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While data-driven model reduction techniques are
well-established for linearizable mechanical systems,
general approaches to reducing nonlinearizable
systems with multiple coexisting steady states have
been unavailable. In this paper, we review such a
data-driven nonlinear model reduction methodology
based on spectral submanifolds. As input, this
approach takes observations of unforced nonlinear
oscillations to construct normal forms of the dynamics
reduced to very low-dimensional invariant manifolds.
These normal forms capture amplitude-dependent
properties and are accurate enough to provide
predictions for nonlinearizable system response
under the additions of external forcing. We illustrate
these results on examples from structural vibrations,
featuring both synthetic and experimental data.

This article is part of the theme issue ‘Data-driven
prediction in dynamical systems’.

1. Introduction

Dimensionality reduction for datasets representing high-
dimensional nonlinear mechanical systems is of crucial
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importance in science and technology. Low-dimensional models are expected to reduce
computational cost and capture the essential physics of a high-dimensional system from data.
Given the growing interest, for example, in light mechanical structures and MEMS devices,
there is the need for truly nonlinear models, capturing amplitude-dependent properties and
competing steady-states solutions, which are increasingly important to identify, as highlighted in
experiments of nonlinear mechanical vibrations [1-8]. Predicting coexisting stable and unstable
forced responses for a broad range of forcing amplitudes and frequencies is paramount in
structural dynamics. However, a generally applicable technique returning such reliable low-
dimensional models of nonlinear mechanical vibrations has not emerged yet.

The most common approaches to data-driven reduced-order modelling are the proper
orthogonal decomposition (POD) followed by a Galerkin projection [9-13] and the dynamic mode
decomposition (DMD) [14,15]. The former approach requires the knowledge of the governing
equations of motion and, once a relevant number of modes is identified from data, projects these
equations onto those modes to construct a reduced-order model. DMD and its improved versions
[16-22], supported by Koopman operator theory [23,24], seek a low-rank approximation to the
dynamics of observable data without reliance on the governing equations of motion. With this
approach, DMD and Koopman mode expansions are able to linearize the observed dynamics
around attracting fixed points on domains that cannot include additional fixed points or limit
cycles [25-28]. Therefore, while truly powerful for globally linearizable dynamics [29], these linear
techniques cannot capture essentially nonlinear dynamical systems (or nonlinearizable systems)
with multiple coexisting steady states.

Other approaches treat the dimensionality reduction and the data-driven dynamical modelling
as separate problems. Typically, the data are first processed via dimensionality reduction
algorithm, which ranges from POD or principal component analysis (PCA) [30], its kernelized
version [31], subspace adaptation [32], manifold learning techniques [33-35] or autoencoders
[36,37]. Structural dynamics problems admit very often a low-rank representation as only some
modes are present in the system response [38]. Afterwards, the dynamics are identified in
the reduced coordinates using classic regression techniques (least-squares [31], LASSO [39],
SINDy [40]), Bayesian learning techniques [41] or neural networks in different architectures
(fully connected, convolutional, recurrent) [36,42—44]. Some of these techniques return complex,
black-box models (which may be non-physical [45]), while others offer sparse models
(LASSO, SINDy, Bayesian learning), which allow for easy interpretation and analysis [40].
The resulting dynamics, however, are intrinsically determined by the representation offered
by dimensionality reduction algorithms, unless penalized in the optimization [37]. Indeed, the
advocated simplicity of sparse models depends critically on the reduction method, as even a
linear coordinate change will dramatically destroy the sparsity of a model. In addition, those
methods feature a high number of hyperparameters that need to be tuned extensively for good
performance. Most importantly, the eventual lack of predictive capabilities often makes the
models unattractive for practical use. Indeed, the insertion of parameter variations, disturbances
or external forcing into these models is generally heuristic, and hence returns questionable
conclusions.

Recent machine-learning methods have increasingly been influenced by physics to address
issues with interpretability and prediction [45,46]. The proposed tools include sparse regression
[47,48], neural networks [49], neural ordinary differential equations [50], simultaneous basis
function approximation and parameter estimation [51] (see [45] for an extensive review). These
physics-informed models are easier to generalize and also handle sparse and incomplete data
better.

Our objective here is to discuss a new data-driven reduced-order modelling approach in
the context of mechanical vibrations, which is dynamics-based rather than physics-informed.
Built on the recent theory of spectral submanifolds (SSMs) [52], this approach identifies
very low dimensional, sparse models over different time scales by restricting the full system
dynamics to a nested family of attractors. The SSMs forming this family are the smoothest
nonlinear continuations of the eigenspaces of the linear part of the dynamical system. When
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transformed to a normal form, the reduced dynamics on each SSM is low-dimensional,
sparse and relevant for all trajectories in the domain of attraction of the SSM. Importantly,
each SSM may contain multiple coexisting steady states and hence capture nonlinearizable
dynamics.

The details and several applications of SSM theory are discussed in [52-60] and an open-source
MATLAB® implementation, SSMToo1, for an arbitrary, finite-dimensional dynamical system is
available in [61]. Another concept closely linked to SSMs is that of invariant foliations [62],
which provides a rigorous nonlinear extension of classic linear modal analysis. Our present
discussion of data-driven SSM-based models follows the terminology and notation of the more
technical exposition in [63]. In contrast to [63], we focus here specifically on SSMs in mechanical
systems and also give the first data-driven construction of higher-dimensional SSMs both with
and without resonances.

The remainder of this paper is organized as follows. Section 2 introduces SSMs and discusses
their relevance for data-driven model reduction, also depending on the type of experiments
that generate the data. We also discuss how our method is complementary to (non-parametric)
signal processing techniques in nonlinear system identification [64], ranging from the Hilbert
transform and its variants [65,66] to wavelet decompositions [67]. In §2, we summarize our data-
driven identification of SSMs and the resulting explicit models on SSMs. We demonstrate the
method in §3 on a set of examples, which are all analysed via the MATLAB® implementation
of our approach SSMLearn. In particular, after a preliminary numerical example, we examine
two experimental datasets of nonlinear mechanical systems, one of which regards an internally
resonant structure. The datasets in these examples come from diverse sources, from non-contact
measurement systems (e.g. digital image correlation (DIC), laser scanner vibrometry) to classic
accelerometers.

2. Spectral submanifolds and data-driven models on them

In this paper, we consider N-degree-of-freedom mechanical systems of the form
M(q)§=1£(q,9), £0,00=0, qeRN, N>1, 1)

where q is a generalized coordinate vector, M(q) € RN*N is a positive definite, symmetric mass
matrix. The forcing vector f(q, q) contains all conservative and non-conservative forces, including
linear and nonlinear ones. The matrix M(q), its inverse and f(q, §) are of class C" with r € N* U {o0}
(smooth functions) or r =a (analytic functions).

The equivalent first-order form of equation (2.1), with x =(q, q) € R" and n =2N, reads

. 0 0 1
X=Ax+ (b(x)) , A= |:M‘1(0)qu(0, 0) M-L0)Dgf(0, 0)} ’ 22)

where b(x) =M~1(q)f(q,q) — M~1(0)Dqf(0,0)q — M~1(0)D4£(0,0)q. We assume that x=0 is
an asymptotically stable equilibrium and that A is a semi-simple matrix and has N
complex conjugate pairs of eigenvalues with negative real parts. We order these eigenvalues
M, A1,22,A2, ..., AN, AN with decreasing real parts, and we denote by Ei,Ej,...,Ex the
corresponding two-dimensional eigenspaces (or modal subspaces).

We denote by E>" the direct sum @ of m of these modal subspaces, i.e. E2" = E, ®E, ®

-, ®E;j,. The 2m-dimensional, spectral subspace E?™ is invariant for the linearization of system
(2.2). Its reduced dynamics is governed by the eigenvalues Mo hjys oo s Ny which, along with
the conjugate ones, form the set Spect(A|g2»). The SSM, WI(EZ™), is the smoothest nonlinear
continuation of the linear subspace E2™ [52], as can be deduced from the more abstract invariant
manifold results of [68-71]. Specifically, W(E?") is the unique 2m-dimensional, class C" invariant
manifold of system (2.2) tangent to the spectral subspace E*" at the origin. The existence of
W(Ezm) is guaranteed whenever the eigenvalues (Aj, )_\]-) with j#71,j2,...,jm are not in resonance
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Figure 1. Illustration of different time scales of nonlinear dynamics captured by a nested set of SSMs. (@) Dynamics near a slow
two-dimensional SSM W(E%) with three trajectories in the phase space. (b,c) The three trajectories, shown with consistent
colours, and their spectrogram. These trajectories were generated by a mechanical system in which 1, 2.7, 4.2 are the first three
linearized frequencies. In (b,¢), the top trajectory hasinitial condition X(0) on the slow two-dimensional SSM Y (E2) and decays
on it, the middle is initialized with a small perturbation off W(E§) and the bottom one decays on W(E;‘). (Online version in
colour.)

with those in Spect(A|g2n), i.e. for k= (k1, ko, ..., ko) € NZm,

- 5 (Ar)nisn A Re(n)
_ re! t(A)— t m
=30 G+ Eian) 20, Yk <t | S T
s o MaX; eSpect(Al2,) Re(R)

, (23)
as discussed in [52]. From a numerical perspective, the non-resonance condition in equation (2.3)
is violated if the absolute value of the left-hand side of the inequality is below a certain tolerance.
In that case, one needs to add the resonant modal subspace Ej to E2m, resulting in the SSM of
the form W(E?" @ E;). This larger SSM can be used to capture nonlinear modal interactions,
e.g. in weakly damped systems with rationally dependent linearized frequencies. The dynamics
restricted to SSMs gives exact nonlinear reduced-order models for system (2.2) [52,56,60].
The most important SSMs from a data-driven perspective are slow SSMs, which are
constructed over the spectral subspace spanned by the m slowest modes: E%m =E1®E®
-+ @ Ey. Slow SSMs are attracting normally hyperbolic invariant manifolds [52] to which
nearby trajectories converge exponentially fast [72], as illustrated in figure 1a. Therefore, generic
experiments on mechanical systems in the form of (2.2) will yield trajectories converging
exponentially fast to slow SSMs, which in turn capture the asymptotic dynamics near the
equilibrium. Faster timescales of the dynamics can be extracted from trajectory data by model
reduction to higher-dimensional members of the nested slow SSM family W(E ) C W(E )C---C

W(Eé(”_l) ) C R". As an illustration, trajectories on slow SSMs are shown in figure 1b, along with
their spectrogram (or short time Fourier transform) in figure 1c. The trajectory on the top is in
W(E ), while the middle one is initialized close to W(E ) and hence converges to W(ES) as seen
from the disappearance of higher frequencies. Finally, the trajectory at the bottom in figure 1b,c
belongs to W(E‘é), where two modal contributions can be clearly identified.

For trajectories with generic initial conditions—such as those generated by hammer impacts—
discarding the initial part of the measured signal yields trajectory data close to a slow 2m-
dimensional SSM, where m is the number of dominant frequencies in the signal. This number
m is inferred from a preliminary time-frequency analysis (e.g. spectrograms, wavelet transforms
[67]), such as those in figure 1c. The larger m, the more data is needed to properly explore the
SSM, since for a well-posed model training data should contain enough nonlinear content for
each mode and for eventual modal interactions. In principle, lower dimensions can be chosen if
modelling the fastest transients is not of interest. By contrast, targeted experiments can focus on
specific SSMs, which is the case for two-dimensional SSMs in resonance decay experiments [1,4].
In that setting, a near-resonant oscillation is first isolated using a shaker, which is then turned off.



This generates a system trajectory that decays towards the equilibrium along the targeted two-
dimensional SSM, provided that no internal resonance occurs. Using the shaker, we can typically
excite higher amplitudes in comparison to hammer impact testing, where the energy is spread
among multiple modes.

(a) Learning spectral submanifolds from data

To learn SSMs from data, we use the methodology presented in [63], which is implemented in the
open-source MATLAB® package, SSMLearn. In what follows, we sketch the main ideas of this
method before going into the details of the data-driven reduced-order models that SSMLearn
can identify.

Measuring all phase space variables of a mechanical system is generally unrealistic. Typically,
only a limited set of observed quantities is available, so that we need to embed the SSM, W(Ezm ),
into a lower-dimensional space of observables. According to the prevalence version of Whitney’s
embedding theorem [73], almost all sets of independent and simultaneous measurements y(t) =
1), y2(h), - - . yp(t)) € RP form an embedding space for 2m-dimensional SSMs if p > 4m. This is
the case, for example, when displacements and velocities of at least 3m material points of a
mechanical system are available. Practical experiments, however, generally only provide the
displacement, velocity or acceleration of a single material point, denoted as s(f) € R, recorded
at At time intervals. To this end, we exploit Takens’s delay embedding theorem [74], which, in its
prevalence version [73], states that y(t) = (s(t), s(t + At),s(t +2At),...s(t + (p — 1)At)) e RP forms
an embedding space with probability one if p > 4m under generic non-degeneracy conditions
on the sampling time At. Further spaces may also qualify in practice, e.g. featuring p <4m or
constructed from multiple measurements augmented by delays, but one needs to examine on a
case-by-case basis whether these are embedding spaces or not.

We denote by M the embedded SSM, for which we now need to construct a reduced-order
model in the embedding space. We assume that the equilibrium is at y = 0 and that Mg does not
fold over its tangent space at the origin ToMy, so that we can construct a data-driven graph-style
parametrization for Mg over To. M. Welet V; € RY x2m pe the matrix whose orthonormal columns
span To. My and we define the SSM parametrization, v : R2" — RP, as

y=v(V{y)=ViV]y+vu(V]y), V{Vi=I V]vy(Viy)=o, (2.4)

where we assume that vy, : R — R? is a multivariate polynomial from order 2 to M. The matrix
Vi, as well as the coefficients of the polynomial vy, can be found via constrained maximum-
likelihood estimation of (2.4), as discussed in [63].

Once trajectories in the projection coordinates VIy € R?" are known, we can identify the SSM-
reduced dynamics. Here, the idea is to find the extended normal form of the vector field governing
the dynamics in the projection coordinate (or reduced) domain [63], motivated by classic
studies of bifurcations [75,76]. Specifically, we need to find an invertible change of coordinates
Viry:h(z) (and its inverse) that brings the SSM-reduced dynamics to its simplest possible
complex polynomial form z =n(z) with z € C>". The linear part of n is the diagonal matrix of
the eigenvalues related to the SSM, with z =(z1,21,22,22,...2m,Zm) denoting complex modal
coordinates for the linearized system. The maps h, h~! and n are multivariate polynomials with
their coefficients determined from an extended normal form approach used in classic unfoldings
of bifurcations [75,76]. In this approach, the classic Poincaré [77] normal form construct is relaxed
in that not only resonant but also near-resonant terms are kept in the normal form (see [63,78]
for more details). This normalization renders n a sparse vector field extracting the fundamental
physics, as we discuss in the next section. We determine resonant coefficients from an initial
estimate of the linearized dynamics, and we identify from data the maps h, h™! and n by
minimizing the conjugacy error, as explained in detail in [63]. For example, the structure of the
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cubic normal form for a two-dimensional SSM is

z=(z%), h(@) =, m), n) =(,i), 25)
11(2) = 2 + hoo2® + 11122 + hpZ? + h3o2® + hipz2 + hos?>,  mi(2) = Az + 272, '

which resembles the classic Hopf normal form [79]. These normal form models are particularly
simple to handle in polar coordinates (p]-, 0]-), defined as zj = p;j el for i=12,...,m

(b) Interpretability and extrapolation from spectral submanifold-reduced models

The most general normal form on a 2m-dimensional SSM is

/O] = —O[]‘(p, 0)10]1

6 =w;(p,9), j=L2..m, p=(p1,p2 - pm), 0=(01,02,...0m) 2.6)

Some explicit examples are presented in the examples of §3, including cubic polar normal forms
of two-dimensional and four-dimensional SSMs, the latter appearing both for non-resonant
eigenvalues and for a 1:2 resonance. If the linearized frequencies are non-resonant, then o; and w;
only depend on the amplitudes p. The normal form (2.6) then decouples the amplitude dynamics
from the phase dynamics. This enables us to distinguish different modal contributions, perform
a slow—fast decomposition, detect modal interactions and analyse the uncoupled oscillator limit.
The zero-amplitude limit of the functions «; and w; converges to the linearized damping and
frequency of mode j, i.e.

Jim [~<j(p,0) + iwj(p, 0)] = ;. 2.7)

Hence, o and wj are the nonlinear continuations of these linear quantities, characterizing how
dissipation and frequency change with respect to the amplitudes (and phases for internally
resonant systems). For a two-dimensional SSM, the parametrized curves «a(p) and w(p) are
the backbones of transient oscillations [1,8,54,57], representing the instantaneous damping and
frequency as nonlinear functions of the normal form amplitude p. Normal form amplitudes do
not, however, have any direct physical meaning. For physical insights, we need to express any
amplitude of interest via the SSM parametrization v and the normal form transformation h. For
instance, for two-dimensional SSMs and for a scalar quantity g : R? — R defined on the observable
space R”, the amplitude of the oscillations can be defined as [54,56]

amp(p)= max 8(v(h@))l, 2= (pe” pe ). 28)

Then, backbone curves can be expressed as parametric curves {«(p), amp(p)} and {w(p), amp(p)}.

SSMs are robust features of the dynamics, because they survive under small autonomous
perturbations and even under some non-autonomous perturbations of the vector field (2.2) [52].
The most important class of these perturbations in our context is that of small external time-
periodic forcing appearing on the right-hand side of equation (2.1). In that case, the autonomous
SSM will serve as the leading order approximation for a non-autonomous, time-periodic SSM
that carries reduced, time-periodic dynamics [52,57,58,60]. With the addition of such forcing, the
normal form (2.6) becomes [63]

. . ~ fi
pj= —Ol]‘(p, 0)[)]' —f]‘ sin(§2t — 9]'), 9]' = w]‘(p, 0) + /O_] cos(§2t — 9]'), (2.9)

]
where £2 is the forcing frequency and f; the forcing amplitudes for each mode. Generally,
numerical continuation is necessary for studying periodic responses and eventual bifurcations
of (2.9) depending on forcing frequencies and amplitudes. In the simplest case of m =1, however,
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we can introduce the phase shift » =6 — 2t to obtain from (2.9) the forced normal form

p=—alp)p +fsint), i =ole) - 2 +L costy) 2.10)

which yields closed-form predictions for amplitudes and phases of the forced periodic solutions

2
2=w(p)+ /% —a2(p), Y =tan"! (%) , (2.11)

known as frequency response curves (FRCs), parametrized by the amplitude p. Predictions of
these curves from unforced data, however, have generally been unavailable. Physical amplitudes
can be derived from the predictions of (2.11) using equation (2.8) and the stability of the predicted
forced response can be derived from the Jacobian of the vector field (2.10) [57]. We find from
equation (2.11) that the forced backbone curve (the location of maximal amplitude responses of
FRCs under varying f) coincides with that of decaying oscillations, given by w(p). Specifically,
maximal amplitude responses occur at amplitudes pmax satisfying f = «(omax)Pmax, 2 = @(omax)
and phase-lag quadrature, i.e. 8 = £2t — /2. These maximal amplitude responses can be used to
calibrate the normal form forcing amplitude f with experimentally exerted forcing levels.

Equations (2.9) and (2.10) have O(fp) accuracy [57,63], but higher-order approximations
can improve this accuracy further [59]. We expect, for example, that forced backbone curves
depart from those of decaying oscillations at large motion and/or large forcing amplitude
values [80,81]. From a data-driven perspective, once the autonomous core of equations (2.9)
and (2.10) is identified, we only need to calibrate the forcing amplitudes for predicting FRCs.
In matching experimental results, one calibration point is sufficient if the forcing amplitude is
kept constant during experimental frequency sweeps. The change of coordinates of the SSM
normal form with forcing is also modulated by a small time-periodic component [57,59,63],
i.e.VIy =h(z) + hy(t, £2). For the two-dimensional SSMs example of (2.5), we then recall that we
find hy(t, 2) = (if e (A +i2) 71, —if 12 (R — i2) 7).

3. Examples

We now discuss some examples that illustrate the power of the SSM-based, data-driven model
reduction method we have discussed. Our first example is a chain of lumped oscillators, while
the other two involve data from laboratory experiments. Additional details and further examples
can also be found in [63] and in the MATLAB® live-scripts of the SSMLearn repository.

To express trajectory reconstruction errors, we use the normalized mean trajectory error
NMTE, which, for a dataset of P instances of observable points y; € R” and their reconstruction y,

is defined as
P

1 .
NMTE = o3 "Iy, = yj1I (31)
Pllyll

Here, y is a relevant normalization vector, which is usually taken to be the data point y; with
the maximum norm in the dataset. To validate the reduced dynamics on a test trajectory, we
integrate the reduced-order model from the same initial condition and compare the results. Cross-
validation is generally efficient in identifying the optimal polynomial order in SSMLearn after
splitting the available data into training and testing trajectories.

(a) ldentification of spectral submanifolds in a chain of oscillators

We consider the chain of oscillators sketched in figure 22, where we set the first mass as 1.5 kg and
the others as 1 kg. We also assume all spring-dampers to be linear with unitary stiffness, except
for the leftmost one that exerts a nonlinear force f,;;; = 0.33&7% + 3q? + 0.7q%£] + O.Siﬁ on the first
mass. The linear damping matrix for the system is proportional to the mass and stiffness matrices
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Figure 2. (a) Sketch of the oscillator chain considered in §3a. (b) Two trajectories decaying on its slow two-dimensional SSM.
(¢,d) The SSM and the trajectories in the phase space and in the delay observable space, respectively. (e—h) The performance of
the normalized SSM-reduced models in reconstructing the test trajectory. (Online version in colour.)

with constants 0.002 and 0.005, with the resulting eigenvalues at the trivial equilibrium reported
in figure 2a.

We start with the study of the slow two-dimensional SSM W(E%) of the oscillator chain. We
compute this SSM via SSMTool [61], from which we initialize the two decaying trajectories
shown in figure 2b; one of these trajectories is used for testing the constructed model. We
identify reduced-order models from two different observables. The first observable set is
the set of all phase space variables, while the second is a set of delayed samples of the
(scalar) displacement of the rightmost mass gs5. We select the delay embedding of minimal
dimension (five) required by the Takens theorem. The embedding coordinates are, therefore,
y(t) = (g5(t), g5(t + At),q5(t + 2At), g5(t + 3AL), g5(t + 4At)), where the sampling time At is 0.445
s. A cubic-order parametrization for the phase space embedding and a parametrization for the
delay embedding show good accuracy. The SSM W(E%) and its embedding in the delay space
My are shown in figure 2b,c. The flat appearance of the manifold in 2d in the delay space is
a general phenomenon, as shown mathematically in [63]. The cubic polar normal form on the
phase-space-embedded SSM is found by SSMLearn to be

6 =—0.001201p — 0.0007300p° = —a(p)p, 6 = +0.2827 + 0.02546p% = w(p). (3.2)

A similar model is identified for the delay embedding. Both reduced-order models capture
well the dynamics of the testing trajectories, as seen in figure 2e-h, with less than 2% NMTE
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error. The instantaneous damping «(p) and frequency w(p) are shown in 3b,c, displaying only
a minimal disagreement. We note that this identification is robust against perturbations of the
initial condition. Indeed, if we initialize trajectories slightly off the SSM as shown in figure 3a,
then ssSMLearn still finds a good approximation for the reduced dynamics, as demonstrated
by the curves in figure 3b,c. If these perturbations are not small enough for the dynamics to be
described by two-dimensional SSMs, then we need to increase the SSM dimension. For instance,
we computed trajectories, shown in figure 3d, decaying along the slow four-dimensional SSM,
W(E‘é). Five of these trajectories are used for training and one is left for testing our reduced-
order model. The cubic normalized, SSM-reduced dynamics identified by SSMLearn has a 2.65%
NMTE error and is of the form

1 = —0.001200p1 — 0.0005548p5 — 0.01010p1 p3 = —a1(p1, P2)P1,

2 = —0.002541p) + 0.003728p1 p3 — 0.05627p5 = —aa(p1, p2)P2,
. (3.3)
0y = +0.2825 + 0.01316p? + 0.1085p3 = w1 (p1, 02),

fy = +0.7850 + 0.02340p7 + 0.2760p3 = wn(p1, p2)-

The sparsity of the vector field (3.3) is guaranteed by the concept of extended normal forms [63],
computed here for two weakly damped non-resonant, oscillatory modes. Eventual differences
between the dynamics of the slowest mode in (3.2) with respect to those in (3.3) are due to different
amplitude scalings. Prediction of a test trajectory based on the model (3.3) is shown in figure 3e.
The instantaneous frequencies for the two modes are shown in figure 3f,g. These are surfaces since
both frequencies depend (either weakly or strongly) on both modal amplitudes.

For additional validation, we show FRCs of the models (3.2)-(3.3) for different forcing
amplitudes in figure 3h,i around the first two eigenfrequencies. While on the two-dimensional
SSM W(E%), we have the closed-form solution (2.11), FRCs on the four-dimensional SSM W(Eé)
are computed using the periodic orbit toolbox of the numerical continuation core cOCo [82].
These plots in figure 3/,i are completed with backbones curves and forced responses obtained
via numerical integration of the full model. The forcing only acts in the direction of the first two
modes, with amplitudes 0.38 and 1.75 mN. Our data-driven predictions, which are based only on
unforced data and a simple calibration procedure for the normal form forcing amplitudes, are in
close agreement with the responses from the full system.

(b) Resonance decay in the Brake—Reuss beam

The Brake-Reuss beam (BRB) is a benchmark system in the study of jointed structures [7,8,83].
In our study, it consists of two 304 stainless steel beams assembled with a lap joint, as shown
in figure 4a. While full models for these structures may not be smooth, we find that trajectory
data can be fitted well to smooth models, thereby justifying an SSM-based approach. The data
considered here arise from a single resonance decay test, available from [8], targeting the slowest
structural mode. One observable is the measurement from an accelerometer mounted, as shown
in figure 44, on the shaker with time history illustrated in figure 4c. Another observable is the
displacement field of the bottom side of the beam, measured using DIC. The latter dataset,
consisting of 206 points over 72 cm of beam length, has a limited time range due to limitations in
camera memory. The initial evolution of the measured displacement field is depicted in figure 4b.

Our goal in this example is to construct a nonlinear reduced-order model using displacement
data and validate it on the acceleration measurement. We truncate the time signals after shaker
release to eliminate the influence of disturbances from non-perfect detachment. Nevertheless,
high-frequency contributions decay rapidly and the transient settles along the slowest SSM. To
diversify the data, we augment the displacement with four delayed measurements, so that the
observable phase space has dimension 1030. The SSM is approximately a plane in this space, but
the reduced dynamics is highly nonlinear. For adequate accuracy, the normal form indeed needs

LOLZ07:08E ¥/ 205 4 'SUpi 71d esy/jeuinol/bio Buysgndiaaposiefos



on-SSM initialization (phase space embedding)
(a) B e — a —— on-SSM initialization (delay embedding)
. ' — off-SSM initialization (phase space embedding)
0.3 0.7 - = e
pe- (b) (C) 0.7
0.2 0.6
0.1 - 0.5+
B _ _
5 0 B g 0.4
o1 s S 03!
02 0.2}
OB . 70,05 0.1
02 o 0 01 o, 005 0 ! 0 ! !
¢,(m) g(ms™) 1 1.1 12 1 1.01 1.02
' L0 Wl (0)
0.5 . . - - - e R
(d) ——test data —— training set 3 ( )
—— training set 1 training set 4
—— training set 2 training set 5

q,(m)
(=]

0.4

_0.5 1 1 1 1 1 1 N . = 02
0 500 1000 1500 2000 2500 3000 -0.5 02 0
1) 04 p, cos 6,
o, (p,, /@, (0.0) ,(p,, /@, 0,0) —
I 1.02 i 1.02 0.7 g —— backbone curves
(f) oo 1 (g) 098 1 Q] (® 03 [|——FRC stable, 4DSSM
| = = = FRC unstable, 4DSSM
0.6 025 FRC stable, 2DSSM
) FRC unstable, 2DSSM
020§ 0.20 | 05 * numerical integration
0.2
0.15 0.15 g 04
= 0.15
23 P, &
03 '
0.10 0.10 i
0.1
0.2
0.05 0.05 Gi 0.05 \
N
0 0.2 0 0.2 0 0 27 275 2.8 2.85

Py P Q/e,(0,0) Q10,0,0)

Figure 3. (a) Two trajectories converging to the slowest two-dimensional SSM of the oscillator chain. (b,¢) Instantaneous
damping and frequency curves constructed from a phase space embedding with perfect SSM initialization, from a delay
embedding with perfect SSM initialization and from a phase space embedding with imperfect SSM initialization. () Decaying
trajectories from the slow four-dimensional SSM W(E;‘) of the oscillator chain. (e) Test trajectory and its model-based
prediction in the normal form domain. (f,g) Instantaneous frequencies of the slow (mode 1) and fast (2) modes of W(E;‘).
(h,i) Frequency response curve (FRC) and backbone curves predictions from the reduced-order models (3.2) and (3.3) along with
forced steady states (dots) obtained via numerical integration of the full system. (Online version in colour.)

terms up to O(11) to capture the dynamics

p=—0.8255p — 16.050° + 166.3p° — 142107 + 5314p° — 7138p'! = —a(p)p,

; (34)
6 = +504.4 — 46.16p% + 350.3p* + 412.90° — 8468% + 16975010 = w(p).
The model can be used to approximate the beam kinetic energy as
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Figure 4. (a) Testing set-up for the Brake—Reuss beam. (b,c) The measured displacement and acceleration data. (d—i)
Results from the reduced-order model trained on displacement data. The backbone curves in (d,e) show the instantaneous
characteristics of the beam with respect to its kinetic energy, while (f,g) validate the predictions of acceleration. Plots (h,i)
compare the instantaneous properties of the data-driven model with respect to those measured with the peak fitting and
finding method [66] on the acceleration signal. (Online version in colour.)

where Npjc =206 is the number of DIC measurement locations and mprp = 1.796 kg is the beam
mass. As discussed in [8], the kinetic energy amplitude is a good proxy for the instantaneous
decay properties, i.e. the instantaneous damping ratio and frequency, shown in figure 4d.e,
respectively. The instantaneous damping ratio is defined from the normal form dynamics (3.4) as
&(p) =a(p)/w(p), expressed in percentage. The damping exhibits a strong variation from its linear
limit, while the frequency here shows a peculiar softening-hardening trend. We note that lower-
order models for the dynamics fail to capture the softening-hardening trend shown in figure 4e,i.
Indeed, one needs at least quintic order for modelling such a trend, and higher orders tend to
increase the accuracy. At the same time, excessively higher-order approximations generally lead
to overfitting the data.

We validate our displacement-based SSM-reduced model on the data from the accelerometer
located at 77 mm from the left end of the beam, as shown in figure 4a. This signal is
reconstructed from the model by interpolating in the grid to obtain the accelerometer location and
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differentiating in time. These predictions show good accuracy, as reported in figure 4f,¢. A further
validation in figure 4/4,i compares the instantaneous decay properties of the data-driven model
(3.4) to those extracted using the peak finding and fitting [8,66] signal processing technique. There
is close agreement among these curves, especially in the strongly nonlinear oscillation regime.

(c) Impacts on an internally resonant tester structure

Our final example is the resonant tester shown in figure 5a,b. It consists of two beam-like parts
made of aluminium 6061-T6, where the external beam is C-shaped and clamped to the ground
on one side, while the internal beam is jointed to the external one via three bolts: two side bolts
are torqued to 1.36 Nm for structural integrity whereas the middle bolt is torqued to 0.45 Nm
for enhanced frictional slip and associated nonlinearities. Additionally, a linear spring (Model
#INCH2, Grainger, Inc.) connects the tip of the external beam to a fixed rigid frame in the direction
of the z-axis. The system possesses an internal 1:2 resonance between its slowest transverse
bending modes, whose frequencies indeed clock at 122.4 Hz and 243.4 Hz. We consider transverse
vibrations in the out of plane direction—the z-axis in figure 51. The available observable is the
velocity of the inner beam tip, measured via laser scanner vibrometry (PSV400, Polytec Inc.).
Transient vibrations are recorded for 3 s at a sampling rate of 5120 Hz.

A modally tuned impulse hammer (PCB 086C01, PCB Piezotronics, Inc.) is used to excite
transverse vibrations from three different impact locations in figure 5c, so that our dataset features
12 trajectories (four per impact location), shown in figure 5c. We label these trajectories as (j, I)
where j refers to the location and ! to the test number. Time-frequency analyses of the velocity
signals, two of which are reported in figure 5d,¢, show that only the two slowest frequencies are
present in the signal, so that the time responses can be well approximated by the slowest four-
dimensional SSM of the system. The impact locations, the hammer tip and the forcing amounts
were selected to achieve a sufficient trajectory diversity in the dataset without exciting further
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structural modes. For constructing an SSM-reduced model, we truncate the velocity signals after
the hammer impact, use 10 trajectories for training and leave two trajectories for testing.

The minimal embedding dimensions (nine for a four-dimensional manifold) fail to produce
accurate reduced-order models (the NMTE error amounts to more than 8%). We therefore
augment the delay embedding space so that each embedding vector captures approximately two
cycles of the slowest oscillation. This procedure yields a 94-dimensional delay embedding space.
The result of our identification remains robust if we consider more embedding dimensions. A
linear approximation to the embedded SSM has a good accuracy and our automated normal form
algorithm, after estimating linearized eigenvalues, identifies a resonance among them. Defining
Y =06 — 01, we obtain from SSMLearn the cubic SSM-reduced polar normal form

p1 = —0.4228p1 — 19.94p} + 3.514p1 p3 + Re((0.08706 — 0.2427i)pp 1 €'¥)
= —ai(pe1, P2, ¥)p1,

2 = —3.155p; — 18.91p% py — 15.08p3 + Re((1.726 — 0.3342i)p7 e~1V')

= —az(p1, 02, ¥)p2, (3:6)
p161 = +769.0p1 — 59.56p] — 0.546003 p1 + Im((0.08706 — 0.2427i)pp o1 €')
=w1(p1, P2, ¥)p1,

P26 = +1529p — 31.26p3 py — 28.65p5 + Im((1.726 — 0.3342i)p? e~ 1V)

=wy(p1, P2, V) P2

This data-driven model reconstructs both test trajectories with an average 1.2% NMTE error, cf.
Figure 6a,b. The decay of the slow mode amplitude p; and that of the fast one pp are shown in
figure 6¢c. Due to modal interactions, these decays are not monotone. From the plot, we note a
great diversity of decays depending on the impact location, and location three (the closest to the
inner beam tip) is characterized by the highest amplitudes variability.

Figure 6d shows energy repartition among the modes for the third impact location. This
repartition is defined as the instantaneous ratio between the amplitude of a mode and the
amplitude sum. Clearly, the slow mode tends to accumulate energy over time, while the fast
mode dissipates it quickly. These trends are not monotonic, showing simultaneous and opposite
changes in growth/decay rates, which implies that the faster mode is absorbing energy from
the slower one. This behaviour can also be inferred by the instantaneous properties illustrated
in figure 6e,f. The uncoupled limit of the oscillators suggests that the modes admit frequency
softening and damping intensification when the oscillation amplitude increase. This is consistent
with typical observations of jointed structures [83]. In particular, the fast mode is coupled to the
slow one and its damping undergoes consistent variation, becoming also negative for some times
[84]. Note that nonlinearity and coupling can be reduced at higher bolt torques, which, in the
beam assembly used here, corresponds to tightening of the middle bolt. Coupling revealed by
SSMLearn suggests that nearly decoupled modal oscillator models employed elsewhere [85,86]
are only valid for high bolt torques and small frictional slip, i.e. weak contact nonlinearities.

In addition to measuring decaying vibrations, we also perform some forced testing near the
linearized frequency of the slow mode. We trigger forced responses in near-resonance with the
slow (first bending) mode by using the Briiel & Kjeer 4810 shaker shown in figure 5b, mounted
on one end of the linear spring, and acquire velocity response from the tip of the inner beam by
laser vibrometry. We also monitor the amplitude of shaker tip velocities and keep them constant
while sweeping the frequencies around the first bending mode. In that sense, the response we
obtain can be seen as transmissibility rather than a classic FRC, with forcing amplitudes kept
constant throughout frequency sweeps. Starting from forced velocity time histories, we estimate
the normal form forcing to be added to the vector field (3.6) as in (2.9). The resulting predictions
are in very good agreement with experimental measurements in this weakly nonlinear regime,
as shown in figure 6¢. Deeper analyses on forced responses are currently under investigation.
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Figure 6. (a,b) Data-driven reduced-order model performances in reconstructing a testing trajectory. (c) Normal form
amplitudes decays for the slow o; and fast o, modes, for all available trajectories in the dataset. (d) Energy repartition in
the resonant tester following a hammer impact on the third location. (e,f) The trend of instantaneous (or effective) damping
of the normal form dynamics on the first 2 s of decays related to the third impact location. (g) Forced frequency response from
experimental measurements and from analytical predictions based on the SSM-reduced model constructed by SSMLearn.
(Online version in colour.)

Thanks to feedback loops used to track forcing, forced response curves can be extracted with
improved accuracy, especially at nonlinearizable amplitudes.

4. Conclusion

We have reviewed a general methodology for constructing sparse reduced-order models for
potentially high-dimensional, nonlinear mechanical systems from data. Our approach constructs
normal forms on attracting SSMs, which are the smoothest nonlinear continuation of spectral
subspaces of the linearized dynamics. Implemented in the publicly available MATLAB® code
SSMLearn, our algorithm takes generic observable data as input to identify robust and predictive
nonlinear models that also capture for nonlinearizable dynamics. SSM theory offers a systematic
basis for model reduction and allows a simplification of the reduced dynamics via normal
forms, which are particularly insightful for mechanical systems. Indeed, SSM-reduced models
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can handle multi-modal interactions, identify amplitude-dependent damping and frequency, and
predict the forced structural response.

We have illustrated SSM-reduced modelling in numerical and experimental case studies,
featuring different types of observables, nonlinearities and SSM dimensions. Specifically, we have
discussed different dynamical regimes and the relevance of slow SSMs in a chain of oscillators,
derived a reduced-order model from digital image correlation measurements of the BRB, and
unfolded the internally resonant dynamics of a tester structure, also predicting forced responses.
These examples were analysed using the open-source MATLAB® package SSMLearn that
performs data-driven, SSM-based model reduction starting from vibrations data. This algorithm
only requires a minimal number of input parameters: the SSM dimension, the polynomial order
for SSM parametrization and the polynomial order of the reduced dynamics. The SSM dimension
is either known a priori from targeted experiments (e.g. resonance decay) or can be estimated via
time-frequency signal processing analysis of the input data. This makes our method a parametric
complement to non-parametric identification tools. Polynomial orders can be adjusted to improve
accuracy, noting that excessive orders may lead to overfitting. With the help of the numerical
continuation core COCO [82] included in SSMLearn, users can compute forced response curves
or design nonlinear control strategies from the identified nonlinear models.

Further examples, both numerical and experimental, with detailed code are available in
the SSMLearn repository, which is also suitable for high-dimensional fluid flows and fluid-
structure interaction problems [63]. Current limitations of the present approach include weaker
performance for large forcing amplitudes. These appear, for example, in the BRB experiments
of [7,8], which we expect to capture only with a more refined forced-reduced dynamics and
improved calibration procedures. The same requirement holds for more complicated forcing
types (e.g. quasi-periodic or random), which are relevant in structural dynamics. Moreover,
polynomial models, which are always a good approximation for near-equilibrium dynamics, may
be limited in their ability to capture multi-scale dynamics arising from phenomena such as friction
and wear. We are addressing these challenges in ongoing work.
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