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Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the

dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are

characterized by unsteady separation and alternating vortices in the wake. We use the flow field

from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled

swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum

transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume

that serves to track back the vortex fluid and record its circulation and momentum history. We con-

sider two swimming modes: the C-start escape and steady anguilliform swimming. The backward

advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and

allows for monitoring the gain and decay of circulation and momentum transfer in the flow field.

For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum

exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to

balance the high momentum change of the fish during the rapid start. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4919784]

Lagrangian coherent structures (LCSs) characterize fluid

transported coherently inside a vortex and can help eluci-

date the governing mechanisms of momentum transfer in

a flow field. We use the dynamics of the LCS to charac-

terize the flow field and propulsion mechanism of an

anguilliform swimmer employing different swimming

modes.

I. INTRODUCTION

The way swimmers take advantage of the surrounding

liquid environment is subtle and its governing mechanisms

remain elusive to a large extent. Fishes propel themselves by

deforming their bodies to transfer momentum to the surround-

ing fluid. Both for fast starts and steady-state swimming, their

body strokes correspond to sequences of acceleration and

deceleration. The continuously alternating rates of momentum

transfer, both globally in the entire flow field and locally along

the body surface, make it difficult to separate thrust and

drag forces.1,20 This complicates our understanding of the

hydrodynamic mechanisms underlying self-propulsion in

swimming.

Understanding the momentum transfer between the

swimmer and the flow structures in its wake holds the prom-

ise of elucidating the fundamental physical mechanisms gov-

erning fish swimming.2,3 In order to extract the information

as to when and where the swimmer accelerates its

surrounding fluid, we rely on the detection and tracking of

LCSs. LCSs are persistent material objects in the flow that

characterize the fluid deformation over a certain period of

time.9,10 LCSs are composed of finite-time Lagrangian tra-

jectories of fluid particles, obtained from the application of

concepts of dynamical systems theory to Lagrangian fluid

motion. Haller9 reviews various types of LCS and shows a

number of applications to geophysical flows.

In the context of fish propulsion, LCSs have been used to

reveal the flow topology of several flapping propulsion devi-

ces using experimental and numerical data. Peng et al.16 con-

struct a boundary of an isolated vortex pair by combining

attracting and repelling hyperbolic LCSs, based on finite-time

Lyapunov exponents (FTLE), in order to estimate propulsive

forces. In a follow-up article, Peng and Dabiri17 study a nu-

merical simulation of a self-propelled flexible plate and com-

pute hyperbolic FTLE-based LCSs. They define an upstream

wake and use the area enclosed by the LCSs to determine an

unsteady mass flow rate past the swimmer. Green et al.7 use

experimental flow data of a pitching panel, mimicking a cau-

dal fish fin. The transition of the wake topology for increasing

Strouhal number is shown by means of FTLE-based hyper-

bolic LCS. All three studies detect LCSs as FTLE ridges,

while by now, a precise definition of a hyperbolic LCS is

available that returns a coherent material line.8

In the first two studies, the authors attempt to track fluid

enclosed by FTLE ridges. For the tracking of a coherent fluid

region, this approach seems problematic, since hyperbolic

structures stretch exponentially under the flow and are there-

fore unable to define a closed vortex boundary that evolves

coherently under the flow. Moreover, FTLE ridges do not
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form closed loops, and rather spiral into coherent vortices,

incorrectly suggesting the lack of a coherent core in these

cases. Even if closed curves are constructed from FTLE

ridges computed in forward and backward time direction, the

ridge curves neither close up, and the curves have to be

closed manually.16 As an additional drawback, the material

flux across an FTLE ridges is generally non-zero.8,9 If con-

secutive snapshots of FTLE ridges are used to define an

evolving boundary, fluid is flowing into and out of the

tracked fluid region, so that the Lagrangian property is lost.

In contrast to FTLE ridges that only roughly identify

hyperbolic structures in the flow, our novel method11 detects

elliptic LCS, denoted by coherent Lagrangian vortices. The

resulting closed material line has a zero material flux across

it by construction. This is a key property for the quantifica-

tion of momentum exchange between the engulfed fluid and

the swimming body. The obtained material vortex boundary

behaves coherently in the sense that—unlike generic mate-

rial lines in a time-dependent flow—it does not stretch or

form filaments over the time-period used in its identification.

Hence, the coherent vortex boundary encloses fluid that stays

inside the vortex, coherently separated from the ambient

fluid. The vortex fluid region serves as a Lagrangian control

volume that allows us to track vorticity and linear momen-

tum and monitor the vortex formation process. We relate the

vorticity and momentum history to the swimming dynamics

and find that fish’s momentum oscillations can be recovered

from the momentum of coherent Lagrangian vortices for

steady swimming.

The outline of the paper is a follows. In Sec. II, we

describe the flow simulation and the detection method for

coherent Lagrangian vortices. Section III comprises the

results for the C-start and for steady swimming, and our con-

clusions are presented in Sec. IV.

II. METHODS

A. Flow simulation

In the fluid domain, we solve the incompressible 2D

Navier–Stokes equations

r � u ¼ 0;
@u

@t
þ u � rð Þu ¼ �rpþ �r2u; (1)

where u and p are the fluid velocity and pressure, respec-

tively, and � is the kinematic viscosity. To account for the

presence of the swimmer, we apply the no-slip boundary

condition at the interface between the fluid and the body, to

match the fluid velocity u to the local body velocity us. The

effect of the fluid onto the body is governed by Newton’s

equations of motion

ms€xs ¼ FH; dðIshsÞ=dt ¼ MH; (2)

where FH and MH are the hydrodynamic force and torque

exerted by the fluid on the body, characterized by center of

mass xs, angular velocity hs, mass ms, and moment of inertia

Is. The body moving under (2) creates time-varying bound-

ary conditions for (1).

The numerical method to discretize Eqs. (1) and (2) is a

remeshed vortex method, with a penalization technique to

account for the no-slip boundary condition and a projection

method to incorporate the forces from the fluid onto the

body.4 The swimmer’s geometry is represented with the

characteristic function vs (vs¼ 1 inside the body, vs¼ 0 out-

side, and mollified at the interface), and its gait is imposed

by a deformation velocity field udef. In this work, we employ

the multiresolution implementation of this algorithm, which

is open-source and has been discussed in Gazzola et al.6 and

Rossinelli et al.18

All simulations are performed in a unit square domain

with effective resolution 16 384� 16 384 and swimmer’s

length of L¼ 0.05. The refinement and compression toleran-

ces are, respectively, 10�4 and 10�6; the Lagrangian

Courant-Friedrichs-Levy (CFL) condition for convergence is

set to LCFL¼ 0.01; and the penalization constant is k¼ 104.

The simulations of the C-start are performed with swimmer’s

shape and midline kinematics as in Gazzola et al.,5 with

Reynolds number Re¼ (L2/Tprop)/�¼ 550, where Tprop is the

period of the propulsive stroke. The steady-state simulations

are performed with an anguilliform swimmer,12 with Reynolds

number Re¼ (L2/Tf)/�¼ 7143, where Tf is the flapping period.

B. Coherent Lagrangian vortices

Coherent Lagrangian vortices are regions enclosed by

outermost members of nested families of k-lines.11 k-lines

are curves that uniformly stretch or shrink by a small amount

over a predefined finite time interval. Outermost closed k-

lines define the boundaries of coherent fluid patches and, in

particular, the boundaries of coherent vortices. Since each

segment of the coherent vortex boundary stretches by the

same amount, filamentation and the break-away of material

are prevented. Here, we review the necessary definitions and

shortly describe the detection of k-lines in a two-dimensional

unsteady velocity field v(x, t).
The evolution of a fluid trajectory is given by

_x ¼ vðx; tÞ:

A trajectory is denoted x(t; x0, t0), with the initial position x0

at time t0. The flow map is

Ft
t0
ðx0Þ :¼ xðt; t0; x0Þ;

which maps initial positions to current positions at time t.
The finite time T¼ t� t0 is predefined and plays the role of

the required coherence time for the coherent vortex bound-

ary. The Cauchy–Green strain tensor

Ct
t0
ðx0Þ ¼ ½rFt

t0
ðx0Þ�TrFt

t0
ðx0Þ

measures Lagrangian strain along trajectories and has eigen-

values and eigenvectors,

Ct
t0
ni ¼ kini; 0 < k1 � k2; i ¼ 1; 2:

As derived by Haller and Beron-Vera,11 k-lines are tra-

jectories of one of the two vector fields
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gk
6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

k2 � k1

s
n16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k1

k2 � k1

s
n2:

Any trajectory segment of gk
6 stretches by a factor of k under

the flow map Ft
t0

. We obtain k-lines by integrating

r0ðsÞ ¼ gk
6;

where r0ðsÞ is a tangential vector to the k-line which is para-

metrized by its arc length as r(s). Closed k-lines are the solu-

tions to the variational principle of stationary averaged

Lagrangian strain.11

k is a parameter close to one, namely, the stretching factor

for the coherent vortex boundaries. To detect coherent vortex

boundaries, we vary k in the range [0.95,1.05], i.e., we allow

for maximally 5% stretching or shrinking of the curve. For

each k-value, we seek closed orbits in the vector fields gk
6, and

define the outermost such closed orbit as the Lagrangian vor-

tex boundary. A detailed description of the individual steps of

the algorithm along with descriptive examples are given by

Onu et al.15 The associated MATLAB toolbox LCS Tool is

available at https://github.com/jeixav/LCS-Tool.

The numerical advection of the detected vortex bound-

ary lines in the simulated flow field has to be accurate.

Therefore, the relative tolerance of the employed Matlab

ode45 function has been set to 10�8 and additional points

are added to the vortex polygons when the distance between

neighbor points exceeds a threshold. Linear interpolation in

time and space is sufficient, since the numerical data set has

a high spatial and temporal resolution. The critical location

for advection is the fish boundary: in case of insufficient ac-

curacy, advected material lines may cross the fish

boundary.

For the plots and diagrams, vorticity is computed from

the velocity field with finite differences. The circulation C of

the vortex fluid is obtained as C ¼ A hxiA, where A is the

area and hxiA is the mean vorticity of the enclosed fluid

region. Linear momentum is obtained as p ¼ q A huiA, where

huiA is the mean velocity, and density q¼ 1.

We consider a self-propelled body of constant area and

unit density in an infinite 2D fluid, with no-slip boundary

conditions on the body surface. In this case, the force of the

fluid onto the body is given as

FH ¼ ms€xs ¼ �
d

dt

ð
V1 tð Þ

udV �
þ

S1

pn̂dS;

where V1 is the region of the domain occupied by fluid,

S1 is the bounding surface of the domain at infinity, and n̂

is the normal vector to that surface.14,19 The left-hand side

of the equation is obtained by differentiating the time his-

tory of the center-of-mass velocity of the swimmer. On the

right hand side, the pressure integral cannot be calculated

numerically with the current method. However, we found

that neglecting the pressure term and restricting the vol-

ume integral to the computational domain only introduces

a discrepancy in the momentum balance of �10% or

smaller. This supports our approach of investigating to

what extent the momentum change of the swimmer can be

attributed to that of the coherent structures in the

swimmer’s wake.

III. RESULTS AND DISCUSSION

A. C-start

For the C-start maneuver, coherent vortices are detected

at time t0¼ 1.25 with an integration time of T¼ 0.5. Figure 1

shows the detected vortex boundaries at the beginning and

end of the coherent phase at times t0 and t0þ T. As guaran-

teed by the theory of coherent Lagrangian vortices, no fila-

mentation or material break-away occurs along the advected

curves over this period (inspect the dashed–dotted curves).

The time t0 corresponds to the time of the second tail stroke

cycle when the second vortex pair (#4 and #5) is shed. The

first vortex pair (#2 and #3), generated when the C-shape is

straightened, is shed at t� 0.65. With this choice of t0 and T,

the first and the second vortex pairs are included in the anal-

ysis, but the major acceleration of the swimmer is due to the

first vortex pair. Vortex #1 is generated during the prepara-

tory stroke when the fish bends from a straight line to the C-

shape. Its momentum contribution is small, rather opposing

propulsion.

In order to obtain time series of vorticity and linear mo-

mentum of the vortex fluid, the vortex boundaries are

advected with the flow over the whole time interval of the C-

start maneuver, t¼ [0.0, 1.77]. Figure 2 gives an overview of

the temporal evolution of the material fluid regions during

vortex formation. The fluid, finally forming the vortices, is

initially stretched out to an elongated shape. Interestingly,

fluid from both sides of the fish constitutes the vortex fluid,

while vorticity with the same sign as in each final vortex is

located only on one side. In the presented sequence, this

effect can be best observed for vortex #4.

In the first shown snapshot at t¼ 0.3, a pocket of fluid

(black, #6) is enclosed by the deformed vortex boundaries of

the first vortex pair (#2, #3), corresponding to the white

enclosed fluid region in Fig. 6 in Gazzola et al.5 This fluid

region constitutes the jet fluid that is expelled backwards

inside the first vortex pair. It corresponds to the propulsive

FIG. 1. Coherent vortex boundaries at t0¼ 1.25 (solid) with vorticity field

and advected curves at t0þT¼ 1.75 (dashed–dotted). A short piece of the

fish tail can be seen at the upper left corner. The trajectory of the fish’s cen-

ter of mass is drawn (solid, gray).
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“Jet 2” in the experimental study with bluegill sunfish by

Tytell and Lauder.21 We define the boundary of the jet fluid

at time t¼ 0 when the fluid is at rest. At this time, the bound-

ing curves of vortex regions #2 and #3 are almost indistin-

guishably close, and the jet boundary is constructed by

concatenating the corresponding segments of these two

boundaries. The two segments are connected where they are

closest. Although the jet fluid region does not transform into

a coherent vortex, we add it to the five coherent vortex

regions we consider, since it experiences a high acceleration

during the start and is therefore a crucial part of the momen-

tum balance.

The evolution of the vortex circulation C(t) is shown in

Fig. 3. Initially, the fluid is at rest and all vortices have zero

circulation. The circulation increases slowly in the fish’s

boundary layer and rises abruptly right before the vortex is

shed at the tail. This process is emphasized by Fig. 3(a), in

which peak circulation corresponds to the shedding of the

fluid region from the fish tail. The peak is followed by a slow

decay in the wake due to viscosity. As an example, we show

the decay of vortex region #2, and find that it fits well with

the circulation decay of the viscous Lamb–Oseen vortex

model19 CðtÞ ¼ C0½1� e�aðt�t0Þ�1 �. C0 is the peak circulation,

t0 is the time of vortex shedding, and a¼ r2/(4�) is an inverse

time constant, depending on the vortex radius r and the kine-

matic viscosity � of the fluid. The Lamb–Oseen vortex is a

circular two-dimensional vortex model with a Gaussian vor-

ticity profile. The diffusive outflow of vorticity through a

bounding material curve leads to the above decay of circula-

tion with time. The peak circulation is similar for the coherent

vortices #2, #3, and #4, with values C0� 3� 10�3. The circu-

lation of vortex region #5 results smaller, since only a small

core part of the vortex is detected as coherent in the prescribed

time window, cf. Fig. 1. The preparatory vortex (#1) is also

weaker with a peak circulation of C0� 1� 10�3.

The gain of linear momentum of the fish in the acceler-

ating phase of the C-start is closely linked to the generated

coherent vortices. However, the primary contribution to the

forward acceleration comes from the expelled jet of fluid.

Figure 4 shows the temporal evolution of forward momen-

tum for the six discrete fluid regions. The forward direction

of the fish motion is defined by the trajectory of the center of

mass of the fish over the interval [0, 0.47] (see trajectory in

Fig. 1) and corresponds to an angle of �45� to the vertical.

Linear momentum of the fluid regions is projected onto the

opposite direction to ease a direct comparison with the fish

momentum.

The sum of forward linear momentum of all fluid

regions (Fig. 4(a), black) is dominated by the momentum of

the jet of fluid (magenta). Vortices #2 (cyan) and #3 (green)

also contribute, but the forward linear momentum they carry

is five times smaller. During the C-start, the fish gains its

final momentum before t¼ 0.5, mainly during a steep rise of

the momentum curve at t¼ 0.3, see Fig. 4(b) (red, solid). We

note that both the fish’s momentum and the (negative) mo-

mentum of the fluid regions (black) exhibit this steep rise

approximately at t¼ 0.3. Consequently, the force impulse

accelerating the fish is provided by the reaction force of the

ejected fluid regions, in particular, by the jet fluid. The mo-

mentum of the fluid regions rises to values twice as high as

FIG. 2. Evolution of coherent vortex

boundaries, clockwise rotation (red),

anti-clockwise rotation (blue), and jet

fluid (black). Vorticity is plotted in

gray scales in the background to indi-

cate the fish’s position.
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the fish’s momentum. This imbalance could be explained by

the added mass of the fish or the vortices2 that we do not

consider in the detected fluid regions. In the lateral direction,

the momentum of the fish and the momentum of the fluid

regions are not in balance, indicating that additional parts of

the fluid have to be taken into account for a complete mo-

mentum balance of fluid and body.

In summary, the detection of coherent vortices in the C-

start serves to define discrete Lagrangian fluid regions rele-

vant for propulsion and to track their dynamics. Backward

advection of these regions identifies a further jet region

around which Lagrangian vortex boundaries accumulate

beyond their coherence time.

B. Steady swimming

In the case of steady swimming, during the first cycle, a

quarter-period sinusoidal ramp is employed, and for each

swimming cycle afterwards, the swimmer’s body deforma-

tion corresponds to anguilliform swimming.12 We consider

the swimming mode of the fish as steady after an initial

acceleration phase of eight cycles, corresponding to t¼ 8.0.

After this period, the momentum of the center of mass of the

fish is constant, apart from periodic body stroke-induced

oscillations (cf. gray curve in Fig. 7(c)).

Coherent vortices are detected in the wake of the steady

swimmer, one cycle after being shed from the tail, with an

integration time also of one cycle, i.e., each coherent vortex

has an individual initial time t0¼ tshedþ 1.0 and T¼ Tc¼ 1.0.

The time tshed is determined by visual inspection. We detect

three consecutive vortices at t0¼ [13.0, 13.5, 14.0] and advect

the resulting boundary curves over the whole time interval of

steady swimming [8.5 15.0].

The temporal evolution of the coherent vortex bounda-

ries is shown in Fig. 5. Initially, the vortex fluid is stretched

into an elongated shape with two larger patches on both sides

of the swimmer. Similar lobes appear in Fig. 7 of Peng

and Dabiri,17 in FTLE-based hyperbolic LCS. This suggests

that vortex fluid is embedded in the hyperbolic structures at

FIG. 3. (a) Circulation C(t) of five C-start vortices (#1–5) and enclosed jet

fluid (#6). (b) Viscous decay of circulation (absolute value) of vortex bound-

ary #2 (black crosses), and curve fit with Lamb–Oseen vortex model

[C0¼ 3.0� 10�3, t0¼ 0.37] (solid line).

FIG. 4. Linear momentum of five vortices and jet region. (a) Linear momen-

tum of fluid regions projected on negative swimming direction of fish. Same

colors as in Fig. 3(a). First vortex pair (#2, cyan and #3, green) and jet fluid

(#6, magenta). Sum of all fluid regions (black). (b) Linear momentum of fish

(red) and total momentum of coherent fluid regions (black). Forward direc-

tion (solid) and lateral direction (dashed).
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this location. It is surprising that the fluid patch on the side

with opposite vorticity sign compared to the final vortex has

a significant size, such that a large volume of fluid with

opposite-sign vorticity is entrained into the final vortex dur-

ing the shedding phase at the tail. The deformed fluid regions

have qualitatively the same shape at t¼ 0.3, apart from trans-

lation and mirroring with respect to the horizontal axis, as

expected for the periodic steady motion. Yet, a careful

inspection reveals different details. This is because the

detected circular vortex regions, at their individual t0, have

slightly different sizes, which may be related to an imperfect

periodic flow. These small differences are propagated

through the non-linear advection to earlier times.

Both fluid patches on either side of the fish are connected

with a thin filament of negligible area. The filaments of the

three vortices are arranged side by side, overlap with the

boundary layer of the swimmer’s skin, and exhibit a broader

band of fluid in front of the swimmer. When the fish passes

through the vortex regions, the contained fluid gains vorticity,

and finally rolls up to a coherent vortex when shed at the tail.

Figure 6 shows the circulation C(t) of the three detected vorti-

ces. The circulation is practically zero when the fluid regions

are initially at rest far upstream of the fish. Then, the circula-

tion rises as the fish proceeds, until the vortex is shed, and vis-

cous decay starts. Due to the periodic motion, the curves

show the same behavior, as expected. Since they are associ-

ated with three consecutive vortices, all three curves are

shifted in time by Dt¼ 0.5. The second vortex region (red)

has a negative circulation, indicating the opposite sense of

rotation compared to the first and third vortex region. The first

local maximum of circulation, for example, for the red curve

at t¼ 10.0, corresponds to the vorticity generated in a small

vortex behind the head (see arrow in Fig. 5).

Concerning the linear momentum balance, the steady

swimming case differs from the accelerating C-start case.

During steady swimming, the momentum of the fish, aver-

aged over a flapping period, is constant, and therefore, the

net momentum exchange with the fluid is null. However,

oscillations in the forward momentum of the fish (in x-direc-

tion) exist due to the intermittent propulsion by tail strokes.

These sinusoidal oscillations can be seen in Fig. 7(a) repre-

sented by the gray curve, the linear momentum of the fish.

The curve is shifted by an arbitrary px-offset to ease visual

comparison with the momentum of the vortex fluid.

The constant component of the linear momentum of the

fish during steady swimming was gained during the initial

acceleration phase prior to our analysis period. Therefore,

we focus on the oscillations in the fish’s forward momentum

and relate them to the momentum of the coherent vortices.

Fig. 7(a) shows the momentum time series of the fluid

regions associated with the detected coherent vortices (thin

black, red, and blue). Color-coded bars indicate the time

when the vortex region goes past the head and when the vor-

tex is shed at the tail. The momentum history of an individ-

ual fluid patch can be divided into three phases depending on

the location of the fluid: upstream, alongside, or downstream

of the fish.

In the first phase, starting from zero, the individual fluid

region gains momentum in the swimming direction of the

fish. This corresponds to the fluid being pushed forward due

to the approaching swimmer, a part of the added mass of the

body, which can be associated with a drag acting on the

swimmer. In the second phase, after contact with the body,

the fluid is accelerated backwards until it reaches zero mo-

mentum again, right before being shed by the tail. This phase

is associated to thrust production. Note that the shedding

times of the three vortices, tshed¼ [12.0, 12.5, 13.0], agree

FIG. 5. Evolution of three coherent vortex boundaries during steady swim-

ming. The arrow indicates a small vortex formed in the boundary layer

behind the head.

FIG. 6. Circulation C(t) of three coherent vortices. Maximal circulation is

attained when the vortex is shed from the tail at t¼ [12.0, 12.5, 13.0]

(arrows). Colors as in Fig. 5.

087405-6 Huhn et al. Chaos 25, 087405 (2015)



with the times when the momentum of the individual fluid

regions attain zero momentum again. In the third phase, vor-

tices in the wake possess small backward momentum, which

slowly decays as the swimmer has passed.

The oscillations in the fish momentum have twice the

frequency of the tail beat, i.e., fp¼ 2, one acceleration-

deceleration cycle per generated vortex. However, this

frequency is not present in the momentum history of an indi-

vidual vortex fluid region. The individual momentum curves

have lower frequencies of typically fp� 4/3. The oscillations

occur when alternating drag and thrust regions along the fish

propagate with the fish through the vortex material patches

(Fig. 7(b)). Only if the momentum time series of several vor-

tices is superposed (Fig. 7(a), bold black curve), the domi-

nant frequency in the total momentum matches the

frequency of the fish momentum. The dominant frequency of

fp¼ 2 can be seen in the bold black total momentum curve

approximately over the range [10.25, 12.50].

To strengthen this observation, we construct a total mo-

mentum time series of the vortex fluid, by summing up a peri-

odically shifted individual momentum curve. Figure 7(c)

shows the individual momentum curve (blue), the copies

shifted by 0.5 in time (faint blue), and the summed up total

momentum (black). While it is not surprising that the resulting

total momentum has a dominant period of 0.5 (by construc-

tion), it is noteworthy that the amplitude of the constructed

total momentum is very similar to the amplitude of the oscilla-

tions of the fish momentum. Consequently, it seems that the

oscillations in the fish momentum are balanced by the super-

imposed momentum time series of individual vortex regions.

Our results show that, by following the momentum his-

tory of a coherent vortex fluid region as a material entity,

drag and thrust can be spatially and temporally separated to

some extent. According to the momentum history, depicted

in Fig. 7(a), an individual vortex fluid region is first acceler-

ated in swimming direction upstream of the fish, acting as

drag, and later accelerated in backward direction aside the

fish, acting as thrust. Yet, the backward acceleration aside

the fish is not monotonic. Regions of thrust and drag alter-

nate along the undulating body (Fig. 7(b)). Thrust (drag)

regions are located close to concave (convex) regions of the

fish boundary. This is consistent with the C-start, where the

thrust-generating accelerated fluid is located within the con-

cave C-shaped body during the preparatory stroke. Since the

vortex fluid is distributed along both sides of the fish body, it

both covers drag and thrust regions when the fish passes.

However, the net thrust effect can then be predominantly

attributed to the fluid located in the concave sections of the

fish’s flexing body.

We wish to stress that in our analysis, we only consid-

ered a discrete set of coherent vortices, while non-negligible

contributions of other parts of the fluid may have been over-

looked. In particular, the jet fluid in close contact with the

fish in-between the lobes of the vortex fluid in Fig. 5(a) could

be relevant. Yet, the fact that the momentum of the vortex

fluid alone can largely explain the momentum fluctuations of

the fish suggests that complementary jet fluid regions pre-

dominantly carry lateral momentum that is of minor impor-

tance for propulsion.

IV. CONCLUSION

In this study, we quantify the contribution of discrete

coherent Lagrangian vortices to the momentum balance of

two different modes of swimming propulsion, impulsive

C-start escape, and steady anguilliform swimming. For the

FIG. 7. (a) Linear momentum in x-direction px of the three consecutive coher-

ent vortices (black, red, blue, thin line), sum of vortex momentum (bold,

black), negative fish momentum px (bold, grey, with arbitrary offset added to

ease visual comparison). The times when the vortex region goes past the head

of the fish and when the vortex is shed at the tail are indicated by color-coded

bars. Colors as in Fig. 5. (b) Instantaneous acceleration of fluid ax¼ dvx/dt at

t¼ 11.5. Blue (red) fluid is accelerated in positive (negative) x-direction and

induces a thrust (drag) reaction force on the fish (or on the rest of the fluid).

Accelerated and decelerated fluid regions alternate along the fish body. Thrust

(drag) regions are found where the fish boundary is concave (convex). (c)

Momentum evolution (black), obtained as the sum of periodically shifted

momentum curves of a single vortex (blue). Shifting period s¼ 0.5. Linear

momentum of fish (grey).
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C-start, Gazzola et al.5 report that the fluid region trapped

inside the C-shape consists of a vortex pair and a low vortic-

ity jet region. They find that bending the body into a C-shape

is an optimal strategy for fast escapes, as it allows the fish to

trap and accelerate the largest amount of fluid. We quantify

the momentum transfer to the trapped fluid and show that the

main contribution comes from the jet fluid region, initially

enclosed by vortex fluid and finally expelled as a jet. For

steady swimming, the amplitude and frequency of momen-

tum oscillations of the fish are matched when the momentum

records of individual vortex regions are periodically super-

posed. For an individual vortex region, a phase of drag pro-

duction upstream of the fish can be separated from a phase

of thrust production along the fish. Consistent with the C-

start, thrust regions aside the fish are located where the body

is concave suggesting a similar propulsion mechanism. The

geometry of the deformed vortex fluid upstream of the

swimmer, revealed by our method, can be of further interest

when the swimmer interacts with vorticity from upstream

obstacles, like a stationary bluff body13 or other fish in fish

schools.4
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