of the solutign) with respect ta, (9) implies the existence
of atimeT > 0 such that for alt € [0,T), we have

KO < Bee®, o) < K, Joa(ywa(d)] < 5—2 (11)

Clearly, fore small enough, (11) implies(t) € Sp. By the continuity ofz(¢) in ¢, we
also haver(t) € Uy for t > 0 small enough. It is also clear th@tcan be slightly
increased so that the inequalities above still hold. Tét> 0 denote the time when
x(t) first intersects the boundaé{/y. One can easily check th@t* < 7. must hold by
assuming the contrary and observing that such an assumption would leadfo)| >
|waol exp()\T*/Z) > dg, which is a contradiction. We want to argue tiatan in fact
be increased up td*. _

Let us assume that for all fixed-, K ,, anda, there exists a timép with ' < Tp <
T. such that (11) holds for all < Tp, but at least one of the inequalities is violated
att = Tp. We will consider these inequalities individually and argue that none of them
can be violated at = Tj if we choose: andédp small enough and seleg;, K ,, anda
properly. We note thaiw,| < /25 will automatically hold in our argument sindg is
smaller than the exit time™.

By assumption, the third equation of (6) yields the following estimate for atl 0
t < Top on the solutione(t):

CE)] = (MO + fo 442 ((Z10) ¢ + Ve ZoC + Zawrw,) | ds
< CAlS(0) + CaBo [y (Bce?|((s)] + VelC(s)| + Ee) ds
< Calere® + Bo2eT.] + 2C 4 BoBev/e [y |C(s)] ds,

where we used (3). By the Gronwall inequality, this implies

IC(t)] = Calcre” + Bo%GaTe] ¢?CaBoBVele < 2601 O pe? (12)
0

for e > 0 small. Since (12) holds for all & ¢ < Tp, by the continuity ofi{(t)|, we
obtain

|C(To)| < 2ec1Cae® < Beé?, (13)

if we chooseB, = 7¢,C 4. Therefore, the first inequality in (11) cannot be violated at
t = Tp. We now study the second inequality in (11).

Using the fourth equation in (6), for € ¢t < Tp we can estimate the-component
of the solutionz(t) as

¢ 2B 52
lp(t)] < |p(0)\+¢€/ |E| ds < |p(0)|++/eBot < C4+T°\/Elogc—°6 <ctl, (14)
0 2

for smalle. Thus, selectind(, = c4+ 2 and using the continuity of the functigx), we
obtain from (14) that the second inequality in (11) cannot be violatec &t either.

As far as the last inequality in (11), the normal form (6) yields the differential
equation

) = [V + Vi w) + (V2 +¥s O + VAV + Yollugwp. (15)



Multi-Pulse Homoclinic Orbits 9

From this equation we obtain that for0¢ < T, the product of the twa-components
of the solutionz(t) admits the estimate

wi(t)wa(t)] < [wi(O)w2(0)] + fy | (Y + Ya, w)
+(YV2 4 Y5, €) + Ve(Va + o) [un(s)uwa(s)] ds
< cge+ fot 2Bo[V/260 + Bee? + (/€] |wi(s)wa(s)| ds.

Then a simple Gronwall estimate shows that

lwi(tywa(t)] < cae exp{zBo[zﬁao + Beé® + \/E]TE} < ;—Ze exp 4Bo[V2 + 1]T7,

which implies that
2 4Bo[\/§+1]%0 5
|wi(t)wa(t)] < c3 < O) (18Bal V2R cze”, (16)

2

if we choose)y small enough such that

I
‘ig 4Bo[V2+1]2 . i AL = a)
e w0 4B(1+4/2)

hold. Again, by continuity with respect tg (16) implies|w1(To)w2(To)| < c3e*/do,
hence the last inequality in (11) cannot be violatetlatly either. But this contradicts
our original assumption on the tinfg and proves the statement of the lemma. O

In the following lemma we describe how the coordinates of passing trajectories
change and how this change depends on the initial values of these coordinates upon
entry into the neighborhood.

Lemma4.2. Let us fix a constan% < B < 1land assume that fdd < ¢ < ¢, and
do < 041, the entry conditions (9) hold for a solutiar(t) which enters the sdt at

t = 0and leaves it at = 7. Let us introduce the notation = (w20, (o, po, o) and let
20 = (dp,a) andx* = z(T™) = (wy, do, C*, p*, ¢*) define the coordinates of the solution
at entry and departure, respectively. Then there exist consfants 0,0 < p < %,
andéds > 0, and for anydy < 4 there existg§ > 0 such that for all0 < e < ¢ the
following estimates hold:

(0
wil < K€, [¢* — Col < KeP, [p* — po| < K&, [0* — ol < K/
(i)
| Do wi| < KéP, |D,¢*—(0,1,0,0)| < Ket,
|Dap* —(0,0,1,0)| < Ke*, |D,4p* —(0,0,0,1)] < Ket.
(iii)

|Denwi| < Ké®,  |DenC*| < Ket,  |Denp*| < Ke*, |Dentp*| < Ket.
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Proof. We start the proof by establishing a lower estimate and a refined upper estimate
for the exit timeT™. From the normal form (6) we easily obtain that

(A+380Bo)t

|w20| e > |w2(t)| > |w20| e(A_B(SoBO)t, a7

which in turn gives

T—;Io 5—%<T*<T—7Ioa—g (18)
! A+ 35089 g Co€ 2 A — 36080 g Co€
for any solution with initial conditions satisfying the estimates in (9).
We now turn to the proof of statement (i). From (6) we obtain that
X—383Bg
52\ *38050
] = un()] < s < s 05589 < 63 (2) 7 0 qag)
2
provided
A1 -5)
_—, 2
% < 3By(L+ ) 20)

By Lemma 4.1, all inequalities in (9) hold fere [0, 7], thus selecting3; = 7c1Ca
(as in the proof of that lemma) and settihg 7, we obtain

¢*] < Bee”.
This inequality and (9) imply that
¢ = Col < [C*]+1Go| < (B + 1)’ (21)
From the third equation in (6) we see that

25,

B
TV (22)

T* 2By 52
[p* = pol < \@/ |Elaqry dt < \/eBoT. < ——+/elog—= <
0 A Co€
Finally, the last equation in (6) and (11) yield the estimate

* T
o — ol < Jo [IF1Q) ¢l + Ve | Fal + | Fal [wnwal], dt
< [B2Boc® + eBo+ Zaee | T (23)
< 2o [B§+§—g+1} NG

But then (19), (21), (22), and (23) show that statement (i) of the lemma is satisfied if we
chooseK > 0 big enough.

To prove statement (ii), we first need the variational equation associated with the
normal form (6). We shall only sketch the proof of the estimates in (i) for the derivatives
of x* with respect tgy. To this end, we need theg-variational equation associated with
the normal form (6):
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& (Dpowr) = [=X+ (Y1, w) + (Y2, () + /€Y3] Dpown
+ [(DYleOx, w) + (Y1, Dyyw)
+(DY2D 0z, C) + (Y2, DpoC) + /€DY3D oz wy,
i (Dpowz) = [ A+ (Ya, w) + (Y5, Q) +V/eYe] Dy
+ [(DYaD po, w) + (Ya, Dpyw)
+(DYsD o, () + (Y5, DpoC) + \/eDYs D po] w2,
4 (DpoC) = ADpoC + (D Z1Dypyz ¢) ¢ +(Z1$) D poC (24)
+(Z1DpoC) C+ Ve (DZ2D g, C)
V€(Za, Dy, C) + DZ3D pyxwiws + Z3 D (wiwy),
(Dpop) = \EDEDPOx,
(Dpotp) = (DF1Dp ¢) ¢ + (F1DpoC) € + (F1C) D poC
+\€e(DF>,Dyx) + (DF3, D,ox) wiwsy

+F3Dpo (wlw2)~

Sl g

Let us select constants v, i, andv with

1
0<u<u<§<7<ﬁ<a<l. (25)
Then, by the smoothness of the solutigt) with respect ta, there exists atimé&, < 7
such that for alk € [0, Tp) and fore > 0 sufficiently small,

1Dpol(t)] < Be€?,  [Dpoplt) — 1 < K,e,  [Dpyth(t)] < Kype,  (26)

|D polwr(Dywa(t)]] < Koé?,

) : , (27)
|D/)0w1(t)| S K’weﬁv |D/)0w2(t)| S Kweiuv ||Dp0x(t)H S 2Kw€71/a

with appropriate positive constanB, K,, K, K, and K,,. We also recall that for
t € [0,T™], the inequalities in (11) hold, and we ha¥& < T, by Lemma 4.1.

As inthe proof of Lemma 4.1, we shall argue that none of the inequalities in (26) and
(27) can be violated dt= Ty if we choose the constants appearing in those inequalities
properly. Thus we can selety = T, i.e., we obtain estimates of the form (26) and (27)
on the whole time interval while the solutiar{t) stays inside the séfy. We shall use
these estimates to prove statement (i) of the lemma.

We start by considering the inequalities in (26). From the third equation in (24) we
obtain that

t
|D,C(t)] < / Ca [Bgem Bo2K,,e ™" + 2B, Boeﬂ|DpOC(t)|}
0

+Cy [\/EBOZK;;VBCJ +/€Bo| Dol (1)] + Bozk;e—"?ea] ds
0

< ZCAK»:UBO |:B§€26_V + B<6%+6_V + gsea—y] TO
0
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t
+ [ 2CaB B D) ds (28)
0

1., ¢
< EBCGH /O 2C' 4 B¢ Boe® | D, ((t)] ds,

provided we choose small enough so that
a—v>v, (29)

and select small enough. Then the Gronwall inequality applied to (29) shows that for
all t € [0, Tg],

BoB 2 ,
Mmgio < Bee, (30)

< B¢
|DP0C(t)| = BgE exp )\ o€

for e small. For allt € [0, Tp], from the fourth equation in (24) we obtain the estimate
|Dpoplt) — 1] < K e,

if we selecty small enough such that

%—y>,u. (31)

Using the last equation in (24), we see that fortadl [0, Tg],

1D,b(t)] < fot(BozK;,e—"Bgezﬁ + BoB€" Bee® + BoBce? B€" +\/eBo2K,,e ™"
+Bo2K 7" $e% + BoKye?) ds
< By {235}(;,62%5*” + 2B B + 20 bV + 2K, BV + Kéeﬂ} T.
< K;pe",
(32)
provided (29) and (31) hold.

To estimate the time interval on which the last inequality in (26) holds, we note that
the time evolution of the quantity, D, w, is given by the equation

it (w2Dpw1) = [(DY1D i, w) + (Y1, Dyyw) + (DY2Dpz, ¢) + (Y2, DpyC) (33)
+y/€ (DY3, D, z)]wiw;
+[(Y1+Ya, w) + (Y2+ Y5, () + Ve (Ya + Yo)] weDpywr.
We now estimate the terms on the right-hand-side of this expression individually on the
time interval [Q Tp). The first term can be estimated as
|(DY1D ppx, w) wiws| < Bo (wf lwa| + w3 |w1|) (34)
(|Dpowl‘ + |Dpow2| + ‘Dpoc‘ + |Dpop| + ‘Dpcﬂ“)
< Bo [[w2Dpew| (wf + [wiwg]) + [w1Dpyws| (w5 + [wiwa])
+3| D pop| [wiws| ([wa] + w2])]
< 202Bo (\wgDPOwﬂ + \wleow2|) + 12Bgcze®.

In a similar fashion, we can estimate the remaining terms to obtain
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(Y1, Dpyw) wiwz| < 60Bo (JwaDpyws| + [wiDpywal) (35)
|<DY2DpD$ C) wlwz\ < 5oB<Bo€ﬂ <|’LU2D,,0U)1| + |wleow2| + %623 5a>
)

(Y2, DpoC) wiwz| < Bo—; 3BC e,

ﬁ@%;mmw<MMﬂMMmHMMmH%ﬂ
[(Y1+Ya, w> szpowl\ < 260B9g \wgDPOwﬂ ,
‘<}/2 + }/55 <> sz[)Owl‘ < ZBCBOGﬁ |w2Dpowl| )
|(Y3 + Ye) szpowl\ < ZBO\E |w2DpOw1| .
Integrating (33) and using the estimates (34)—(35), we find that fora[0, 1p),

[w2(t) D pow1(t)|
CgBo

t
< / 50Bo [11|wzDpows| + 5wy D pyws|] + (Bé + 1250+ 6(B. + 1)) ¢ ds,
0

which gives

|w2(t)D,,0w1(t)| < 2C3BO (B + 1250 + G(BC + 1)) €% |Og o€ (36)
+f0 (5030 [ll\wgDpowﬂ + 5|’LU1Dpr2H ds.

By the symmetry of the normal form (6), we immediately obtain

w1 () D w2 ()| < 2ch0 (B< + 1200 + 6(B¢ + 1)) G Iog o (37)
+Jo 5030 [11|w1Dyowo| + 5|w2Dyowsl] ds.

Adding the two inequalities (36) and (37), then applying a Gronwall estimate to the
resulting inequality, we obtain

wa(t) D pywi(t)] + [w1(t) D w2 (t)] < [43350 ( |+ 1250+ 6(B; + 1)) “log }

X exp(325°B° log fz"E)
< Koeﬁ,

(38)

where we selected 3253
00
a—L0> P
and assumed thatis small enough. Then the inequality (38) implies that fortadi

[03 TO]!

(39)

| D polwr(tywa()]] < Ko (40)

It then remains to verify the last three inequalities in (26)tfet Tp. Using the second
inequality in (9) with (17) and (38) yields the estimate

1950 Bg— A
1660+ B,

52\ 0B, 0
| Dpwi(t)] < (BC + 1260 + 6(B¢ + 1)) ( 2) € A=%D (41)

4C3BO
C2A

If we use (39) and select
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do < (42)

6B;’
then we obtain
|Dpowl(t)| < K;ueﬂv

since 33pBy/\ > 1600By /(A — 3d0Bo). Furthermore, from (36)—(37) we obtain

K 52
[w1(t) D powa(t)| < —e* log —2 %Pt
(50 Co€

for an appropriate constarit. This, combined with the easy estimates(t)| >
0o exp[—(\ + 309 Bo)t] from the normal form (6), implies that

K 52 _
|DP0w2(t)| < 5*0604 log goﬁe()ﬁl%oBo)Tz < Ke™, (43)
if we choose
A+ 19,8y
¥ N — 300Bg 44
“ V>A—35030’ (44)

and lete > 0 be small enough. Since the last inequality in (27) trivially follows from
(26), (41), (43), we conclude from (30)-(32) and (40)-(43) that the estimates in (27) hold
forallt € [0, 7], provided we satisfy (20),(29), (31), (39), (42), (44), and selsohall
enough.

We now use (26) and (27) to prove statement (ii) of the lemma. First note that for
any initial valuexq € 01Uy, the timet = T™* that the corresponding solutiaf(t; zo)
spends withirly is the solution of the equation

wa(t; o) = do, t>0. (45)

From the second equation in (6) we can estimate the magnitudg(®f) as
o A . A
[w2(T)] 2 5 [wa(T™)] = 5o
This inequality shows that

oz (570 = 0T 70,

t

hence, by the implicit function theorem, we can solve (45) n&ér ) to obtain a
continuous functiorf™(zp). Moreover, this function is in fact of class”, since the
solutionws(t; o) is aC™ function of the initial data and depends bim a C™ fashion.
Consequently, the function

x*(x0) = (T (x0); x0)

is of classC'". Using this expression, the derivatives of the components wfith respect
to po can be computed as
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D0 = ~ A 2 D a1 ) + Dyn(T” ),
z%cmh—agf%mwﬂwm+mme@
Dy (00) =~ 20 Dyl ) + DT ), (46)
mw(%—%%%%mwﬂwm+mm@ww

where we used (45). Then, using the normal form (6), the estimates in (26)-(27) with
t =T*, and the inequality (31), we obtain from (46) the following estimates:

IDppi(an)] < D8 2-BmIT ) =0 4
C2€

A— 95 Bg
< K708 ¥+ K B < (Ky+ K")éP,

’ ’

ZK 2B
|DpoC (z0)| < [HA||BC€5+BgBoe25+\fBoBceﬂ+Boée ]e_”+>\5§e’7
. 2K,
B+ Bo(B2+B,+=2) +|A|B 47
. <A5(%< o+ 2) elalc) | (47)
2B K’ . 2BoK.
Dy (a0) — 1 < Vet + Ko < | K+ =58 o,
P Adg
2 : ! !
D, " (o) < ~— | B2Boe?® +\/eBo + Bo 26| K. e + K, et
o ¢ w ¥
Ao do
. 2K, By (., cs
K, +2—w 0 [ B2414+232 H
= [ Y Mo ( ¢ 50)] E’
if we let \ — 95.B
— 990 B9
< —22, 48
ﬁ V< )\+35030 ( )

But (47), together with identical estimates for the rest of the components, of,
implies the inequalities in statement (i) of the lemma.

It remains to show that the constants we introduced in the proof of statements (i)-(ii)
can indeed be chosen in a way so that all required relations are satisfied. To satisfy these
relations, we pick

g+1 _28+1 -8
2 ’ Y= 4 ’ 2 .

For this choice of parameters, the inequalities (25), (29), and (31) are satisfied. Further-
more, (39) and (42) are also satisfied if

v=BL-p), p=>

(49)

o =

1-p
50< 647307 (50)

and (44) is satisfied if
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A (38 —-26%-1)
%< By (97— 672+ 41) ®1)
Finally, condition (48) requires that
2 _
5 A(B2—28+1) (52)

0= 3B, (-p2+23+3)

Therefore,dp > 0 must be smaller than the minimum of the right-hand-side of the
inequalities in (20), (39), (50),(51) and (52). This completes the proof of (i)-(ii).

The proof of statement (iii) is very similar to that of (ii), so we only outline the
necessary steps. From the normal form (6) we see that the derivatives of the components
of the solutionz(t) with respect te = € satisfy the equations

4 (Dow)) = [-A+ (Vi w) + {¥5,C) + VEYs] Dy + [(DYViD.a,w)
1-24
+ <Y17 D.w) + <DY2D533,C> + <§/2a D5<> +,/eDY3D.x + € 22: Y3| wy,
% (Dsz) = [ A+ <Y47 ’LU> + <5/5a C> + \/EY6} D.wp + [<D}/4D8xa w> + <}/47 D5w>
1-2

+(DYsD.,C) + (Y, DuC) + /DYy Dt + <2 Ye] w,
4(D.Q) = AD.C+(DZaD.x ()¢ +(ZiOD.C +(ZaDoC) C+ e DZoD, C)

1-2u
+\/E <Z27 D€ <> + < 22': <Z27 C> + DZ3D5.I"LU1U}2 + Z3D€(w1w2)a
1—2u
% (Dep) =\/eDE3D.x+ —5—Fs, .
—cK

4(Dey) = (DFD.xw () ¢+ (FiDoQ) ¢ + (FiQ) DeC + e (DFy, Do) + 7o Fy
+ <1)F37 Dgl‘> wiwo + Fng(wlwz).

(53)
As in the proof of statement (i), we can assume thattfar [0,7p) ande > 0
sufficiently small,

IDC()| < Be?,  |Dep()] < K, e, |Dop(t)] < Kyet, (54)

|D[wi()wa(t)]] < Koe?, | Dewn(t)] < Kope?, | Dow(t)]
<K, e, |D.a@t)| < 2K, .

From (53), in the same way as in (29), (32), (38), (41), and (43), we obtain that the
estimates in (54)-(55) continue to hold fo 7*. (To see this one only has to note that

€2 M < B < & ander M < €”.) Calculations similar to those leading to (46) now
give

(55)

Do = =D () Do),
L T ) .
DEC - _wg(T*)DEwZ(T )+D€C(T )7
AT
Dy = - u.fz((TZ) Dowo(T*) + Dop(T"), (56)
Dew* = - w(T*) DEWZ(T*) + D61]/}(T*)

wo(T*)
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Then, just as in (47), we obtain from (54)-(56) the estimates listed in statement (iii) of
thelemma. O

It is important to note that in the proof of the above lemma we made no use of the
fact that our original system (1) 8(¢)-close to a Hamiltonian system. As it will turn
out later, this fact enables us to refine some of the estimates in Lemma 4.2 for a special
class of initial conditions.

5. Local and Global Maps

Lemma 4.2 shows that the “local mapg — z*(xo), as well as its partial derivatives
remain bounded in the limi — 0. This enables us to extend the local map to the limit
e = 0 so that the extension is differentiable:thate = 0. To make this idea more precise,
for e > 0 and fixeddg > 0 we introduce the set

'CG = {(waC7p7 1/1) S alUvO N Wu(H) ‘ ‘wl| = 503

C: C:

2wy < ZE ¢l < e o] < cal
do do

(57)

L. is a subset of the unstable manifoldi@fwhose points satisfy the entry conditions
in (9). In general L. is the disjoint union of two-dimensional manifolds, and these
manifolds collapse to the single two-dimensional manifold

Lo = 01Uo N W5 (1)
for e = 0. Fore > 0, we define théocal mapL.: L. — 0,Up as

L6(507w207 COva»z/}O) = (wivaovc*ap*aw*) (58)

with the coordinates defined as in Lemma 4.2. By the smoothness of the flow with respect
tot, for e > O the mapL. is of classC". Fore > 0 we now define the mapg: L. —
01Up as
L0(607 w20, CO7 P0, ?/}0) = (07 507 C07 P0, wo)
Note that this map simply projects any point to the local unstable manfgigd(M.)
and pushes the projection along an unstable fiber to the intersection of the fiber with

01Uy. Clearly, Lo is a smooth map. Furthermore, a consequence of Lemma 4.2 is the
following result.

Proposition 5.1. For ¢ > 0 small enough and fot/2 < 3 < 1in the entry conditions
(9), there exist® < 1 < 1/2 such that the local map can be written as

Lc(wo) = Lo(wo) + € L1(wo, €"),
whereL, is C* in its arguments and.;(xo; 0) = 0.

The statement of this proposition follows directly from Lemma 4.2, since the
solution-dependent constanks and i« appearing in the statement of the lemma can
be chosen uniformly foxg € £, by the compactness of the closure/éf
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Remark 5.1.It is also easy to see from (58) that the formal extendigrof the local
map isC" in §p in a neighborhood ofg = 0. In this limit, the domain ofLy becomes
Eo =1I.

We now have a good approximation for the local ndapwhen restricted to initial
conditions in the unstable manifold of the plahke We also want to follow initial
conditions as they leave one of the fadés,| = dp} of the boxUp and return to some
other face withw1| = do. Such a global excursion starts from the set

Ge = {(w, ¢, p, 1) € DU NW(II) | |wa| = do, |w1| < K€, [¢| < K€},
(59)

and is described by thglobal mapG.: G. — 01U defined as

Ge(w1k’507<*»/)*ﬂ/}*) = (50,11}20, C07PO»1/JO)~ (60)

The constanf > 0 appearing in the definition @. is the same as in statement (i) of
Lemma 4.2. An approximation for the global map is given in the following lemma.

Lemma 5.2. For ¢ > 0 and for all sufficiently smalby, > 0, the global map can be
written as

Ge(z*) = 2* + Az + §pG1(x™, 60) + VeGa(x*, €),
whereG; are C* in their arguments, and the vectarz is defined in (4).

Proof. We first observe that the maps: Go — II remains well-defined in the limit
0o = 0 with domaingy = I7. The mapZ, simply relates the-limit points of unperturbed
heteroclinic orbits ift?*(C) = W*(C) to theirw-limit points. Therefore, fody = 0 we
obtain Go(x*) = z* + Ax from assumption (H6). For nonzetg > 0, Go maps the
first intersections of solutions in the homoclinic manifo[d’gt(C) with 0Up to their
second intersections witl/y. Since these solutions locally coincide with unperturbed
fibers in WTS‘C(C), and fibers depend smoothly on their basepoints, we obtain that
Go(z*) = z*+ Az +35pG1(z*, o). Now by assumption (H2), for* € G., the global map
G(z*) is smooth in the initial condition* and the parametegy. Initial conditions in
the domain of3 are at mos©(¢”) (with 3 > 1/2) away fromg,, and the magnitude to
the perturbation in the Fenichel normal (6) is of ord¥k/e). This proves the statement
ofthelemma. O

6. Energy Estimates

In this section we shall study how the conservation of the HamiltohAlam Hq + ¢ Hy
is violated on solutions due to the presence of general dissipative terms in Eq. (1). The
reason for this study is that we shall use the “enetffytogether with the normal form
variables {vs, ¢, p, 1) as coordinates to identify solutions entering thelggthrough its
facew; = do. Similarly, we shall use the coordinate (w1, ¢, p, 1) to label solutions
that leavel/y through its facev, = dg.

We start with some preliminary estimates which will be needed in our main energy
estimate.
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Lemma 6.1. Let us fix a constan% < B < land assume that fdd < ¢ < ¢, and
do < 41, the estimates (9) hold for a solutiarft) which enters the séfy at¢ = 0 and
leaves it at = 7. Then there exist constanis> 0 anddg > 0, and for anyjy < &3
there existg > 0 such that for all0 < € < ¢j we have

T* T*
/ (o) di < Lye, / wr(9)] dt
0 0

- (61)

°.
< Lés, / lwa(f)] dt < Léo, / o) dt < Lev,
0 0

wherep, = (1 - 3)/2 (see (49)).

Proof. The proof of this lemma is elementary, as it follows directly from the normal
form (6) and the entry conditions (9). The reader may consult Haller [21] for details.
O

We now formulate our main energy estimate for solutions that lie in the unstable
manifold of the invariant manifold/ and make repeated passages déar

Lemma 6.2. Suppose that(t) is a solution of the normal form (6), which lies in the
unstable manifold of the invariant manifald. Letgo be the firstintersection af(t) with
the surfaced, Uy and letb, = by + (0, \/en) € IT with by € (¢o, 0) € C be the basepoint
of the unstable fibef*(b.) which contains the poinfo. Let zi(t), i = 1,..., N be a
chain of unperturbed heteroclinic orbits for the system (1) (see Fig. 1) such that

lim z't)=bo, lim z7Y(¢) = lim zi(t), i=2,...,N.
t——o0 t—+o00 t——o0o

Suppose that the solution returnsid/y N times to intersectitin the points, ..., px,
and to leave it again at the points, . . . , ¢ 1. Assume further that, for some constants
% < [ <1,0< €< e, anddg < 41, the entry conditions (9) hold for the solutieft)
at each entry poinp,. (For N =1, ¢, = Ois allowed in (9).)

Then, fordg, ¢ > 0 sufficiently small, we have

N oo
H(py) = Ho|C + ¢ lH(bo) +> / (DHo, g) iy dt +O(S0,€")|
i=1 Y =

where0 < p < % , and the “slow” Hamiltonian is the first order term in the expansion
of (Hp + eH,)|II near the torug’, i.e.,

1
H= > (n, DFHo(IT)|cn) + HylC. (62)

Proof. We start by writingH (px) in the form

H(pn) = H(be) + [H(qo) — H(be)]

N-1 N (63)
+ Z H(q:) — H(p:) + ZH(pi) — H(gi-1).
i=1 i=1
We shall estimate the four main terms of this expression separately.
To estimate the first term, we note that
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Fig. 1. The chain of heteroclinic orbits?(t)

. = HolC + ¢H(bo) + O(e*?), (64)
where we used the fact th&lHy|C = 0 since the torus€ is filled with equilibria for
e=0.

To estimate the second term in (63), we consider the “Hamiltonian” unstable fiber
f4=0(be), which intersects the surfaéelUo at a pointg. Then, we haved (qo) = H(b.),
and the mean value theorem implies that

[H(qo) — H(b)| = [H(q0) — H(qo)| < |DH(Q) - (90 — q0)!, (65)

where the point; Ties on the line connectingy andgg. Since the unstable fibers are of
classC™ in the parameter, we have

|q0 - q_0| < K16,
for some integek;. Furthermore, the gradient éf at the point;satisfies the estimate
|DH(q)| < K200.

Therefore, the inequality in (65) can be rewritten as

|H(qo0) — H(be)| < K1K250¢. (66)
To estimate the third term in (63) we note that
N-1
S H(g) - Hpi) = / () dt = Z / (WHDH) +€g)] wgydt
=1

EZ / (DHo, g) dt+0(ezlog%), (67)
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where we used the fact that, by definitidnf - w*(DH) = w (w#(DH),w*(DH)) = 0.
In (67)T; denotes the time of flight for the solutiaxt) from the point; to ¢;, and hence
obeys the estimate (10). (Here> 0 is the constant defined in (49) aat sufficiently
small.) We shall now estimate the three terms in the integrand on the right-hand-side of
(67).

Noting thatD Hy|C = 0, we obtain that if¢, {, p, ¢) are the coordinates of a point
p € So, then

DHO(p) = Al(w7 Ca P ’l/))’LU]_"‘AQ(’lU, Cv P ¢)w2+A3(wa <7 P ¢)<+A4(w7 Ca Py ¢)p (68)

for appropriateC” ! functionsA;. Using Lemma 6.1 together with (68), we obtain

N-1 Tr
> /0 (DHo, g) 4 dt = O(b0) + O(e"). (69)
=1

But this last equation and the energy expression (67) shows that

N-1
S Hg) — H(p,) = Oedo.c*), (70)
=1

where we used the relation (31).

To complete the proof of the lemma, it remains to estimate the last sum in the expres-
sion (63). Standard “finite-time-of-flight” Gronwall estimates imply that the perturbed
solutions remain close to the chain of unperturbed solut{aﬁst)} outside the fixed
neighborhood/, of the manifold M .. Combining this with the fact that the size G§
is of orderQO(dp), we can compute the change in energy between the ppiniandp;
in the same way as in the first line of Eq. (67). We then obtain

N N )
S H@) - Ha9=cY. [ (DHog)
=1 4=1 Y =

But (63), (64), (70), and (71) together prove the statement of the lemma.

vt At + O(edo). (71)

In the following lemma we estimate the energy of a peinte W5 .(M.) N 01Uy
which has the same (7, ¢) coordinates as the poipty on the incoming solution(z).
We will use this estimate to compute the energy difference between theppoartd its
projection on the unstable manifold &ff..

Lemma 6.3. Suppose that(t) is a solution of the normal form and let the points
P1,-..,pn a@ndqo, ..., qn—_1 be defined as in Lemma 6.2. Suppose that the assumptions
of that lemma hold and. € M. is the basepoint of a stable fibgf (c.) such that for

the pointsy = f*(c.) N 01Uo,

(CpNappvapN) = (Csns Psn> Vsn)- (72)
Then, for the energy of the point;, we have the expression
H(sn) = HolC + €H(bo + N Ag) + O(edo, €772, (73)

where the phase shift vectar is defined in (4) and the slow Hamiltonigtis defined
in (62).
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Proof. Since the entry estimates (9) are assumed to hold for the incoming salt)on
Eq. (72) implies that the stable fibef*(c.) containingsy is locally O(¢®)-close to
another stable fiber with basepoint on the invariant maniféldy the smoothness of
fibers with respect to the parametethis implies that the basepoint is O(¢?) close
toll,i.e.,

< K7€°. (74)

Now sy lies at a distance of ordéP(dp) from the invariant manifold\,, so by the
smoothness of individual stable fibers we have

(Neer Pe) = sy > Psy) + O(d0)- (75)

We now relate the energy of the basepainto the energy of the pointy. Let the
point s” be the intersection of the “Hamiltonian” fibefgszo(cs) with the surfaced, Up.
Then, applying the mean value inequality with some psinying on the line segment
connectings y ands”, we can write

|ze,

|H(sn) — H(c)| = |H(sn) — H(s")| < |DH
< ‘DH S*Kg(:‘ < KgKgdpe,

SN —Sh}

Sx

which yields
H(sn) = H(ce) + O(doe)- (76)
Hence, to find an approximation for the energy of the psintwe have to compute the
energy of the fiber basepoint. For this purpose, we have to find the restrictigp of
the HamiltonianH to the manifoldM..
In the originalxz coordinate, the manifold 1. is given byx = fo(x) + ef1(z, €). A
standard Taylor expansion ovil. shows that

Ho| M. = Ho|Mo + eDHg| Mg - f1+ O(?)

= Ho|C + e(n, D2 Ho(IT) 1) + O(|2[2, e[ 2], €2),
I{1|./\/l€ = Hl‘Mo + 0(6)

= H1|C + O(|2, Vo).

As a result, we have
H = HIM, = H|C + eH + O(|2|% €|z], €3) (77)

with the slow Hamiltoniar#{ defined in (62).

Since the solution(t) travels for arO(1) amount of time near a chain of unperturbed
trajectories described in Lemma 6.2, we know that the pgjns O(,/¢)-close to the
unperturbed solution'(t), and the poinp v is O(\Eﬂ)—close to the unperturbed solution
2NV (t). Sincex™ (¢) locally coincides with an unperturbed stable fiber, the smoothness

of fibers implies that the basepointof the fiber containing y is O(\ﬁﬁ)—close to the
unperturbed fiber basepoint lim.. 2V (). As a result, we obtain

cc=bo+ NAp+O(/e),

whereAg is defined in (4). But this last equation together with (74), (76), and (77) yields
the statement of the lemma. O
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7. The Existence of Multi-Pulse Homoclinic Orbits

In this section we establish a criterion for the existence of multi-pulse homoclinic or
heteroclinic orbits that are doubly asymptotic to the invariant manjfdid These orbits

are contained in the unstable manifold of the invariant manifélcand in some cases
they also lie in the stable manifold &f.

We first give an easy improvement of the results listed in Lemma 4.2 on the coordi-
nates of the solutiom(t) upon its exit from the sdty. This improvement makes use of
the energy estimates in Lemma 6.2. The result is that the change in the coordipates
and( during local passages neMd. is of the orderO(e) if the solutionz(t) satisfies
the entry conditions (9) and lies in the unstable manifold of the manifbld his is
due to the Hamiltonian nature of the unperturbed problem, which was not used in the
derivation of the general normal form (6).

Lemma 7.1. Let us fix a constan% < f < 1and assume that a solutior(t) of the
normal form (6) enters the séfy at ¢ = 0 and leaves it at = T*. Assume further
that z(t) is contained in the manifold/*(II) and satisfies the entry conditions (9).
Let us introduce the notation = (w20, (o, po, %0) , and let zg = (dp,a) and z* =
x(T*) = (w}, 0o, C*, p*, 1*) define the coordinates of the solution at entry and departure,
respectively.

Then there exist constanié > 0,0 < p < 1, anddg > 0, and for anydy < &;
there existgj; > 0 such that for all0 < e < ¢ the following estimates hold:

0)
wil < Ke, |C*] < Ke, |p* = pol < K&, [ — | < K&,
0)
| Dy wy| < KéP, |D,¢* —(0,1,0,0) < Ket,
|Dy p* —(0,0,1,0) < Ke*, |Dytp* —(0,0,0,1)] < Ket.

(iii)
|Denwi| < K,  |DeuC*| < Ke#,  |Denp*| < Ket, |Deutp*| < Ket.

Proof. Consider the poing™ € W\g.(1I) for whichwig- = 0, (g~ =0, and (pg-, 1¢+) =
(pz+,12+) hold. By (i) of Lemma 4.2, the pointg andz* areO(e”) close. To determine
the energy of the point*, we consider the unstable fibgt (b*) which containg;*. For
zero dissipationg = 0), the energy of the basepoihit of the fiber f;_,(b*) can be
written in the formH(b*) = Hp|C + O(e),where we used (77). Since the energy is
constant on fibers faf = 0, we immediately obtain

H(q") = Ho|C + O(e). (78)

This equation remains valid for nonzero dissipation, since unstable fibers perturb by an
O(e) amount when we add the dissipative terms. Also, setfing z* in Lemma 6.2,
we obtain that

H(z") = Hp|C + O(e).

This last equation together with (78) and the mean value inequality gives

*

Kioe > [H(q") — H(z")| = |DH(q) - lg" — 2| > Kudo|q” — ™[, (79)

94 -—r
lg* — x*|
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whereqgis an appropriate point on the line connecting the pejihtndz*. Here we made
use of the facts that the diameter of the Bgiis of the orderO(dp) and the perturbed

flow intersects the line betweeri andx* with O(1) transversality due to the geometry

of the unperturbed Hamiltonian flow. We rewrite (79) in the form
Ko .

K160

Since the transformation from thg, z, , ¢) coordinates to theu, ¢, p, 1) coordinates
is a diffeomorphism with norm of ord&p(1), this last expression implies that

lwi| < Kize, (81)

lg" — 2" <

(80)

sincews4~ = 0. Furthermore, as the unstable fibers are straight lines for the local normal
form (6), (4~ = 0 must hold, since the basepoint of the unstable fiber contajriitigs
in the invariant manifold7 which obeys, = 0. As a result, (81) implies

|C*] < Kise,

which, together with the estimate (81) proves the first two inequalities in statement (i)
of the lemma. The remaining inequalities are just restatements of the results listed in
Lemma 4.2. (]

The following definition describes the types of orbits that we will be interested in
finding.

Definition 7.1. Let us consider a poirty € C and letj = {j;} ¥, be a sequence efl’s
and—1's. An orbitz, of system (1) is called alN-pulse homoclinic orbit with basepoint
bp and jump sequencg if for some0 < p < % and fore > 0 sufficiently small,

(i) =z.intersects an unstable fibgt(b.) with basepoinb, = by + O(e*) € I,

(i) . intersects a stable fibef*(c.) with basepoint, = bg + NA¢ + O(e") € M.
such thatist(c,, II) = O(e).

(iii) Outside a small fixed neighborhood of the manifgit., the orbitz, is orderO(e*)
close to a chain of unperturbed heteroclinic solutiafi§), i = 1, ..., N, such that

lim  z(t) = bo, lim 2%t = lim 2%(), i=2,...,N.
t——00 t—+00 t——00

Furthermore, fork =1,..., N and for allt € R we have

k W (C) if ji, =+1,
v € {WO‘(C) it o= 1

To illustrate the above definition, we show a three-pulse homoclinic orbit schemati-
cally in Fig. 2.

To find N-pulse orbits of the type described in Definition 7.1, it is clearly enough to
find conditions under which the points; € W*(II) andsy € W};.(M.) coincide. By
construction, these points have the same(, p, andy coordinates, so they coincide if
theirw, coordinates are equal, i.e., thwe coordinate op is zero. However, instead of
following the evolution of thev, coordinate along solutions, we will follow the change
of “energy” H along solutions. The following lemma shows that this is sufficient, since
thew, coordinate op y can uniquely be determined as a function of the other coordinates
and H (py). This result will enable us to detedf-pulse orbits by solving the equation
H(pn) — H(sn) = 0.
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L @

Fig. 2. 3-pulse homoclinic orbit to the manifold1. with jump sequencg = {+1, —1, +1} and with base-
pointb.

Lemma 7.2. Suppose that the conditions of Lemma 6.2 are satisfied. Then>fo0
small enough there exists@" functionf.: P — R, such that forany = 1,... N,

W2p, = fe (Cpl s Ppis wpl ) H(pl)) .

Proof. We start by noting that, in terms of the originatoordinate used in Eq. (1), the
surface{w; = do} is given in the forme = s.(wy, ¢, p, ), wheres, is aC™ embedding
into the spac@. Then the intersection of the energy surf@é&(x) = h} with {w1 = do}
satisfies the equation

H(SE(’LU27 Ca |2 77[’)) —h=0.

By the implicit function theorem, on this intersection set the coordinatés a C*
function of the rest of the coordinates and the enérgyovided

<DH(SE(w2,C,p7 w))vazse(wZCum QZ}» 70 (82)

holds in all points of the intersection. We want to see if this equation holds at the point
p;. Sincep; — s; ase — 0, andp; is contained in a compact subsetldf(17), it is
enough to verify that

|<DH0(Sl)aDwZSO(wZSLaCslapspwsl»l > (83)

for some constant; > 0. But the vectorD.,,,so(wzs,, Cs,, Ps;» Us,) lies in the tangent
space ofo, Uy, so this last inequality follows from the fact that the unperturbed flow
intersectsd;Up with O(1) transversality. Thus the statement of the lemma follows by
the implicit function theorem. 0O
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We are now in the position to prove our main result on the existence of solutions
backward asymptotic to the invariant manifdicand forward asymptotic to the manifold
M.. The key ingredient we shall need is theth order energy-difference functiax™ .

For any pointhy = (1, ¢) € C, this function is defined as

N )
ANHE) = N DD~ HO) ~ 3 [ (DHog) gy dt| (89
=1 Y~

whereN > 1is an integer, the slow Hamiltonidtt is defined in (62), the phase shift
vectorA¢is definedin (4), and*(¢),7 = 1, ..., N is achain of unperturbed heteroclinic
solutions as described in Lemma 6.2 with

lim z(t) = x.
t——o0
Finally, we introduce a definition which will be used to determine the jump sequences
of multi-pulse homoclinic orbits. To this end, let us consider a pdiin the unperturbed
homoclinic manifoldiVy = W5 (Mo). SinceWj is a hypersurface in the phase space
P, it makes sense to define the veat@*) as the unit normal tél; which points in the

direction of the other unperturbed homoclinic manifdl§” = W, (M,). (See Fig. 3
for a schematic picture.)

Wy W W
p+

Fig. 3. The definition of the vectan(p*) in two different cases

4

n(p

This allows us to introduce the number
o =sign (DHo - n(p*)) . (85)

Note thats is independent of the choice of the pojritby the normal hyperbolicity of
the unperturbed manifold1y. Furthermoreg remains the same if we interchange the
roles of the homoclinic manifold8/; and 1, in this construction. It is easy to see
thato = —1 (o = +1) if the energyH, of the unperturbed solutions encircled by the
homoclinic manifold is higher (lower) than the energy of those lying outsidd/$f
This meaning ofr is preserved under small perturbations.

Definition 7.2. For any valueg, € T™, the positive sign sequence*(¢o) =
{xX: (o)}, is defined as

XI(¢0) = +17 X-;c—+l(¢0) = JSign (AkH(¢O)) XZ(QSO)a k= 17 e N-1
Thenegative sign sequencg ~(¢o) = {x} (¢0)} -, is defined as

X~ (¢0) = —x"(¢0)-
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We now formulate our main result on the existenc&epulse homoclinic orbits for
the perturbed system (1).

Theorem 7.3. Suppose that for some positive inte@ér¢, € T™ is a transverse zero
of the functiomA N, i.e., after a possible reindexing of the angular variabjese have

ANH(po) =0, Dy, ANH(¢o) 7 O.

Suppose further thah*H(¢o) # 0 holds for all integersk = 1,..., N — 1, and let
¢ = (61, ) with ¢ € T™ .

Then there exist constarlis< p < % andC;, > 0, such that for any small enough
e > 0, the system (2) admits tweyn — 1-parameter families oV -pulse homoclinic
orbits z£ (¢, n0) with basepoint$* (4, o) € IT such that

bE (B, 10) = (o + O(e™), Io + \/eno).

Here|no| < C,, is an arbitrary localized action value. The jump sequences of the orbits

are given byy* (¢o), respectivelyFurthermore, the basepoink$” depend o and e
in a C* fashion.

Proof. Fore > 0 anddp > O sufficiently small, let us consider a solutiaf¥) which
lies in the componenitVy'*(II) of the unstable manifold of the invariant manifalfl
(W4 (IT) denotes the connected componentigf (1) that perturbs from the homo-
clinic manifold Wy .) We follow x(t) up to its first intersection with the surfaag = do.
We denote this intersection point hy and note that it lies on an unstable fi&n(b.)
with some basepoirt, = (¢o,+/eno) € I (see Fig. 4). We then follow the solution

X(t)

ﬁb") )

WO G qu e
b, / hT/ ﬂ

o

Fig. 4. The geometry of the proof of Theorem 6.2

as it leaves the neighborho@® of the manifold M. and, by standard Gronwall esti-

mates, returns and intersects the sulset = do of the surface),Uy. We denote this

second intersection point by (see Fig. 4). Since the unstable fibers are straight in the

(w, ¢, p, ) coordinates, we havé€,,| = 0 by construction. The is clearly contained

in the domairg, of the global mayt. (see (59) and (60)) and we can write= G (qo)-
Since the manifoldV}2.(M.) is a graph over the variablea{, ¢, p, v), there exists

a unique point; € W;st(M.) N 01Uy as defined in Lemma 6.3. In particular, we have
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(Csupsud’a) = (<p17pp1’77/}p1) .

According to Lemma 7.2p; = s; holds if and only if

H(p1) — H(s1(p1)) = 0, (86)

where we views; as a function op;. Note that the right-hand-side of Eq. (86)4% in
the variablep; .

By standard Gronwall estimates, the paintof the solutionz(t) is O(e)-close to a
stable fiberf*(b;) with basepoint, = b. + A¢ € II (see Fig. 7). As a result, it satisfies
the entry conditions listed in (9) with = 1 andc, = 0. Consequently, Lemma 6.2
applies withn = 1 and gives

oo

HOs0) = FolC +¢ (1) + [~ (Dlog) O] (8)

— 00

for an appropriate constant p < % Furthermore, Lemma 6.3 with = 1 also applies
and yields

H(s(b.)) = HolC + €H(bo + Ag) + O(edo, ). (88)
Sinceb. = by + O(/€) = (¢o,/eno), for anye > 0 we can use (87), (88), and the
definition of AY in (84) to rewrite the energy Eq. (86) as

AYH (o) + 60F1(p1(be); b0, €*) + € Ga(pa(be); do, ) = O (89)
with p1 = (0, wap,, Cpys Ppys ¥pr) = Gelqo)- The pointshy andp, are related by
p1(bo) = Ge o P(bo), (90)

whereP: Wt (IT) N 01Uy — I1 is the fiber projection map that maps the intersection
points of unstable fibers if/27 (1) with the surface), U to the basepoints of these
fibers. By the smoothness of fiberdiri:(17), the functionP}* isaC™ map. By Lemma
5.2,G. is aC! map fromgG, to P. As a result, Eqg. (90) shows that is aC* function
of bo. This in turn implies that the right-hand-side of the energy Eq. (89) is of ¢lass
with respect tdyg, because the functiong; andg, are smooth irp;, as we observed
after formula (86), and\H is aC? function.

Assume now thalv = 1 holds in the statement of the theorem. Then, by the assump-
tions of the theoremly = (¢o, v/€no) with any 0< || < C,, is a solution of Eq. (89)
for §o = € = 0. We want to apply the implicit function theorem to argue that this solution
can be continued faf, 69 > 0. Settinge = 0, and differentiating (89) with respect to the
¢1 coordinate obyg yields

Dy, [AYH (o) + SoF1(pa(bo); do, 0)] = D, AVH(¢bo)
+00 (Dyp, F1, DGoD Py Do, Ty ™) by
(91)
Here, o = (¢o1, q~50) andZ; is the normal form transformation constructed in Lemma 3.1.
Now D¢1A1H is a continuous function, and we hamlAlH(¢o) Z 0 by assumption.

Hence for sufficiently smaliy > 0, (91) is nonzero. (This follows by recalling that the
right-hand-side of (91) continuous g and the term

<D:D1-7:la DGODPSLD¢01%71> |bo
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remains bounded @ — 0 by Lemma 5.2.) Thus (89) admits a solutiﬁﬂ&, 7o, 00) =

@11+ O(dg) for 6o > 0 small and = 0. We fixdo sufficiently small, substitute the solution

¢1 back into Eq. (89). The derivative of the left-hand-side of the resulting equation with
respect tap; is given by

A'M ((QSla ¢)) + 0o <Dp1]:1’ DG DPUD¢01 >
+et <Vp1g1, DGEDPE"D%ITE >

By Lemma 5.2, this derivative is continuousat 0, and is also nonzero by assumption.
Thus Eq. (89) admits a solutiaty (¢, 1o, do, €) = ¢o1 + O(do, €”) for € > 0 sufficiently
small. For any fixed, the solution should not depend 66 which is just an auxiliary
parameter to measure the size of the neighboriigdtat we have worked in. Therefore,
we haved¢1/d60 =0, implying ¢1(¢ 10, €) = ¢o1 + O(e*). This proves the existence of
the orbit fam|lyx+(¢) for N = 1. The smoothness of'(¢) with respect ta* follows
from Lemma 5.2.

Assume now thatv > 1 in the statement of the theorem. Then, by the conditions
of the theorem, we see that foandd sufficiently small the energy Eq. (89) cannot be
satisfied, so the solutiar(t) does not intersect the local stable manifold\df upon its
first return to the neighborhodd,. Using (87), (88), and the compactness of the solid
m-torus [-C,, C;,]™ x T™, we conclude the existence of positive consta’ﬁﬁ@ and
KPsuch that

KWe < |H(py) — H(s1)| < KPe. (92)

Now the mean value theorem implies for any fi¥ed 1,

— S
H@o—fﬂa)=\<DH@D7“1>Mm—sﬂ
Ip1 — s1]
> CP|py— 51, (93)

wherep;] is a point on the line connecting ands;, and the existence c(t‘gl) >0
follows from an argument similar to that leading to estimate (83). At the same time, the
mean value theorem implies that

[H(p2) — H(s1)| < C{ |p1 — 1] (94)
for some constar(ﬂil) > 0, so it follows from (92)-(94) that

K(l) K(l)

€
C(l) < |p1 51| <

0<1) (95)

This last expression in (95) immediately shows that the coordinatgs, ., op,; ¥p,)
satisfy the entry conditions in (9) (because the normal form coordinates of thespoint
satisfywss, = do, was, = 0, and|(s,| = O(€)). Consequently, the poipt is contained in
the domainZ, of the local mapL,, and we can writg; = L.(p1), whereg; is the next
intersection of the solution(t) with the surface), U.

Let p, denote the intersection of the solutiaft) with the surfaced;Up upon its
second return to the neighborhobd. (The existence of, is guaranteed by the usual
Gronwall estimates for > 0 small enough.) We again have a poipte W5 (M) N

01Up such that
(Csza p527 d)sz) = (Cp27 ppza wp2> .
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Again, the solutionc(t) gives rise to a 2-pulse homoclinic orbit if
H(p2) — H(s2(p2)) = 0,
or, alternatively,
A*H(go) + S0 Fa(p2(be); S0, €) + € Ga(pa(be); do, €) = O, (96)

where we used Lemmas 6.2 and 6.3. As in Eq. (89), the funciferendg, areC* in
their arguments. Since

p2(be) =GcoLc.oGeo Peu(be)y

we see that foe > 0, p, is aC* function ofb, ande by Corollary 5.1 and Lemma 5.2.
Then just as in the case of = 1, the implicit function theorem applied to (96) implies
the existence of the orbit family’ (¢, no) for N = 2.

The proof for anyN > 2 follows the same steps as that of the case= 2. The
existence of the othé¥-pulse homoclinic orbit family:_ (¢, no) forany N > 1 follows
from the fact that an identical construction can be repeated for solutions contained in
W= (II). Therefore, it remains to show that the jump sequences of the two families
x;t(q;) are indeed given by the sign sequeng€¥¢), respectively. We sketch the
argument forr? only since the argument far. is identical.

Consider anV-pulse homoclinic orbit:}. By construction it makes its first pulse
in the vicinity of the unperturbed manifold’; (C), hence the first element of its jump
sequence is indeegd; (¢o) = +1. For smalle, 6 > 0, at the first re-entry poing; we
have

sign (H(s1) — H(p1)) = sign [((A*H(¢o + O(0o, €"))
+50FN(pN(b:); do, 6#)
+e"Gn (N (b7); Do, €))]
= sign (AYH(¢0)) - (97)

If this quantity is positive, then at the poipt the solutionz(¢) has higher energy than
nearby points in the hypersurfat§? (M.). Recalling the meaning of the constant

(see (85)), we can conclude thasign (AlH(¢O)) = +1 implies that the solution(t)

stays near the homoclinic manifdii; (C), whereasr sign (AlH(gbo)) = —1 causesthe
solution to perform its second jump in the vicinity of the manifdlg (C). Therefore, the
second element in the jump sequencebfs given byy;(¢o) as defined in Definition

7.2. The remaining elements of the jump sequence;cdre constructed recursively

in the same fashion, hence they coincide with the corresponding elements of the sign
sequence*(¢o) in Definition 7.2. This completes the proof of the theorem. O

In the following we describe two situations in which the above theorem can be
applied For simplicity, we will consider the case = 1, i.e. we assume that the manifold
IT is two-dimensionahence the center manifalth of the unperturbed system ia 22
dimensional.

To find the asymptotic behavior of multi-pulse orbits, one has to have some knowl-
edge of the dynamics on the two-dimensional manifdfd. A straightforward Taylor
expansion shows (see, e.g., Haller and Wiggins [15]) that near the resonan€ ¢hrele
flow on IT satisfies the equations
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= VeDyHy(n, d) + Ole), (98)
¢ = —\ﬁDan(ﬂa ¢) + O(e),
with

¢
Hyn, &) = H(n, &) — /o g1l (w) du (99)

1.5 2 '
= EDIHO(C)H +H1\c(¢)*/ grlc(u) du,
0

where the slow Hamiltoniaft{ is defined in (62) andg; is the I-component of the
perturbation terrmy in Eqg. (1). As seen from (98), for finite times the solutions on
the manifoldIT are approximated with an error of ord®(,/€) by the level curves of

the function’,. (We note that, in general, the flow generatedHyy is only locally
Hamiltonian, i.e., it does not admit a single valued HamiltoniadbWe selected the
Hamiltonian, in a way such that it generates the leading order Hamiltonian terms
through the canonical symplectic for A dI.)

Theorem 7.4. Suppose thatn = 1 and the conditions of Theorem 7.3 hold. Assume
further that the curve{¢ = ¢o} C II intersects transversely the unstable manifold
of a hyperbolic fixed poinpg € II of the HamiltonianH,. Let (0, 0, 7o, ¢o) be the
coordinates of the pointy and assume that for any small enough > 0 ande > 0,

the point(y°, z, 10, po + NA®) € M. lies in the domain of attraction of an invariant
setS, C I1.

Then, fore > 0 sufficiently small, there exis& < u < % such that system (2)
admits twoN-pulse homoclinic orbits:* with basepoint$t = py + O(e*) € IT and
with jump sequences™(¢o), respectively Both orbits are backward asymptotic to a
hyperbolic fixed pointp. = pg + O(y/€) C II and forward asymptotic to the invariant
setS..

Proof. By Theorem 7.3 we immediately obtain the existence of a cligve 11 which
contains basepoints fd¥-pulse homoclinic orbits of the type aft. From the proof of

that theorem it is also clear that the cueis C* O(e*)-close to the ling{¢ = ¢o}.

As a result, it will intersect the unstable manifold of the fixed ppintwhich perturbs
from pg under the effect of dissipative and higher order Hamiltonian terms. Then, by the
invariance properties of unstable fibers, this intersection point is a basepointf6r an
pulse homoclinic orbit that backward asymptotegtd-inally, the invariance properties

of stable fibers imply that th&’-pulse homoclinic orbit asymptotes to the attracting set
S. in forward time. O

In applications system (1) frequently depends on parameters. Varying these param-
eters on a codimension-one subset of the parameter space, it is possible to construct
multi-pulse homoclinic orbits which have their basepoints precisely on an equilibrium
point p. contained in the invariant manifold. If, in addition, the attracting s&f. as-
sumed in the previous theorem is just the fixed ppinthen the multi-pulse homoclinic
orbit obtained in this fashion is an orbit homoclinictoitself.

Theorem 7.5. Suppose thatr = 1, system (1) depends on a vectoe RP of system
parameters in &' fashion, and/ C RP? is an open set. Assume further that

(i) Forany\ € V the Hamiltoniar, has a nondegenerate equilibrium (i.e., no zero
eigenvaluespo() = (o(A), ¢o(N)) € I1.
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(i) Forsome positive integelN and for some parameter valug € V', ¢o(\o) satisfies
the conditions of Theorem 7.3.

(iii)y DxANH(¢o(N), A)[x=r, 7 O.

(iv) For small enoughz| ande > 0, the point(y°, z, no, po + NA¢) € M, lies in the
domain of attraction of an asymptotically stable fixed pgint I7 of system (98)
which perturbs from the fixed poipg.

Then there exists a codimension-oneldétC R? x R near the poinf\g, 0) such that
for every parameter valug\,¢) € M, the system (2) admits aN-pulse homoclinic
orbit ¥ homoclinic to the poinp.. The basepoint for this orbit is. and the jump
sequence of the orbit is given kY (¢o(Mo)). There also exists another codimension
one setM~ C RP x R which yields similar homoclinic orbits with jump sequence

X~ (¢0(M0))-

Proof. The main steps in the proof of this theorem are similar to those in the proof
of Theorem 7.3. However, we now want to force the perturbed fixed poitd be a
solution of the equation

ANH (pe(N); A) + 00 F N (pn (e (N); Go, €, X) + G (pn (pe(N)), o, €, A) = 0

with pc(A) = (do(X) + \/ePi(X, €), mo(N) + VePa(), €)) . Using (iv) and the implicit
function theorem, we see that this equation can again be solved in two steps to ob-
tain a solution\(e) = A\p + O(e"). O

We note that in the case of= 0 the above theorem is identical to the one obtained
in Haller and Wiggins [18] for the existence &iflnikov-type orbits in two-degree-
of-freedom systems. Another situation in which multi-puBitnikov-type orbits may
occur is when an equilibriump, € IT of the perturbed system is a saddle restricted to
the manifoldlZ, but when viewed within the center manifald ., it also admits: pairs
of complex eigenvalues with negative real parts.

Theorem 7.6. Suppose that: = 1 and system (1) depends on a parameter R in a
C" fashion. Let” € R be an open set and assume that

(i) The Hamiltonian, has a nondegenerate equilibrium (i.e., no zero eigenvalues)
po(A) = (Mo(A), po(N)) € II. If p.(X) € II is the corresponding equilibrium of
the perturbed system (1), then the manif@id (p.(\)) N M. is codimension one
within the center manifold\..

(iiy The “size” of W*(p.(N)) is of order O(e?) with 0 < ¢ < 1, i.e., it intersects a
surface|z| = Ke? transversely.

(iiiy For some positive integeN and for all A € V, there exists a functiofy(\) which
satisfies the conditions of Theorem 7.3.

(iv) The line{¢ = ¢o(\)} C II intersects transversely the unstable manifold of the
fixed pointpy € IT of the slow Hamiltonian.

(v) 1f(0,0,n0(N), po(A)) are the coordinates of this transverse intersection point, then
the point(0, 0, g, Ppo(X) + N Ag())) crosses the stable manifold af transversely
as )\ is varied throughho.

Then there exists a codimension one&Et C R? near the poini(\g, 0) such that
for every parameter valug\, €) € M, the system (1) admits aN—pulse homoclinic
orbit z} to the pointp.(\). The basepoint for this orbit lies i “(p.) N IT and the jump
sequence of the orbit is given jY(¢do()o)). There also exists another codimension one
setM~ c R? which yields similar homoclinic orbits with jJump sequence(¢o(\o)).
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Proof. Again, the main steps in the proof of this theorem coincide with those in the
proof of Theorem 7.3. The new element is that we want to force the stable fiber, which is
intersected by thé/-pulse homoclinic orbit, to lie on the stable manifold of the perturbed
fixed pointp.. At the same time, we do not require the basepoint ofNhpulse orbit
to coincide withp, as in the previous theorem, but rather we allow the basepoint to be
any point in the setW*(p.) N I1.

As in the proof of Theorem 7.3, we first solve the equation

ANH (pe(N); N) + 00F N (08 (pe(N)); b0, €, A) + € Gn (pn (pe(N)); do, €, A) = O

to obtain asolutioﬂ?(/\, €) = go(\)+O(e*). By assumption (iv) and by th@' dependence
of ¢ one* (cf. Theorem 7.3), the curvip = ¢(\, €)} intersects the unstable manifold
of the fixed pointp.()\) transversely in a point

P(A, €) = (no(A) + O("), do(A) + O(")) € I1.

We know (cf. Definition 7.1) that th&/-pulse solution with basepoip{X, ¢) intersects
a stable fiberf*(p(), €)) whose basepoint has the ¢, n, ¢) coordinates

B(A,€) = (0,0(e), mo(A) + O("), ¢o(A) + Ad(A) + O(e")) € M.. (100)

Furthermore, by assumption (ii), in a vicinity of the manifdidthe stable manifold of
pe can be written as a graph over either thie) or the ), z) variables. Considering
the former case (the latter can be dealt with in the same way), we obtain thdf reear
compact subset di/¢(p.()\)) satisfies an equation of the form

n= ml(¢» )‘) + Zm2(¢7 Z, /\7 6)7 (101)

wherem; are of clas€” andn = m1(¢, A) is the local equation of the stable manifold
of po on the manifoldI.

Our goal is to find parameter values for which the stable fiber baseppint)”
is contained in the stable manifold of the fixed painf\). From (100) we see that
dist((\, €), II) = O(e), and hence by assumption (ii) of the theorart), €) lies in
the domain wheréV*(p.()\)) satisfies (101). Then formulas (100) and (101) give the
equation

no(A) + e hy (X, €) — ma (¢o(N) + € hg(X, €), )
—eh, (A, €)ma (gi)o()\) +ethg(A €),eh. (N €), A, e) =0, (102)

where the functiong,,, hy, andh. are differentiable in\ ande. Now by assumption
(v), we know that

no(Ao) — m1 (d0(Ao), Ao) =0, Dy [1o(A) — ma (¢o(A), M=y, 7 O,

thus the implicit function theorem guarantees a soluﬁ(n) = Ao+ O(e*) to Eq. (102).
This completes the proof of the theorem. [
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8. Geometry of the Unstable Manifold of IT

Using the methods of the proof of Theorem 7.3, we can follow any particular solution
in the unstable manifold of the manifold on time scales of ordeP(log 1/+/¢), while

the unstable manifold makes a finite number of “jumps”. The following definition will
be used to distinguish between different types of jumping orbits within the unstable
manifold of I1.

Definition 8.1. Let us consider a poirt € C and letj = {j;} Y, be a sequence ofl’s
and —1's. An orbit z. of system (1) is called afv-pulse orbit with basepoini, and
jump sequencg, if for some0 < p < % and fore > 0 sufficiently small,

(i) =« intersects an unstable fibgt(b.) with basepoinb, = by + O(e*) € II.
(ii) Outside a small fixed neighborhood of the manifaitl, the orbitz. is orderO(/e)
close to a chain of unperturbed heteroclinic solutiat§), i = 1, ..., N, such that

lim z(t)=bo, lim 27 = lim 2i(t), i=2,...,N.
t——o00 t—+o0 t——o00

Furthermore, fork =1,..., N and for allt € R we have

k W5 (C) if ji =+1,
v (t) € {WO‘(C) if o= —1.

We have the following result for the existenceMfpulse orbits.
Theorem 8.1. Suppose that for some positive inte@and for someyy € T™ we have
A*H(po) 0, k=1,...,N —1.

Then, fore > O sufficiently small there exist constafts: . < 3 andC,, > 0, such
that for any0 < || < C,;, the system (2) admits twé-pulse orbitsc with basepoint
be € II such thatp,, = ¢g + O(e") andmn,, = 1. The jump sequences of the orbits are
given byy™*(¢o), respectively

Proof. Using the assumption of the theorem and the arguments from the proof of The-
orem 7.3, we immediately conclude that for» 0 small enough the inequalities

A H (o) + STk (pr(be); do, €) + € Gi (i (be); do, €) 7 O

hold fork = 1,..., N — 1. As a result, the unstable manifold(/I) contains two
N-pulse orbits with basepointq, ¢o). The jump sequences of these orbits can be found
in exactly the same way as in the proof of Theorem 7.3.0J

The above result can be used in examples to study the “disintegration” of the unstable
manifold of 1. In particular, in the process of its jumping aroufd the open sets in
the manifoldiW“(IT) depart from each other and follow different jump sequences. This
results in observable irregular transient behavior near the broken homoclinic structure,
even if there are no chaotic invariant sets created by the perturbation. We will use this
fact when we apply our results to a discretization of the forced NLS equation.



Multi-Pulse Homoclinic Orbits 35

9. An Alternative Formulation of the Results

It may happen that the unperturbed limit of system (1) admits an invariant which offers
a more convenient base for perturbation methods than the Hamiltégfjafor this
reason, we also present an easy modification of our results that uses some other integral
of the unperturbed limit. This alternative formulation will prove very useful in our study
of the discretized NLS equation in the next section.

We consider a modification of system (1) in the form

& = W (D Ho(x)) + eg(x), (103)

and assume that fer= 0, there exists @ * function Ky: P — R, which is independent
of the HamiltonianHy and Poisson commutes wiffh, i.e.,

{Ho, Ko} = w(Ww!(DHo),w*(DKo)) = 0. (104)

This last condition implies that the flows generateddyand K, through the symplectic
form w commute. We also assume that on the circle of equilibria

DKo|C = 0. (105)

Following the definition of the energy-difference functions in (84), we introduce the
function

N oo
AN ==Y [ (DKog) Loy dr (106)
i=1 v~
We also redefine the numbeiin (85) as
o =sign (DKo - n(p")) , (107)

as well as the sign sequences in Definition 7.2:

Definition 9.1. For any value¢o € T™, the positive sign sequencey*(¢o) =
{x5(¢0) i, is defined as

X1(%0) = +1, Xja(do) = osign (A*K(¢o)) xi(d0), k=1,...,N -1
Thenegative sign sequencg ~(¢o) = {x}, (¢0)} i, is defined as
X~ (¢0) = —x"(¢0)-
We then have the following result.
Theorem 9.1. The statements of Theorems 7.3-7.6 also hold if we replace the energy-

difference functiom\VH with the functionA ™ K defined in (106) and we use the defi-
nition of sign sequences given in Definition 9.1.
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Proof. Our estimates for the local dynamics near the manifeld in Sect. 4 as well

as Lemma 6.1 make no use of the Hamiltonfdn hence they hold without change.
Lemma 6.2 can also be proved using the funcfigrinstead off, noting that/; = 0.
Indeed, Eq. (105) ensures thié§ has the same type of Taylor expansion near the resonant
circle C as Hy does. Furthermore, the change/§ along perturbed solutions during
passages near the manifold. can be computed as (cf. (67))

N-1

N-1 .
S Kolas) — Kolp) = Z | Rttty
i=1 i=1

l *
/ DKO tt(Ho) + eg)]x(t) dt
0

zs

1
i

-
Z/ [{Ko, Ho} +(DKo, g)| «() dt (108)
=1

0

-1 ey
> /0 (DKo, ), dt,
=1

where we used (104). Moreover, this last integral can again be approximated (with error
of orderO(dp)) by an improper integral as in (71), because by (108)¥<,| decreases
exponentially on the unperturbed solutiari§t), hence the improper integral converges
absolutely. Lemma 6.3 can also be stated in terni3&&f based on (105). The statement

of Lemma 7.1 does not involvE| explicitly, so its proof remains the same. Based on

all these lemmas, the main argument in the proof of Theorem 7.3 can be repeated using
the invariantKy instead ofHj. In particular, one replaces the local coordinagdan the
representation of the global m&f.(¢o) and the local mag..(p1) with the value ofK,

atgp andp,, respectively. This is possible because, in analogy with (82), we have

<DK0(S€(w2a <7 P Q/)))a Dwzse(w27 Cv 12 7~p)> 7 07

since the vectoD K| is perpendicular to perturbed trajectories up to an error of order
O(¢), andD,,, s. encloses an angle of ord@(1) with perturbed trajectories. As a result,
we obtain the equation

AN K (o) + S0Fn (o (be); S0, €) + G (pn (be); b0, €) = 0

for the basepoink. of an NV-pulse homoclinic orbit. This equation can again be solved
for e > 0, if we apply the implicit function theorem using the extensignof the map

L. Adapting the definition of sign sequences from Definition 9.1, the jump sequences
of N-pulse orbits can be constructed in exactly the same way as in the proof of Theorem
7.3. Finally, we can repeat the proofs of Theorems 7.4-7.4 without any change using the
function AV K instead ofAVH. O

10. Jumping Homoclinic Orbits in a Discretization of the Perturbed NLS
Equation

Let us consider the periodically forced and damped, focusing nonlinead@uober
equation
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Uy — Ugy — 2 |u|2 u = ie(Feimzt — au + Bugy), (109)

with constants2, ", «, 3 > 0, and with the small parameter> 0. We assign even,
periodic boundary conditions of the form

u(z,0) =u(—2x,0), wulz+1t)=u(x,t).
Introducing the change of variable— ue*imzt, we can rewrite (109) as
U — Upy — 2 [|u\2 — QZ} u=1ie(l’ — au + Bugy). (110)

For 8 = 0, this equation agrees with the form of the perturbed NLS that was studied
by Bishopet al. [5] as a small amplitude approximation to the parametrically forced
sine-Gordon Eg. (see Sect. 1 for further references)gFEsr0 we obtain a form of the
perturbed NLS whose modal truncation and discretization was studied in the references
listed in Sect. 1.1.

Thee = 0 limit of Eq. (110) admits a discretization which was pointed out to be
integrable for arbitrary mesh size by Ablowitz and Ladik [1]. Applying this particular
discretization with mesh size > 0 to thee > 0 case yields the system of ordinary
differential equations

U+l — 2Up U1
— =

+1— +up—
+e (F—auk+ﬁ<ukl 2t 1)) (112)

U = —1 |uk|2 (uk_j_ + ’U,k+1) + Z’iQZuk

whereu(t) = u(ry,t), k = 0,...,K — 1 xo = —1, z; = x1 + kh. The periodic
boundary conditions for the PDE imply thaj(f) = uo(t). Fore = 0, system (111)
(together with the conjugate equations fqJ), is Hamiltonian with Hamiltonian

K-1
1 _ 2
Ho = 2 Z {Uk(ukﬂ +ug_1) — ﬁ(l +Q%h?) log(1 +h2|uk|2)] 5 (112)
k=1
and with the symplectic form

K-1 .
(3 _
= E ————-Im(dug A duy).
U7 g 2w ?) (s 1 )

The discretization (111) gives a tool for approximating solutions of the partial differ-
ential Eq. (110), and also offers a finite dimensional model for the phase space structure
of the perturbed NLS. In particular, fer= 0, (111) is integrable (see Ablowitz and
Ladik [1] and Li and McLaughlin [31]). This is a special feature of this discretization
which distinguishes it from the standard finite difference discretization of the NLS. (The
usual finite difference scheme would have the same linear part but a nonlinear term of
the formuy |uz|?, which would only ensure integrability fdk = 2.) System (111) also
admits a two-dimensional invariant plafégiven by

UL = U, U2 =UZy ... UK—1= UK. (113)

This plane is the set of solutions with no spatial dependence, and it is easily seen to
remain invariant foe > 0. Restricting the dynamics t& as in (113), one obtains the
equation
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i = 2i [szz - \uK|2] ure +e(T — aug). (114)

This shows that foe = 0, IT contains a circle of equilibri@ which is given bylux | = w.
The circleC is surrounded by periodic solutions in the pldiielntroducing the action-
angle variablesl( ¢) € R x St by lettinguy = Ie'?, we can rewrite Eq. (114) in the
form

I = ¢(I" cos¢ — ),
b =207~ 1)~ sing, (115)

Fore = 0, this system is a one-degree-of-freedom Hamiltonian system with Hamiltonian

2K 1
Hp = Ho|Il = 7 I? — ﬁ(l +Q2%h%)log(1 +h21%)| ,
and with the symplectic form
—KI
2(1 +h212)
which is clearly nondegenerate. Linearizing (111) about any point of the ¢iraee
finds that for

wi =wll = do NdlI,

3tan%<$2<oo, if K =3,
T 2 .
Ktan? << Ktan?7 if K>3, (116)

off the planell, the linearized system possesses one positive, one negativa, angl
pairs of pure imaginary eigenvalues (see Li and McLaughlin [31]). Furthermore, the
circleC admits a codimension two center manifdid, which contains the plang. For

€ = 0, Li [29] showed the existence of an- 2 parameter family of orbits homoclinic to
the center manifold\y, which implies the existence of a codimension one homoclinic
manifold W*(Mp) = W*(Moy). A three dimensional submanifold of this homoclinic
structure carries motions that are doubly asymptotic to the glaitself, hence we obtain
thatiW*(C) = W*(C) = Wg UW, . HereW;* denote the two connected components of
the manifold homoclinic tdl. This manifold is filled with heteroclinic orbits connecting
points on the circl€. As shown in Li [29], the phase shift along all these heteroclinic
connections is given by

1+%]cosz —1

Q2 ia T
\/l+ﬁsm?

If we pass to the real coordinates.( I;.) € R x S* by lettinguy, = I;.e***, then the
discretized NLS equation is of the form (1) with

Ap = —4tant \/[

(117)

K-1

2 —1 7 7 2
=72 Z {Ike R R ﬁ(l +Q%h%)log(1 +h*I}) |,
k=0

Hy=0, (118)

Ho
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K-1
I
=3 ok dg Adly, g=G(I,$;a,8,T).
w o 2(1+h21£) ¢k ks 9 (7¢Oéﬁ )

Furthermore, based on the above description of system (111), the resulting real system
of equations satisfies assumptions (H1)-(H7) of Sect. 2 with 1 andn = 2(K — 2).

As a result, the theory we have developed in this paper can be used to investigate the
existence of multi-pulse homoclinic orbits for the discretized NLS system (111). First,
we will study the equations setting = 0 which was the case in the study of Bishop

et al.[5, 6]. Later, we will consider the cage > 0, which was studied first in Li and
McLaughlin [31].

10.1. Theg = O limit. As described in Li and McLaughlin [31], the unperturbed
integrable system admits an invariant denakgduch that

Blc=o0. (119)

The functionf is defined as a Floquet discriminant computed for a set of fundamental
solutions to a discretized Lax pair for system (111). For brevity, we do not introduce
here all the notation and terminology for the exact definitiod'gfbut refer the reader

to Li and McLaughlin [29]. All we need in our analysis is the existencé’pfnd the
results of some involved calculations performed in [31]. In particular, using an implicit
derivation, Li and McLaughlin [29] computed a Melnikov integral to study the existence
of (single-pulse) homoclinic orbits for system (111). They obtain thatjfer 0, the
Melnikov integral computed on unperturbed orbits homoclinic to the citctan be
written as

Stn(@)= [ (DFg)lydi=T [Mr cos(¢ . Aj) - xaMa] (20

Here the nonzero constamté¢r and M, depend only on the numbé&X and the mesh

size K of the discretizationy,, = «/T", and the phase shift¢ is defined in (117). The
heteroclinic solution:"(¢) has the property that for its;, (t) component

Jim gu®) =0, k=0,... K-1

holds, wherep € S is the argument oj\prl.

By (118), the real system corresponding to (111) can in fact be written in the form
(103). This fact together with (119) implies that the alternative formulation of our main
results in Sect. 8 applies to the discretized NLS system. To find multi-pulse homoclinic
orbits, we have to study the zeros of the functiofi K defined in (106). Settingo = F;
and using (120), we obtain that

N oo )
ANK(g) = — Z/ (DF1, g) |yiq dt
= (121)

N-1
=-T [Mr Z COS(¢+ 2k + 1A¢> - NX(xM(x] .

2
k=0

Using the relation
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N-1 N—-1 . .
2]<; +1 . ez(¢+A¢/2) (ezNA(b _ 1)
cos A¢ ) =Re io+@k+DAS/2] = Re :
k=0 ( (b) kz; ’ eité —1
s:mM NA(;S
= — 5 cos( ¢+ )
sin
we obtain that
My sin Y22 NA
ANK($) = —T [;M) <¢+ ¢> CNvlML | 22
n=
If 0
a7 S5, el (123)
and
NA
N | xaM, sm‘ > ¢ , (124)
then AN KC admits two transverse zeros given by
NA NxaM,sin4
2 2 M sin NM
3t NA¢ 3 NxaM,sin?
N _— 1
== T cost X *__2 125
Using these zeros, we can obtain the following result.
Theorem 10.1. Consider any integeN > 1 and suppose that
2
g\ . m [1+:5]cosZ -1
KZ

Assume further that conditions (123) and (124) hold.
Then, fore, o > 0 sufficiently small,

(i) The discretized NLS system (111) admits fayparameter families ofV-pulse
homoclinic orbits, which are backward asymptotic to the invariant plahand
forward asymptotic to a codimension two invariant manifditi, which contains
I1. The coordinates of the basepoints of fliepulse homoclinic orbits are of the
form

wiE=usT = =ubEF = (4 O(\f)e’(‘bl OV =12
(i) The jump sequences of the orbit families satisfy

=gt =12 (127)

Furthermore, every time the jump sequericé changes sign, the jump sequence

4™* with I # m will not change sign, and vice versa.
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(i) The unstable manifold of the invariant plardé contains4N families of N-pulse
orbits (see Definition 8.1) such that all these families have different jump sequences.

Proof. We first note that formula (126) ensures that the zeros of the funetiic
are transverse (see (117) and (123)). Next we observe that o0, condition (123)
guarantees that¥ # ¢F with I,m € {1,2} andk = 1,..., N — 1. This implies that
for any fixedN, A’“IC(Q&{V) Z0,k=1,..., N —1.This property is clearly preserved for
a > 0 sufficiently small, hence Theorem 7.3 implies statements (i). By Theorem 7.3,
the two families corresponding to the ze#f§ have opposite jump sequences, which is
stated in Eq. (127).

To prove the second statement in (ii) about sign changes in the jump sequences, we
note that fore = 0 and for anyk € Z, we have

signAFKC(¢t) = —signakKC(¢d),

since the minimal period ok * K is 2 and the difference between the zegg@sandgy’
is exactly equal ter. But for sufficiently smalkx > 0, this last equation together with
the definition of the sign sequenge (¢{'), and the fact thag’* = y*(¢1), implies
the second statement in (ii).

Statement (jii) follows directly from Theorem 7.6 far> 0 small, because the\2
disjoint lines{¢ = ¢f}k=1,...,zv,z=1,z divide the plandT into 2N sectors, so that one of
the functionsa” K always changes sign at the boundary of these sectors.]

According to statement (ii) of the above theoréfthere are homoclinic orbits that,
for at least some of their pulses, stay near one particular component of the unperturbed
homoclinic structuréVy(Mp), then there are other multi-pulse orbits that keep switching
between different componentsi®f(Mo).

Theorem 10.1 does not identify the exact asymptotics of the multi-pulse solutions.
The asymptotic behavior of these orbits could be identified using Theorems 7.4 or 7.5,
and a likely candidate for the attracting sktis a sink created by the perturbation in the
planell. The role of the hyperbolic fixed poipb € II is then played by a saddle point
on I1. (The existence of these fixed points is easy to verify from Eq. (114).) However,
the identification of the domain of attraction8f leads to extensive calculations in this
example. Nevertheless, the results of Liand McLaughlin [31] indicate that the conditions
of Theorem 7.4 are indeed satisfied, which suggests the existence of the same type of
jumping heteroclinic orbits between the two equilibria as those described in Haller and
Wiggins [19].

10.2. The case of > 0. For the case off > 0, the calculations of the previous
subsection leading to the expressions (125) can be repeated. Using the formulas of Li
and McLaughlin [31], one obtains in the same fashion that

NA¢
2

My sin Y52
— 2 cos(¢+

AP
Sin =~

AN’C(QS) =-r [ ) - N (onMa - XﬂMﬂ> ) (128)
whereyxs = 3/T and Mg is a nonzero constant that depends on the parartesard

the mesh sizé( only. It is easy to see that the roots of this equation are smoogh,in
therefore the results listed in Theorem 10.1 remain valid for sufficiently stnall 0

(cf. the proof of that theorem). Instead of repeating these results, we will use Theorem
7.6 to construct multi-pulse homoclinic orbits to a fixed pgint I7. These orbits will

be the multi-pulse analogs of the single-pulse homoclinic orbits constructed by Li and
McLaughlin in [31].
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Theorem 10.2. Let N be an arbitrary but fixed positive integer, and Rt> 0 be a
constant such that conditions (116) and (123) are satisfied. Let the medk $iz8 be
an integer for which the codimension one surface

o - A¢sinae
Mo=d(, 8T, 0| 8= -2 (M, — @i 22502 )
i sinii32 129)

|XaMoz - XﬁMﬂ| < , €< €

N ‘smT‘

of the(a, 3, T, €) parameter space is nonempty.
Then there exists, > 0 and two codimension one surfacks™ € R*" with the
following properties:

(i) MZFis O(e?) CO-close to the surfacaly in the (o, 3, T, €) parameter space.

(i) For every(a,3,T,¢€) € M* , system (111 admits aN-pulse homoclinic orbit
which is doubly asymptotic to a fixed pojnte I1. The coordinates gf, are given
by (0., ¢p.) = (0,c0s 1 (xa2)) + O(Ve).

(iii) The basepoint of thév-pulse homaoclinic orbit lies on the unstable manifolghgf
and the jump sequence of the orbit starts with.

Proof. We only have to verify conditions (i)-(v) of Theorem 7.6, from which the state-
ments of the present theorem follow directly. We first recall that compact segments
of the orbits on the invariant plan& can be approximated by the level curves of the
Hamiltonian?, defined in (99), which in this case takes the form

Hy(n, ¢) = —2Q%)> — T'sing + aQe, (130)

as one obtains by Taylor expanding the right hand side of (115). The level curves of this
Hamiltonian are shown in Fig. 5. Note thaf(x.) = (0, cos *(x.)) is a saddle point

Fig. 5. The level curves of the Hamiltoniak ;

with a homoclinic loop. As shown in Li and McLaughlin [31], fer> 0 the equilibrium

pe € II perturbing frompy admitsn pairs of complex eigenvalues with negative real
parts, thus we obtain th&t’* (p.(x.)) N M. is a codimension one surface within the
manifold M.. Consequently, assumption (i) of Theorem 7.6 is satisfied. Condition (ii)
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of Theorem 7.6 is established in Sect. 6 of Li and McLaughlin [31] with reference to Li
et al.[33]. Condition (iii) of Theorem 7.6 is satisfied if

‘MF sin Y22
N ‘sin A—f‘

in which case the function™ KC(¢) defined in (128) has a zetty. Note that (131) is
satisfied for parameter values taken from the/dgt, and the transversality of these
zeros is guaranteed by condition (123). Therefore, assumption (iii) of Theorem 7.6 is
satisfied. The validity of assumption (iv) can be seen from the phase portrait in Fig. 5.

To prove the theorem, it remains to verify condition (v) of Theorem 7.6. This can be
done by adapting the distance measurement used in McLawgghdin[34] and Li and
McLaughlin [31] as follows. The point = (0,0, 70(x«), Po(xa) + N Ag) lies on the
stable manifold ofy if the value of Hamiltoniar#<, atp is the same as at some other
point of the homoclinic loop attached tg. In particular, it suffices to require that

Hy(mo(Xa)s Po(Xa)) = Hg(no(Xa), Po(Xa) + NAR).

From (130) we obtain that this last equation can be written in the form

2T cos <¢o(xa) + N2A¢> sin %d) —aQNA¢=0. (132)
Using the expression af ™ KC(¢) and the fact thabo(x.) is a zero ofAY K(¢), we can
rewrite (132) as

X —X‘*<MQ—QMF

Apsinoe\ 0
Mg -

N
2sirt &2

The transverse crossing of the unstable manifolggaby the pointp”is equivalent to

the left hand side of this equation admitting a nonzero derivative with respect to, e.g.,
the parametex,, at a solutiony, (3, I', 2, N). Since the equation is linear ip,, this
transversality condition clearly holds, thus condition (v) of Theorem 7.6 is satisfied.
This concludes the proof of the theorem. O

We remark that Li and McLaughlin [31] showed that the 38&3 defined in the
statement of the above theorem is nonemptyHor- 7 and forN = 1 (i.e., for single-
pulse homoclinic orbits). We also note that the multi-pulse homoclinic orbits obtained
from the theorem have the same asymptotic behavior as the single-pulse homoclinic
orbits, hence the construction of chaotic invariant sets in their vicinities can be directly
adapted from Li and Wiggins [32].

11. Conclusions

In this paper we gave a general criterion for the existence of nontrivial homoclinic orbits
in a large class of near-integrable, multi-dimensional systems that usually arise as modal
truncations or discretizations of partial differential equations. The homoclinic orbits we
constructed make repeated departures from, and returns to, a codimension two invariant
manifold which carries solutions with a slow and a fast time scale. The shape of the
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pulses (i.e., excursions of the homoclinic orbits) can be described by a sequence of +1s
and—1s which we compute explicitly. Our results generalizeghergy-phase method

in Haller [16] and Haller and Wiggins [19] to arbitrarily high (but finite) dimensional
systems.

We remark that if the perturbation in Eq. (1) is purely Hamiltonian (ge= 0),
then the multi-pulse orbits generically undergo a sequencaivtrsal bifurcationss
the parameters of the system are varied. Such a bifurcation has been first described in
an example in Haller [15] and then were shown to be generic near double resonances
of near-integrable Hamiltonian systems in Haller [15]. Since for purely Hamiltonian
perturbations, the energy-difference functinfi 7 obtained in this paper is the same as
in [15], the same universality holds for the bifurcations of multi-pulse orbits in system
(2).

As an application of our results, we showed that the discretized, perturbed NLS
equation admits multi-pulse solutions homoclinic to its center manifold. In fact, the pulse
number of these orbits can be arbitrarily high if the dissipative and forcing terms are
small enough. Statement (ii) of Theorem 10.1 also showsYhptilse orbits with quite
different shapes will coexist. Furthermore, statement (iii) describes how the unstable
manifold of the pland/l disintegrates through multi-pulse jumping into components
which display completely differentjumping behaviors. Since the multi-pulse orbits spend
a time of order© (log 1/,/¢) (as opposed t@(1/+/¢) as in Kaper and Kow&g [26])
in the neighborhood of the manifold., they have observable open neighborhoods
in which solutions exhibit the same type of jumping behavior for finite times. Given
the close coexistence of multi-pulse orbit families with different jump sequences, one
expects to see atransient type of chaotic dynamics in numerical simulations. This agrees
well with the irregular jumping behavior observed by Bistedl. [5, 6] for 5 = 0.

Finally, we also considered the discretized NLS equation with a mode-dependent
damping term § # 0). Making use of the calculations of Li and McLaughlin [31], we
showed the existence of multi-pulse Silnikov-type homoclinic orbits for a codimension
one set of parameter values. This provides a significant extension of the set of parameter
values for which the discretized NLS equation admits chaotic invariant sets in its phase
space.

Acknowledgementl am grateful to Dave McLaughlin for several useful discussions on the subject of this
paper and for making ref. [31] available to me before its publication.
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