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ABSTRACT

Frequency responses of multi-degree-of-freedom mechanical systems with weak forcing and damping can be studied as perturbations from
their conservative limit. Specifically, recent results show how bifurcations near resonances can be predicted analytically from conservative
families of periodic orbits (nonlinear normal modes). However, the stability of forced–damped motions is generally determined a posteriori
via numerical simulations. In this paper, we present analytic results on the stability of periodic orbits that perturb from conservative nonlinear
normal modes. In contrast with prior approaches to the same problem, our method can tackle strongly nonlinear oscillations, high-order
resonances, and arbitrary types of non-conservative forces affecting the system, as we show with specific examples.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012480

In conservative mechanical systems, one-parameter families of
periodic orbits (nonlinear normal modes) lay the foundations of
vibration theory. Not only are these families useful to uncover
the dynamics of the conservative system itself, but they also
exert influence on the system behavior under perturbations that
involve forcing and damping. Analytical, numerical, and experi-
mental studies indeed report that conservative nonlinear normal
modes serve as backbone for the frequency response. This paper
tackles the assessment of stability of forced–damped periodic
orbits, which survive from the resonant, potentially strongly non-
linear, conservative limit. Specifically, we derive a set of analytical
conditions that, based on the knowledge of the conservative sys-
tem alone, determine whether forced–damped oscillations are
unstable or asymptotically stable.

I. INTRODUCTION

Conservative families of periodic orbits or nonlinear nor-
mal modes (NNMs) offer precious insights into multi-degree-of-
freedom nonlinear vibrations.1 Indeed, experimental and numerical
observations indicate that these periodic orbits shape the behav-
ior of mechanical systems even after the addition of weak forc-
ing and damping.2–8 A systematic mathematical analysis of this

phenomenon via a Melnikov-type method has recently appeared.9

A fundamental question of practical importance, however, is yet to
be answered: what is the stability type of the forced–damped oscil-
lations that perturb from their conservative counterparts. Different
cases have been described in the literature, ranging from the clas-
sic hysteretic amplitude–frequency curve of geometrically nonlinear
structures10,11 to the outbreak of unstable isolas and regions of the
frequency response arising from nonlinear damping.12 For detailed
reviews, we refer the reader to the classic studies of Vakakis,13–15

Avramov and Mikhlin,16,17 Kerschen,18 and to the introduction in
Ref. 9.

In studies of mechanical systems with many degrees of free-
dom, stability is typically assessed numerically, either using Flo-
quet’s theory19,20 in the time domain, or by adopting Hill’s method
in the framework of harmonic balance.21,22 Analytical perturbation
expansions, such as the method of multiple scales,23 averaging,24 the
first-order normal form technique,25 or the second-order normal
form technique,26 are more suitable for low-dimensional oscilla-
tors and small-amplitude regimes. Spectral submanifolds27 provide
another powerful tool for the analysis of forced–damped, nonlinear
mechanical systems in a small enough neighborhood of the unforced
equilibrium. Based on the relationship of these manifolds with their
conservative limit,28–30 known as Lyapunov subcenter manifold,31,32

the stability of forced–damped response can be analytically and
numerically determined for small amplitudes.12,28
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The existence and stability of periodic orbits in near-integrable,
low-dimensional systems has been studied via Melnikov-type meth-
ods, whose foundations date back to Poincaré,33 Melnikov,34 and
Arnold.35 In particular, for periodic orbits in single-degree-of-
freedom systems, a Melnikov method can be used to detect per-
turbed, resonant periodic motions as well as their stability (see the
excellent exposition in Chapter IV of Ref. 20 and the further analyses
in Refs. 36 and 37). Extensions to multi-degree-of-freedom systems
have been available,38,39 but these approaches require low dimen-
sionality and integrability before perturbation, neither of which
holds for typical systems in structural dynamics.

In this work, we seek to fill this gap by complementing the
analytical existence conditions for periodic responses in Ref. 9 with
assessment of their stability. Specifically, we develop a Melnikov
method to establish the persistence of forced–damped periodic
motions from conservative NNMs, without any restrictions on the
number of degrees of freedom, the motion amplitude or the type
of the non-conservative forces affecting the system. We assume that
the conservative limit of the system is Hamiltonian, with no addi-
tional requirements on its integrability, and that the perturbation
of this limit is small. In this setting, we derive analytical condi-
tions to determine whether the oscillations created by small forcing
and damping are unstable or asymptotically stable, thus generalizing
the single-degree-of-freedom analysis of Ref. 20 to multi-degree-of-
freedom systems. This extension is non-trivial and necessitates a
new approach.

After stating and proving our mathematical results in a gen-
eral setting for mechanical systems, we illustrate the validity of our
predictions with numerical examples. These include subharmonic
resonances in a gyroscopic system and isolated response gener-
ated by parametric forcing in a system of three coupled nonlinear
oscillators.

II. SETUP

We consider a mechanical system with n degrees of freedom
and denote its generalized coordinates by q ∈ R

n, n ≥ 1. We assume
that this system is a small perturbation of a conservative limit
described by the Lagrangian

L(q, q̇) = K(q, q̇) − V(q),

K(q, q̇) = 1

2
〈q̇, M(q)q̇〉 + 〈q̇, G1(q)〉 + G0(q),

(1)

where M(q) is the positive definite, symmetric mass matrix, K(q, q̇)
is the kinetic energy, and V(q) is the potential. The kinetic terms
G1(q) and G0(q) may appear in conservative rotating mechanical
systems after one factors out the cyclic coordinates whose corre-
sponding angular momenta are conserved. The equations of motion
for system (1) take the form

Dt

(

∂q̇L
)

− ∂qL = εQ(q, q̇, t; δ, ε), (2)

where D and ∂ denote total and partial differentiation with respect
to the variable in subscript (for D, to all of them if the sub-
script is absent). Moreover, ε ≥ 0 is the perturbation parameter
and εQ(q, q̇, t; δ, ε) = εQ(q, q̇, t + δ; δ, ε) denotes a small, generic
perturbation of time-period δ.

As L is a convex function of q̇, the conservative system can
be written in Hamiltonian form.40 Introducing the generalized
momenta

p = ∂q̇L = M(q)q̇ + G1(q), (3)

we can express the velocities as q̇ = F(q, p) = M−1(q)(p − G1(q))
and the total energies as

H(q, p) = 〈p, F(q, p)〉 − L(q, F(q, p)) = V(q) − G0(q)

+ 1

2
〈 p − G1(q), M

−1(q)(p − G1(q))〉. (4)

Introducing the notation x = (q, p) ∈ R
2n, we obtain the equations

of motion in the form

ẋ = JDH(x) + εg(x, t; δ, ε), J =
[

0n×n In×n

−In×n 0n×n

]

, (5)

where we assume that H ∈ Cr+1 with r ≥ 3, while g is Cr−1 in t and
Cr in the other arguments. The vector fields in (5) are defined as

DH(x) =
(

∂qH
∂pH

)

=
(

−∂qL(q, F(q, p))
F(q, p)

)

,

g(x, t; δ, ε) =
(

0
Q(q, F(q, p), t; δ, ε)

)

.

(6)

We assume that any further parameter dependence in our upcoming
derivations is of class Cr and that the model (5) is valid in a sub-
set U ⊆ R

2n of the phase space . Trajectories of (5) that start from
ξ ∈ R

2n at t = 0 will be denoted with x(t; ξ , δ, ε) = (q(t; ξ , δ, ε),
p(t; ξ , δ, ε)). We will also use the shorthand notation x0(t; ξ)

= (q0(t; ξ), p0(t; ξ)) = x(t; ξ , δ, 0) for trajectories of the unperturbed
(conservative) limit of system (5). The equation of (first) variations
for system (5) about the solution x(t; ξ , δ, ε) reads

Ẋ =
(

JD2H(x(t; ξ , δ, ε)) + ε∂xg(x(t; ξ , δ, ε), t; δ, ε)
)

X,

X(0) = I2n×2n,
(7)

whose solutions for ε = 0 will be denoted as X0(t; ξ) = X(t; ξ , δ, 0).
As long as x0(t; ξ) ∈ U, we recall that H(x0(t; ξ)) = H(ξ) and that
X0(t; ξ) is a symplectic matrix.41

III. THE MELNIKOV METHOD FOR RESONANT

PERTURBATION OF NORMAL FAMILIES OF

CONSERVATIVE PERIODIC ORBITS

In this section, we briefly recall the results from Ref. 9 on the
existence of perturbed periodic orbits for system (5) for small ε > 0.
We assume that there exists a periodic orbit Z ⊂ U with mini-
mal period τ > 0 solving system (5) for ε = 0. We can, therefore,
consider this orbit as mτ -periodic for a positive integer m and we
denote by 5 = X0(mτ ; z) = Xm

0 (τ ; z) the monodromy matrix of Z

based at the point z ∈ Z evaluated along m cycles of the periodic
orbit Z. The integer m allows us to consider high-order resonances
with the perturbation period. Note that 5 is nonsingular and, for
a generic periodic orbit of an Hamiltonian system,42,43 5 has at
least two eigenvalues equal to +1. We further assume that Z is m-
normal, i.e.,
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FIG. 1. Review of the Melnikov analysis. Plot (a) shows a normal family F of periodic orbits (in green) and the orbit Z with its energy level H. Plot (b) sketches one period
of a Melnikov function (black line) with two simples zeros, corresponding to two perturbed orbits (red dots) from the conservative limit (green dot) in plot (c), displayed in the
(τ , h) plane. Along with the backbone curve of F in green, the red shaded lines show frequency sweeps that can be detected via parameter continuation of the Melnikov
function (see Ref. 9 for more).

Definition III.1. A conservative periodic orbit Z is m-normal
if one of the following holds:

(i) The geometric multiplicity of the eigenvalue +1 of 5 is equal to
1.

(ii) The geometric multiplicity of the eigenvalue +1 of 5 is equal to 2
and JDH(z) /∈ range (5 − I).

Such orbits exist in one-parameter families.43,44 We give an
illustration of m-normality in Fig. 1(a), where we indicate with
F ⊂ U the family emanating from Z. Note that if a periodic orbit
is not m-normal, then two or more families of periodic orbits may
bifurcate from this periodic orbit. Moreover, a periodic orbit can
be 1-normal and not m-normal for some m > 1, as in the case
of subharmonic branching.42,45 Any m-normal family of periodic
orbits can be parameterized by the values of a scalar function r that
depends on a point of an orbit and its period. Common examples
are r(z, mτ) = mτ (period parameterization) or r(z, mτ) = H(z)
(energy parameterization).

We aim to find periodic solutions of system (5) for small
ε > 0 that may arise from Z or from the family F. Given a point
z ∈ Z and a positive integer l such that m and l are relatively prime,
we constrain the initial conditions and periods of these perturbed
solutions to satisfy the following resonance condition

r(ξ , lδ) = r(z, mτ). (8)

The persistence problem of the periodic orbit Z is governed by the
Melnikov function9

Mm:l(s) =
∫ mτ

0

〈

DH(x0(t + s; z)) , g(x0(t + s; z), t; τm/l, 0)
〉

dt.

(9)
Specifically, if there exists a simple zero at s0 of Mm:l(s), i.e.,

Mm:l(s0) = 0, DMm:l(s0) = M′
m:l(s0) 6= 0, (10)

then Z smoothly persists with an initial condition x0(s0; z) + O(ε)

and a period mτ + O(ε). The period δ of the perturbation g in
system (5) is then O(ε)-close to τm/l. Reference 9 also discusses

the implications of different choices for r in Eq. (8). As the Mel-
nikov function (9) is mτ -periodic, it generically has another simple
zero for s ∈ (s0, s0 + mτ), as shown in Fig. 1(b). Thus, at least two
orbits bifurcate from the conservative limit [cf. Fig. 1(c)] when the
conditions in Eq. (10) are satisfied.

The Melnikov function (9) can also be used to detect bifurca-
tions under parameter continuation. For example, a quadratic zero
generically signals a saddle-node bifurcation of periodic orbits or the
formation of an isola for the frequency response for small ε > 0.
In Ref. 9, we also point out that our exact Melnikov analysis can
be interpreted as an energy-balance principle proposed earlier.46–48

In particular, a perturbation expansion shows that the Melnikov
function equals the work done by non-conservative forces along the
periodic orbit Z of the conservative limit, i.e.,

Mm:l(s) =
∫ mτ

0

〈

q̇0(t + s; z)),

Q(q0(t + s; z), q̇0(t + s; z), t; τm/l, 0)
〉

dt,

(11)

where q̇0(t + s; z) = ∂pH(q0(t + s; z), p0(t + s; z)).
In Fig. 1(c), we depict in red the two different branches of peri-

odic orbits that originate from an m-normal periodic orbits family of
the conservative limit (green). In Sec. IV, we shall derive analytical
conditions under which the solid red branch contains asymptotically
stable periodic orbits and the dashed branch is composed of unstable
periodic orbits.

IV. STABILITY OF PERTURBED PERIODIC SOLUTIONS

In this section, we state our main mathematical results on the
stability of solutions arising as perturbations from the conservative
limit. We recall that the eigenvalues of the monodromy matrix, or
Floquet multipliers,20,49,50 determine the stability of a periodic orbit.
In non-autonomous, time-periodic dynamical systems, a periodic
orbit is asymptotically stable if all of its Floquet multipliers lay inside
the unit circle in the complex plane, while it is unstable if there exists
a multiplier outside the unit circle. In accordance with Sec. III, we
now make the following assumption:
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(A.1) The periodic orbit Z ⊂ U of system (5) for ε = 0 is m-normal
and, after a possible phase shift, its Melnikov function Mm:l(s)
defined in Eq. (9) has a simple zero as in Eq. (10) at s = 0.

Assumption (A.1) implies the existence of an lδ-periodic orbit,9

denoted Zε , satisfying system (5) for small ε > 0, with lδ = mτ

+ O(ε) and with initial condition O(ε)-close to z. Our first result
is the following simple consequence of our assumptions.

Proposition IV.1. If there exists an eigenvalue µ of 5 such
that |µ| > 1, then Zε is unstable for ε small enough.

Proof. The maximum distance between the Floquet multipliers
of the orbit Zε and those of its conservative limit Z can be bounded
with a suitable power of the parameter ε (see, for example, Theorem
1.3 in Chapter IV of Ref. 51). Hence, if there exists a multiplier µ

of the conservative limit such that |µ| > 1, then, for ε sufficiently
small, Zε has a multiplier with the same property by the smooth
dependence of the flow map on the parameter ε. �

If the assumption of Proposition IV.1 is not satisfied, then per-
turbations of Z may result in orbits with different stability types.
Henceforth, we assume the following condition to be satisfied:

(A.2) The eigenvalues of the monodromy matrix 5 lie on the unit
circle in the complex plane.

In the literature on Hamiltonian systems, an orbit satisfying (A.2) is
called spectrally stable.52 From a practical viewpoint, such orbits are
of great interest as small perturbations of them may create asymp-
totically stable (and hence observable) periodic responses. We also
need the next nondegeneracy assumption:

(A.3) The algebraic and geometric multiplicities of the eigenvalue
+1 of 5 are equal to 2 and 1, respectively.

This guarantees that F can be locally parameterized either with the
values of the first integral H or with the period of the orbits.44 In the
former case, there exists a scalar mapping T : R → R

+ that locally
describes the minimal period of the orbits in F near Z as func-
tion of H. Moreover, τ = T(h) and DT(h) = T′(h) 6= 0 hold, where
h = H(z) is the energy level of Z.

To state further stability results, we need some definitions. Let
V be a 2v-dimensional invariant subspace for 5 and let RV ∈ R

2n×2v

be a matrix whose columns form a basis of V. We then have the
following identity:

5RV = RVBV (12)

for a unique BV ∈ R
2v×2v.

Definition IV.1. We call V a strongly invariant subspace for
5 if det(BV) = 1 and all the eigenvalues of BV are not repeated in
the spectrum of 5.

Strongly invariant subspaces persist under small
perturbations51,53 of 5 and we exploit this property in our technical
proofs. The even dimensionality of any V in real form is a conse-
quence of the fact that the eigenvalues of any symplectic matrix54

either appear in pairs (µ, 1/µ) or in quartets (µ, 1/µ, µ̄, 1/µ̄). For
the matrix RV, we call the left inverse

SV =
(

R>
V

JRV

)−1

R>
V

J (13)

the symplectic left inverse of RV. As we later prove in the Appendix,
SV is well-defined. Finally, we will use the notation

CV = − 1

mτv

∫ mτ

0

trace
(

SVX−1
0 (t; z)

× ∂xg(x0(t; z), t; mτ/l, 0)X0(t; z)RV

)

dt (14)

for the (local) volume contraction of the vector field g along the orbit
Z related to the strongly invariant subspace V.

The quantity CV, which serves as a nonlinear damping rate for
the orbit Zε , will turn out to have a key role in some of our upcoming
conditions for the stability of Zε . We also remark that CV is invari-

ant under changes of basis for V. Indeed, we can define R̃V = RVRc

for some invertible Rc ∈ R
2v×2v and obtain S̃V = R−1

c SV, so that the
invariance of the trace guarantees the one of CV. In particular, if
V = R

2n, we have

CR2n = − 1

mτn

∫ mτ

0

trace
(

∂xg(x0(t; z), t; mτ/l, 0)
)

dt. (15)

A. Conditions for instability

Due to assumption (A.3), the tangent space T of the family F at
the point z is the two-dimensional strongly invariant subspace for 5

related to its eigenvalues equal to +1. Due to the non-trivial Jordan
block corresponding to these eigenvalues, the assessment of stabil-
ity requires careful consideration. For a single-degree-of-freedom
system (n = 1), the tangent space is the only strongly invariant sub-
space for 5. For higher-dimensional systems (n > 1), instabilities
may develop also in the normal space N of the family F at the point
z. The normal space is the 2(n − 1)-dimensional strongly invariant
subspace for 5 related to its eigenvalues different from +1. The
following theorem covers some generic cases of instability.

Theorem IV.2 Sufficient conditions for instability. Zε is
unstable for ε > 0 small enough, if one of the following conditions
is satisfied:

(i) Instabilities in T: when T′(h)M′
m:l(0) < 0 or when both

T′(h)M′
m:l(0) > 0 and CT < 0.

(ii) Further instabilities (n > 1): when CV < 0 in a strongly invari-
ant subspace V for 5.

We prove this theorem in the Appendix. In statement (ii), V

can be simply chosen as R
2n so its volume contraction can be directly

computed with Eq. (15). To identify instability in the normal space,
one can then analyze any V ⊆ N.

Remark IV.1. Theorem IV.2 provides analytic expressions
that allow to assess instability of the perturbed orbit, at least for
generic cases, solely depending on the conservative limit, its first
variation and the perturbative vector field. From a geometric view-
point, we can thus detect instabilities whenever the volume of a
strongly invariant subspaces shows expansion under action of the
perturbed flow.

Remark IV.2. The conservative limit Z exhibits a saddle-
node bifurcation if either T′(h) or M′

m:l(0) is equal to zero, and if
high-order conditions are satisfied.9,55 In this case, a Floquet multi-
plier of the perturbed orbit crosses the unit circle along the positive
real axis.
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Remark IV.3. If the existence of a perturbed periodic orbit
arising from Z is unknown, one may still use Proposition IV.1 or
statement (ii) of Theorem IV.2 to conclude the instability of any
perturbed orbit originating from Z.

B. Conditions for asymptotic stability

While instability can be detected from a single condition,
asymptotic stability from the linearization requires, by definition,
more conditions. The next theorem provides such a set of condi-
tions.

Theorem IV.3 (Sufficient conditions for stability). Assume
that, other than two eigenvalues equal to +1, the remaining eigen-
values of 5 are n − 1 distinct complex conjugated pairs. For
k = 1, . . . , n − 1, denote by Nk ⊂ N the strongly invariant sub-
space for 5 related to the kth pair of eigenvalues. Then, Zε is
asymptotically stable for ε > 0 small enough if each of the following
conditions holds:

(i) T′(h)M′
m:l(0) > 0 and CT > 0,

(ii) CNk
> 0 for all k = 1, . . . , n − 1.

We prove this theorem in the Appendix. Condition (i) in Theo-
rems IV.2 and IV.3 applies for systems with one degree of freedom.
These conditions are consistent with the ones derived in previous
studies,20,36 up to sign changes due to the shift s present in the Mel-
nikov function. For n = 1, the divergence of the perturbation, cf.
Eq. (15), is sufficient to determine the volume contraction since
CR2 ≡ CT.

Simple zeros of the Melnikov function typically appear in pairs
moving in opposite directions, as in Fig. 1(b). Thus, assuming a
pair of simple zeros and positive volume contractions in Theorem
IV.3, two periodic orbits bifurcate from Z for ε > 0 small enough.
One of them is unstable and the other asymptotically stable, as
argued in the end of Sec. III in Fig. 1(c). This analytical conclu-
sion matches with the results of several experimental and numerical
studies present in the literature. Figure 2 summarizes our results on
stability showing the perturbation (in red) of the Floquet multipliers
of the conservative limit (in green).

Remark IV.4. If CNk
= 0, then Zε generically undergoes a

Neimark–Sacker or torus bifurcation.42,56,57 High-order nondegen-
eracy conditions have to be satisfied, but this bifurcation implies
that a resonant torus appears near Zε . As they might be attrac-
tors for system (5), their identification is relevant for the frequency
response.58–60

Remark IV.5. Theorem IV.3 does not discuss in detail cases
in which 5 admits either −1 as an eigenvalue or a repeated complex
conjugated pairs. These configurations indicate that Z may be an
orbit at which a period doubling or a Krein bifurcation, respectively,
occurs.42 One may still provide analytic expressions to evaluate the
stability of Zε , but we leave the discussion of these non-generic cases
to dedicated examples.

C. Determining volume contractions

In particular, for a system with a large number of degrees of
freedom, the volume contraction (or nonlinear damping rate) for-
mula for CV when V ⊂ R

2n may be difficult to evaluate due to the
presence of X0, its inverse, and the required subspace identification.
Regarding the perturbative vector field as defined in Eq. (7), the fol-
lowing proposition illustrates the simple case of uniform volume
contraction.

Proposition IV.4. Let V be a strongly invariant subspace
for 5. If ∂qQ(q, F(q, p), t; mτ/l, 0) is a symmetric matrix-valued
function and ∂pQ(q, F(q, p), t; mτ/l, 0) = −αI, then CV = α.

We prove this statement in the Appendix. In the Hamiltonian
literature, the assumptions of Proposition IV.4 hold for conformally
symplectic flows61,62 under appropriate forcing.

For example, the condition of uniform contraction is satisfied
in mechanical systems with G1 ≡ 0 when the leading-order pertur-
bation terms are pure forcing and Rayleigh-type dissipation pro-
portional to the mass matrix, i.e., Q(q, q̇, t; γ , 0) = f(t; γ ) − αM(q)q̇.
However, such uniform volume contraction is an overly simplified
damping model for practical applications (e.g., air damping, radi-
ation damping63) and hence may only be relevant for numerical
experiments.

FIG. 2. Summary of our stability results in terms of the perturbation (in red) of the Floquet multipliers of the conservative limit (in green). Grey shaded areas show possible
perturbation zones. Plot (a) refers to Proposition IV.1 where the conservative limit has a real pair (µ, 1/µ) of Floquet multipliers. In contrast, plot (b) refers to the tangent
space and illustrates the conditions (i) of Theorems IV.2 and of IV.3 (here with red dots). In the former case, two different white-faced markers are used for the two possible
instabilities. For the normal space, plot (c) shows the conditions (ii) of Theorems IV.2 (with red rings) and of IV.3 (with red dots).
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V. EXAMPLES

A. Subharmonic response in a gyroscopic system

The equations of motion of the two-degree-of-freedom system
in Fig. 3 read

mbq̈ + 2Gq̇ − mb�
2q + DV(q) = Q̂(q, q̇, t),

G = mb

[

0 −�

� 0

]

, V(q) = 1

2

4
∑

j=1

kj

(

lj(x, y) − l0
)2

,

l1,3(x, y) =
√

(l0 ± x)2 + y2, l2,4(x, y) =
√

x2 + (l0 ± y)2,

(16)

where q = (x, y)> are the generalized coordinates with respect to
a reference frame rotating with constant angular velocity �. We
assume that the Lagrangian component Q̂ contains all the small,
non-conservative forces acting on the system as follows:

Q̂(q, q̇, t) = ε
(

Qd,α(q, q̇) + Qd,β(q, q̇) + Qf(t)
)

, (17)

• uniform dissipation linearly depending on the absolute velocities
of the mass mb

εQd,α(q, q̇) = −εαmb(q̇ + m−1
b Gq), (18)

• stiffness-proportional dissipation for the spring-damper ele-
ments, i.e., cj = εβkj for j = 1, . . . 4, and

εQd,β(q, q̇) = −εβC(q)q̇,

C(q) =
4

∑

j=1

kj

[

(

∂xlj(x, y)
)2

∂xlj(x, y)∂ylj(x, y)

∂xlj(x, y)∂ylj(x, y)
(

∂ylj(x, y)
)2

]

, (19)

• mono-harmonic forcing of frequency l�

εQf(t) = εe

(

+ cos(l�t)
− sin(l�t)

)

, l ∈ N. (20)

This simple model with strong geometric nonlinearities finds
application in the fields of rotordynamics64 or gyroscopic MEMS.65

Here, sinusoidal forces whose frequencies clock at multiple of
the rotating angular frequencies either appear due to diverse
effects66,67 (e.g., asymmetries, nonrotating loads, or multiphysical
couplings) or are purposefully inserted in the system. From a phys-
ical standpoint,68 the dissipation controlled by the coefficient α

models, for example, radiation damping, while β governs material
or structural damping.

Introducing the transformation p = mbq̇ + Gq, the Hamilto-
nian for the conservative limit takes the form

H(q, p) = 1

2mb

〈p, p〉 − 1

mb

〈p, Gq〉 + V(q). (21)

Under the assumption mb = 1, the equivalent, first-order equations
for the two-degree-of-freedom system in Fig. 3 are

q̇ = −Gq + p,

ṗ = −DV(q) − Gp + ε
(

Qf(t) − αp − βC(q)(p − Gq)
)

.
(22)

For our analysis, we further assume that � = 0.942, l0 = 1, k1 = 1,
k2 = 4.08 , k3 = 1.37 , k4 = 2.51, and e = 1.

We begin with the study of the conservative limit (ε = 0), in
which the origin is an equilibrium with the non-resonant linearized
frequencies (0.925 13, 3.143 1). Hence, according to the Lyapunov
subcenter theorem,31 two families of periodic orbits (nonlinear nor-
mal modes) emanate from the origin; we focus our attention on

FIG. 3. Plot (a) shows the conservative backbone curve in terms of frequency and value of the first integral for the family of periodic solutions for the dynamical system (22),
while plot (b) shows the real part of the two couples of Floquet multipliers of the family.
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the one related to the slowest linearized frequency. By perform-
ing numerical continuation, we obtain the periodic orbit family of
Fig. 3(a) (backbone curve) described in terms of the oscillation fre-
quency ω = 2π/τ and the value of the first integral h. We also plot
the real part of the Floquet mutipliers along the family in Fig. 3(b).
We stop continuation at the cyan point in Fig. 3(a) where a period
doubling bifurcation occurs.

The backbone curve in Fig. 3(a) crosses two times the vertical
line marking the rotating angular velocity �. We concentrate on the
high-energy crossing point (depicted with a green dot), where the
family shows a softening trend, i.e., T′ > 0 holds at this location.
The corresponding periodic orbit is 1-normal and satisfies assump-
tions (A.2) and (A.3) of Sec. III. Moreover, this trajectory features a
non-negligible third harmonic so that 1:3 resonances with external
forcing may occur, depending on the damping strength. Therefore,
we fix l = 3 and we study forced–damped periodic orbits that may
survive from this high-energy crossing point for the two damping
mechanisms we have in our model.

For α = 0.763 76 and β = 0, the Melnikov function (9) evalu-
ated for this periodic orbit reads

M1:3(s) = 1.4402 cos(3�s) − 1.1553. (23)

This function has six simple zeros, but they correspond to two per-
turbed orbits9 that occur as the amplitude of the work done by the
forcing is larger than the dissipated energy, when evaluated at the
conservative limit. Specifically, the zeros featuring a negative M′

1:3(s)
are related to an unstable orbit according to Theorem IV.2, while
the others have a positive Melnikov-function derivative so that, due
to Proposition IV.4 and to Theorem IV.3, they signal an asymp-
totically stable periodic orbit. Along with the conservative limit in
green, we plot these perturbed orbits using blues lines in Fig. 4(a)

(solid for the asymptotically stable and dashed for the unstable)
that have been obtained by setting ε = 0.01 in a direct numerical
simulation with the periodic orbit toolbox of COCO.69 Qualitatively
speaking, these oscillations are very similar to that of the conserva-
tive limit, but the average value of the first integral along them is
higher (asymptotically stable orbit) or lower (unstable one).

By setting the damping values α = 0 and β = 0.32, one
retrieves the same Melnikov function as in Eq. (23). In particular,
the dissipated energy is equal to the case α = 0.763 76 and β = 0.
Thus, again, a stable and an unstable periodic orbit bifurcates from
the conservative limit since the volume contractions are both pos-
itive. Again, direct numerical simulations with ε = 0.01 verify our
predictions: we plot the asymptotically stable and unstable periodic
orbits in Fig. 4(a) with red solid and red dashed lines, respectively.

The nonlinear damping rates (or volume contractions) CV can
be used to estimate the Floquet multipliers of perturbed solutions.
As shown in the proofs reported in the Appendix, the absolute
value of a complex conjugated pair of eigenvalues arising from the
perturbation of a strongly invariant subspace V reads

|µ| =
√

1 − ετCV + o(ε) = 1 − ε
τ

2
CV + o(ε). (24)

We illustrate these predictions for the asymptotically stable orbits
of Fig. 4(a). The green lines in Fig. 4(b) show these estimates for
T (solid line) andN (dashed-dotted line) that are in good agree-
ment with the multipliers computed within the perturbed system
for the case α = 0 and β = 0.32, plotted in red. Figure 4(c) rep-
resents the analogous curves for the case α = 0.763 76 and β = 0.
Here, CT = CN = α and the green line depicts predictions from
the conservative limit, while the blue one shows results from simu-
lations in the forced–damped setting. We remark that, even though
the dissipated energy is the same, stiffness-related damping provides

FIG. 4. Plot (a) illustrates in green the conservative periodic orbit of the dynamical system (22) corresponding to the green dot in Fig. 3(a), in terms of coordinates (x, y)
and value of the first integral. This plot also shows the stable (solid lines) and unstable (dashed lines) periodic orbits bifurcating from the conservative limit at ε = 0.01. The
blue lines indicate the orbit for α = 0.763 76 and β = 0, while the red ones are for α = 0 and β = 0.32. With consistent colors, plots (b) and (c) show the evaluation of
the absolute value of the Floquet multipliers whose analytic predictions are depicted in green. In plot (b), solid lines refer to the tangent space T, while dashed-dotted lines
refer to the normal space N.
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higher volume contraction values with respect to the case of uniform
damping. As expected, for high values of ε, our first-order compu-
tations may not be sufficient to adequately estimate the modulus of
the perturbed multipliers.

For the low-energy crossing point (unmarked) in Fig. 3(a), the
Melnikov function is always negative for the damping values consid-
ered. Therefore, no perturbed solution arises from this conservative
limit for sufficiently small ε.

B. Isolated response due to parametric forcing

In this section, we study the parametrically forced, three-
degree-of-freedom system of nonlinear oscillators shown in Fig. 5.
Parametric forcing23 finds notable applications in the field of
MEMS.65,70 By assuming a linear damping proportional to the mass
matrix and unit masses, the equations of motion in Hamiltonian
form read

q̇ = p,

ṗ1 = −k(q1 − q2) − k/3q1 − aq2
1 − bq3

1 − εαp1,

ṗ2 = −k(q2 − q1) − k(q2 − q3) − εαp2, (25)

ṗ3 = −k(q3 − q2) + ε(q3f(t; �) − αp3),

f(t; �) = 4

π

3
∑

j=1

1

2j − 1
sin

(

(2j − 1)�t
)

,

where q, p ∈ R
3, k = 1, a = −1/2, b = 1, and α, ε > 0. The nonlin-

ear behavior in this example arises from the material nonlinearity
of the left-most spring in Fig. 5. We expect the appearance of isolas
in the frequency response, at least for small ε. Indeed, as the forcing
amplitude is controlled by q3, it is necessary to exceed a threshold on
the motion amplitude for the work done by the forcing to overcome
energy dissipation by the damping.

For the conservative limit of the system, the origin is the
unique fixed point and no resonances occur among its linearized
frequencies (0.303 94, 1.085 4, 1.750 1). Thus, three families of peri-
odic orbits emanate from the origin,31 and they can be parameterized
with the value of the first integral h. We focus on detecting perturbed
solutions arising from the lowest-frequency family. We denote by
ω(h) the frequency of the periodic orbits in this family normalized
by the linear limit at h = 0, i.e., ω(h) = T(0)/T(h). When perform-
ing numerical continuation, the first family is 1-normal and satisfies
assumptions (A.2) and (A.3) of Sec. III for 1 < ω(h) < 1.165, which
is our frequency range of interest. The backbone curve for this fam-
ily is illustrated in Fig. 5(a) in terms of the normalized frequency and
the maximum amplitude of the coordinate q3 along periodic orbits,
denoted by max |q3|. This backbone curve displays a hardening
trend, i.e., ω′(h) > 0, T′(h) < 0. Figures 5(b) and 5(c), respectively,
show the trend of real and imaginary parts of the Floquet multipliers
µ of the family.

We select a perturbation in Eq. (25) to satisfy the assumptions
of Proposition IV.4 so that the volume contractions CV are always
positive. Moreover, the forcing corresponds to the sixth harmonic
approximation of a square wave with unit amplitude and period
2π/�. We now examine via our Melnikov approach perturbed peri-
odic orbits when the forcing period is in 1:1 resonance with the
period of the orbits of the first family; thus, we set � = 2π/T(h).
Sweeping through the family, we evaluate the Melnikov function on
every orbit and hence construct a scalar function M1:1(θ , h, α), using
the phase θ = 2πs/T(h) instead of the shift s.

Figure 6(a) shows the zero level set of M1:1(θ , h, 0.121), in blue,
and of M1:1(θ , h, 0.141), in red, plotted in the plane (θ , ω). Solid
lines indicate zeros in θ with ∂θM1:1 < 0, while dashed ones indi-
cate zeros with ∂θM1:1 > 0. According to Theorem IV.2, the latter
zeros predict unstable perturbed periodic orbits, while the former
predict asymptotically stable ones of Theorem IV.3. However, there
are conservative orbits of the family that either feature a pair of
Floquet multipliers related to the normal space equal to −1 or

FIG. 5. Plot (a) shows the backbone curve in terms of the normalized frequency ω and the amplitude of the lowest-frequency family of periodic solutions for the conservative
limit of system (25). The trend of Floquet multipliers of the family is shown in plot (b) in terms of their real part, while plot (c) regards the imaginary one.
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FIG. 6. Plot (a) illustrates the level set of the Melnikov function evaluated along the lowest-frequency family of system (25) considering two values of the damping in the plane
(ω, θ), where the latter is the orbit phase. Here, dashed lines predict unstable perturbed orbits, while solid ones indicate asymptotically stable ones. The latter feature faded
regions at which the predictions of Theorem IV.3 could turn out to be weak. The dots instead denote saddle-node bifurcations. Plot (b) shows the numerical simulations of the
frequency response for the perturbed system at ε = 0.0025. The horizontal axis displays the normalized frequency and the vertical one the distance from the conservative
backbone curve.

have two coincident complex conjugated pairs of Floquet multi-
pliers [cf. Figs. 5(b) and 5(c)]. At these resonances, Theorem IV.3
is not applicable and hence the prediction of asymptotic stability
could fail in the vicinity of these orbits, shown with faded solid
lines in Fig. 6(a). Moreover, the dots in Fig. 6(a) depict quadratic
zeros with respect to θ of M1:1 at which saddle-node bifurcations
occur.9

From lower to higher frequencies for α = 0.121, the Melnikov
one has two quadratic zeros when � ≈ 1.01. Afterward, they evolve
as four simple zeros, then the internal pair collapses in a quadratic
zero and the remaining zeros persist until �(h) ≈ 1.158. For this
value of α, the multiharmonic, parametric forcing of Eq. (25) gen-
erates an inverse cup-shaped isolated response curve. In contrast,
two disjoint isolas exist when damping is increased at α = 0.141.
These predictions are confirmed via direct numerical simulations
of the perturbed system in Fig. 6(b) for ε = 0.0025, plotted with
corresponding colors. Here, we depict the frequency response by
showing the distance, in terms of the amplitude max |q3|, to the
conservative (isochronous) limit. When interpreting these results,
one has to recall that the Melnikov function is the leading-order
approximation of the bifurcation function governing the persistence
problem.9 Hence, the level sets in Fig. 6(a) are approximate ones and,
in particular, the symmetric appearance of zeros will be, generically,
destroyed in the full bifurcation function.

VI. CONCLUSION

We have developed an analytical approach to determine the
stability of forced–damped oscillations of nonlinear, multi-degree-
of-freedom mechanical systems. Specifically, by studying these
motions as perturbations from conservative backbone curves, we
have complemented the existence results of Ref. 9 with further

results on the stability of the periodic forced–damped response.
Other than the Melnikov function (which also predicts persistence),
the frequency variation within the limiting conservative periodic
orbits and the nonlinear damping rates (or volume contractions)
play a role in the assessment of stability. These damping rates pro-
vide estimates for the Floquet multipliers of the forced–damped
response, thereby predicting stability of perturbed trajectories from
their conservative limit.

After proving the method in a general setting, we verified our
analytical predictions on two specific examples. In the first, we stud-
ied subharmonic resonances with external forcing in a gyroscopic
two-degree-of-freedom system considering two damping mecha-
nisms. Even though these latter dissipate the same amount of energy
along the conservative limit, their stability indicators (and poten-
tially their basins of attraction) are different. In the second example,
we considered the case of parametric forcing on a three-degree-of-
freedom oscillator with mass-proportional damping. By considering
multi-harmonic excitation, we have successfully described the gen-
eration and the stability of periodic trajectories that lie on exotic
isolas of the frequency response.

When the mechanical system has only one degree of freedom,
the conditions we derived coincide with prior analyses.20,36 Our
results are also consistent with numerical and experimental obser-
vations reported in available studies,2–8,10–18 in that they are able to
explain hysteresis of frequency responses in mechanical systems as
well as other stability or bifurcation phenomena. From a numerical
perspective, being able to make predictions based on the conser-
vative limit alone can lead to major savings in computational time
when analyzing weakly damped systems with a large number of
degrees of freedom. Moreover, our analytic stability criteria may
help in overcoming potential issues with numerical methods, such
as computational complexity and convergence problems.
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APPENDIX: PROOFS OF THE MAIN RESULTS

In this section, we adopt the assumptions of Sec. IV and
derive an approximation for the Floquet multipliers of the non-
autonomous periodic orbit Zε , to be used for the stability
assessment.20,49,50 This orbit solves system (5) with δ(ε) = mτ/l
+ ετ̃ + o(ε) and has initial condition ξ(ε) = z + εz̃ + o(ε).

We aim at analyzing the evolution of the Floquet multipliers of
Zε from those of its conservative limit Z. Since we rely on the lin-
earized flow and look at the O(ε)-perturbation as in the next lemma,
our stability assessment is valid in a small neighborhood of z and for
ε small enough.

Lemma A.1. The monodromy matrix P(ε) = X(lδ(ε); ξ(ε),
T(ε), ε) of Zε is approximated at order O(ε2) by the following
expansion:

P(ε) = 5 + ε5
(

9m:l
H + 9m:l

g

)

+ O(ε2), (A1)

where

9m:l
H =

∫ mτ

0

X−1
0 (t; z)JD3H(x0(t; z), x1(t; z, z̃))X0(t; z)dt,

x1(t; z, z̃) = X0(t; z)z̃

+ X0(t; z)

∫ t

0

X−1
0 (s; z)g(x0(s; z), s; mτ/l, 0)ds,

9m:l
g =

∫ mτ

0

X−1
0 (t; z)∂xg(x0(t; z), t; mτ/l, 0)X0(t; z)dt. (A2)

Proof. The smoothness assumption for the vector fields
involved are sufficient to approximate the solutions of systems (5)
and (7) at O(ε2). The periodic orbit Zε is approximated by x0(t, z)
+ εx1(t; z, z̃), where x1(t; z, z̃) solves the initial value problem

ẋ1 = JD2H(x0(t; z))x1 + g(x0(t; z), t; mτ/l, 0),

x1(0) = x1(mτ) = z̃.
(A3)

By substituting x = x0 + εx1, X = X0 + εX1, and δ = mτ/l + O(ε)

in system (7) and expanding the equation, one obtains at O(ε) the
following initial value problem:

Ẋ1 = JD2H(x0(t; z))X1 +
(

JD3H(x0(t; z), x1(t; z, z̃))

+ ∂xg(x0(t; z), t; mτ/l, 0)
)

X0(t; z),

X1(0) = 0,

(A4)

whose analytical solution, expressed by Lagrange’s formula,49 at time
mτ is the O(ε)-term in Eq. (A1). �

1. Some results in linear algebra

We now introduce some factorization results exploiting the
properties of the symplectic group, denoted as Sp(2n, R). The next
lemma characterizes the relation between strongly invariant sub-
spaces related to 5, as defined in Sec. IV.

Lemma A.2. Let 5 ∈ Sp(2n, R) and assume that 5 has two
distinct strongly invariant subspaces V and W of dimensions 2v and
2w, respectively. Let these subspaces be represented by RV ∈ R

2n×2v

and RW ∈ R
2n×2w, respectively, so that, for unique BV ∈ R

2v×2v and
BW ∈ R

2w×2w, the following identities hold:

5RV = RVBV, 5RW = RWBW. (A5)

Then,

(i) R>
V

JRW = 0 and R>
W

JRV = 0,

(ii) R>
V

JRV and R>
W

JRW are invertible.

Proof. We first prove statement (i). Recalling the standard
symplectic identity 5>J5 = J, we find

R>
V

JRW = (5RVB−1

V
)
>
5RWB−1

W
= B−>

V
R>
V

5>J5RWB−1

W

= B−>
V

R>
V

JRWB−1

W
. (A6)

By denoting A = R>
V

JRW and considering the leftmost and the

rightmost sides of Eq. (A6), we obtain a homogeneous Sylvester
equation

B>
V

A = AB−1

W
. (A7)

The eigenvalues of B>
V

are equal to those of BV. Since 5 is symplec-

tic and by Definition IV.1, B−1

W
and BW have identical eigenvalues

as well. By assumption, the eigenvalues of BV and those of BW are
distinct. Hence, B>

V
and B−1

W
have no common eigenvalue, which

implies that Eq. (A7) has the unique solution A = R>
V

JRW = 0 (see

Chapter VIII in Ref. 71). Transposing A and using the identity
J> = −J, one also gets that R>

W
JRV = 0.

We now prove statement (ii). Since V and W correspond to the
direct sums of spectral subspaces (sometimes called root spaces) of
distinct eigenvalues of 5, we have that, by construction, V ∩ W = ∅
(see Theorem 2.1.2 in Ref. 72 for a proof). By letting Y = V ⊕ W, we
then define the linear map AV := R>

V
J and we analyze its restriction

to Y, i.e., AV|Y : Y → R
2v. Since the kernel of this map is W, then

its image must have dimension dim(Y) − dim(W) = 2v by the rank-
nullity theorem. Hence, AVRV = R>

V
JRV is invertible. An analogous

reasoning holds for the linear map AW := R>
W

J. �

The next result follows as a consequence of Lemma A.2.
Lemma A.3. Let 5 ∈ Sp(2n, R) and assume 5 has two dis-

tinct strongly invariant subspaces V and W be such that V ⊕ W

= R
2n. Denote by 2v the dimension of V and let these subspaces

be spanned by a linear combination of the columns in RV ∈ R
2n×2v

and RW ∈ R
2n×2(n−v), respectively. Define the symplectic left inverse

matrices for RV and RW, respectively, as

SV = (R>
V

JRV)
−1

R>
V

J, SW = (R>
W

JRW)
−1

R>
W

J. (A8)
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Then, the following factorization holds:

R−1 =
[

SV
SW

]

, R =
[

RV RW

]

, R−15R =
[

BV 0
0 BW

]

,

(A9)
where the eigenvalues of BV ∈ R

2v×2v are distinct from those of
BW ∈ R

2(n−v)×2(n−v).
We also remark that one can obtain from Eq. (A9) the further

identities

SV5 = BVSV, SW5 = BWSW. (A10)

We will also need the next result.
Lemma A.4. Let A ∈ R

2n×2n and let V be a strongly invariant
subspace for 5. Let the columns of RV ∈ R

2n×2v be a basis for V and
let SV be the symplectic left inverse of RV. Then,

trace(SVARV) = 1

2
trace

(

SV(A − JA>J)RV

)

. (A11)

In particular, if A = JÂ, where Â is symmetric, then trace
(SVARV) = 0.

Proof. Recall that J>J = I and that, for arbitrary matri-
ces A1 and A2, trace(A1A2) = trace(A2A1) as well as trace(A1)

= trace(A>
1 ). Equation (A11) holds because

trace(SVARV) = trace
(

(R>
V

JRV)
−1

R>
V

JARV

)

= trace
(

((R>
V

JRV)−1R>
V

JARV)
>
)

= trace
(

R>
V

A>J>RV(R>
V

JRV)
−>

)

= trace
(

R>
V

A>J>RV((R>
V

JRV)>)
−1

)

= trace
(

R>
V

A>J>RV(R>
V

J>RV)
−1

)

= trace
(

(R>
V

J>RV)
−1

R>
V

A>J>RV

)

= trace
(

(R>
V

JRV)
−1

R>
V

A>JRV

)

= trace
(

(R>
V

JRV)
−1

R>
V

JJ>A>JRV

)

= trace(SVJ>A>JRV)

= −trace(SVJA>JRV). (A12)

The last statement can be found by direct substitution of A = JÂ in
Eq. (A11). �

2. Perturbation of the Floquet multipliers

We now apply the results in Subsection 1 of the Appendix to the
initial perturbation expansion and we use the following definition.53

Definition A.1. Let v, w be arbitrary integers, Bv ∈ R
v×v and

Bw ∈ R
w×w. The separation of Bv and Bw with respect to an arbitrary

norm || · || is defined as

sep(Bv, Bw) := min
Y∈Rw×v :||Y||=1

||YBv − BwY||. (A13)

We remark that sep(Bv, Bw) 6= 0 if and only if the eigenvalues
of Bv are different from those of Bw. We can then state the next
fundamental result.

Theorem A.5. Consider the perturbation expansion of
Lemma A.1 and the setting of Lemma A.3. If ε � sep(BV, BW), then
the eigenvalues of P(ε) coincide with the eigenvalues of the matrices

BV

(

I + εSV(9m:l
H + 9m:l

g )RV

)

+ O(ε2),

BW

(

I + εSW(9m:l
H + 9m:l

g )RW

)

+ O(ε2).
(A14)

Proof. We use the shorthand notation 9 = 9m:l
H + 9m:l

g . We
then define the matrix

A(ε) = R−1P(ε)R = R−15R + εR−159R + O(ε2)

=
[

BV(I + ε9V) BVε9VW
εBW9WV BW(I + ε9W)

]

+ O(ε2), (A15)

where, exploiting the identities in Eq. (A10), we used the notation

9V = SV9RV, 9VW = SV9RW,

9W = SW9RW, 9WV = SW9RV.
(A16)

Note that, by similarity, A(ε) has the same spectrum as P(ε). Since
the eigenvalues of BV are different from those of BW, Corollary 2.4
in Ref. 53 guarantees, for ε small enough, the existence of a strongly
invariant subspace for A(ε), whose coordinates can be described by
the asymptotic expansion

V(ε) =
[

I

ε
(

sep(BV, BW)
)−1

WV(ε)

]

, (A17)

which is justified if ε � sep(BV, BW) and for a unique WV :
R → R

2(n−v)×2v. This result holds as a consequence of the implicit
function theorem. By similarity, the strongly invariant subspace
V for P(0) = 5 persists as Vε for P(ε) and Vε is described by
the columns of the product RV(ε). Then, the invariance relation
A(ε)V(ε) = V(ε)BV(ε) holds for a unique BV : R → R

2v×2v, whose
eigenvalues are the ones related to Vε . By using this invariance
relation, one obtains

[

BV(I + ε9V)

εBW9WV

]

+ O(ε2)

=
[

BV(ε)

ε
(

sep(BV, BW)
)−1

WV(ε)BV(ε)

]

. (A18)

An analogous discussion also applies to W, so the claim is proved.
�

This result always holds asymptotically, but we have high-
lighted the fact that ε should stay below a critical threshold, which
guarantees that the eigenvalues related to Vε and to Wε remain sep-
arated. References 51 and 53 establish non-asymptotic bounds for
this kind of perturbations.

Next, we show an important consequence of Lemma A.4.
Lemma A.6. Let V be a strongly invariant subspace for 5, let

the columns of RV ∈ R
2n×2v span V, and let SV be the symplectic left
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inverse of RV. Then, we have

det
(

BV

(

I + εSV(9m:l
H + 9m:l

g )RV

)

+ O(ε2)
)

= 1 − εmτvCV + O(ε2), (A19)

where the value CV is defined in Eq. (14).
Proof. We recall that det(BV) = 1 by definition and the iden-

tity Dεdet(A(ε)) = trace (A∗(ε)DεA(ε)), also called Jacobi formula,
which holds for some smooth matrix family A(ε) with A∗(ε) being
the adjugated matrix of A(ε). Since the determinant of a product of
square matrices is equal to the product of their determinants, one
obtains the Taylor expansion

det
(

BV

(

I + εSV(9m:l
H + 9m:l

g )RV

)

+ O(ε2)
)

= det
(

I + εSV(9m:l
H + 9m:l

g )RV + O(ε2)
)

= 1 + εtrace
(

SV(9m:l
H + 9m:l

g )RV

)

+ O(ε2). (A20)

By linearity, the O(ε)-term above can be split into trace
(

SV9m:l
H RV

)

+ trace
(

SV9m:l
g RV

)

and we now prove that the first of these traces

vanishes. Indeed, the third derivative in 9m:l
H can be expressed as

JD3H(x0(t; z), x1(t; z, z̃))

=
n

∑

k=1

∂
(

JD2H(x)
)

∂xk

∣

∣

∣

∣

∣

x=x0(t;z)

xk,1(t; z, z̃) =
n

∑

k=1

JAk(t)xk,1(t; z, z̃),

(A21)

where the scalars xk,1(t; z, z̃) identify the components of the curve
x1(t; z, z̃) and the matrix families Ak(t) are symmetric. Recalling the
identity X−1

0 (t; z) = JX>
0 (t; z)J>,41 we can, therefore, write

9m:l
H =

∫ mτ

0

n
∑

k=1

X−1
0 (t; z)JAk(t)X0(t; z)xk,1(t; z, z̃)dt

= J

∫ mτ

0

n
∑

k=1

X>
0 (t; z)Ak(t)X0(t; z)xk,1(t; z, z̃)dt = JÂ, (A22)

where Â is still symmetric. Thus, by Lemma A.4, trace
(

SV9m:l
H RV

)

= 0 and, by linearity,

trace
(

SV9m:l
g RV

)

= trace

(

SV

∫ mτ

0

X−1
0 (t; z)

×∂xg(x0(t; z), t; mτ/l, 0)X0(t; z)dt RV

)

= −mτvCV. (A23)

�

3. Proof of the main theorems

Proof of Theorem IV.2. We will use the shorthand notation
9 = 9m:l

H + 9m:l
g . Let us start with statement (ii). For ε sufficiently

small, Theorem A.5 guarantees that, to unfold the evolution of
some Floquet multipliers, it is sufficient to study the 2v eigenvalues
µk(ε) of BV

(

I + εSV9RV

)

+ O(ε2) related to some unperturbed,

strongly invariant subspace V. According to Lemma A.6 and due
to the fact that the determinant is equal to the product of the
eigenvalues, we have

2v
∏

k=1

µk(ε) = det
(

BV

(

I + εSV9RV

)

+ O(ε2)
)

= 1 − εmτvCV + O(ε2). (A24)

Thus, for ε > 0 small enough and CV < 0, there exists at least one

index k̃ for which |µk̃(ε)| > 1, which implies instability.
We then prove statement (i), for which the discussion is more

involved. As a basis for the tangent space T, we choose the vector
field JDH(z) and a vector b(z) ∈ T orthogonal to JDH(z) and nor-
malized such that 〈b(z), DH(z)〉 = 1. From Proposition A.1 in Ref. 9,
the following identities hold:

5m(z)JDH(z) = JDH(z),

5m(z)b(z) = b(z) − mT′(h)JDH(z),
(A25)

where h = H(z). Denoting RT = [JDH(z) b(z)] and a = mT′(h),
from Eq. (A25) the symplectic left inverse of RT and their relative
block BT read

ST =
[

Jb(z) DH(z)
]>

, BT =
[

1 −a
0 1

]

. (A26)

According to Theorem A.5, to evaluate the perturbation of these
coincident Floquet multipliers of the conservative limit, we need to
study the eigenvalues (µ1(ε), µ2(ε)) of the perturbed block

BT

(

I + εST9RT

)

+ O(ε2)

=
[

1 + ε(a11 − aa21) −a + ε(a12 − aa22)

εa21 1 + εa22

]

+ O(ε2), (A27)

where we denoted ajk the components of the matrix SV9RV. These
eigenvalues are expressed as

λ1,2 = 1 + ε
a11 + a22 − aa21

2
±

√
ε
√

−aa21 + o(ε). (A28)

The value aa21 = mT′(h)a21 acts as a discriminant and we later
prove that a21 = M′

m:l(0). Thus, if T′(h)M′
m:l(0) < 0 and ε > 0, then

there exists a real eigenvalue greater than 1, which implies instabil-
ity as in statement (i) of the Theorem for small ε > 0. Conversely,
the two eigenvalues are complex conjugated for small ε > 0 whose
squared modulus, using Lemma A.6, reads

µ1(ε)µ2(ε) = |µ1(ε)|2 = det
(

BT

(

I + εST9RT

)

+ O(ε2)
)

= 1 − εmτCT + O(ε2). (A29)

If CT < 0, the two eigenvalues evolve as a complex conjugated cou-
ple outside the unit circle in the complex plane for small ε > 0,
proving then statement (i).

We now show that a21 = 〈DH(z), 9JDH(z)〉 = DMm:l(0)
= M′

m:l(0). We first recall the following identities (see Refs. 9 and 50
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for a proof):

X0(t; z)JDH(z) = JDH(x0(t; z)),

DH(z)X−1
0 (t; z) = DH(x0(t; z)).

(A30)

We also recall the fact that the gradient of the first integral
solves the adjoint variational equation of the conservative limit (see
Proposition 3.2 in Ref. 73 for a proof), i.e.,

Dt

(

DH(x0(t; z))
)

= −DH(x0(t; z))JD
2H(x0(t; z)). (A31)

Exploiting Eq. (A30), one obtains

〈DH(z), 9JDH(z)〉

=
∫ mτ

0

〈

DH(x0(t; z)),
(

JD3H(x0(t; z), x1(t; z, z̃)) (A32)

+ ∂xg(x0(t; z), t; mτ/l, 0)
)

JDH(x0(t; z)
〉

dt (A33)

and by taking the time derivative of the ODE in Eq. (A3), one has
the identity

(

JD3H(x0(t; z), x1(t; z, z̃)) + ∂xg(x0(t; z), t; mτ/l, 0)
)

× JDH(x0(t; z)) = ẍ1(t; z, z̃) − JD2H(x0(t; z))ẋ1(t; z, z̃)

− ∂tg(x0(t; z), t; mτ/l, 0). (A34)

Substituting the latter result in Eq. (A32), one can use integration by
parts to obtain

〈DH(z), 9JDH(z)〉

= −
∫ mτ

0

〈

Dt

(

DH(x0(t; z))
)

, ẋ1(t; z, z̃)
〉

dt

−
∫ mτ

0

〈

DH(x0(t; z)), JD
2H(x0(t; z0))ẋ1(t; z, z̃)

〉

dt

−
∫ mτ

0

〈

DH(x0(t; z)), ∂tg(x0(t; z), t; mτ/l, 0)
〉

dt, (A35)

where we also used the fact that 〈DH(x0(t; z)), ẋ1(t; z, z̃)〉 is mτ -
periodic. Moreover, the first two integrals cancel out due to
Eq. (A31) and one finds

a21 = 〈DH(z), 9JDH(z)〉

= −
∫ mτ

0

〈

DH(x0(t; z)), ∂tg(x0(t; z), t; mτ/l, 0)
〉

dt

= M′
m:l(0), (A36)

according to the definition of Remark A.4 in Ref. 9. �

Proof of Theorem IV.3. We prove asymptotic stability by show-
ing that under the conditions of the theorem all the Floquet mul-
tipliers lay within the unit circle in the complex plane for ε > 0
sufficiently small.

Condition (i) may be derived directly from the proof of
Theorem IV.2. Indeed, in this case, the two eigenvalues equal to +1
evolve as a complex pair with modulus less than 1, cf. Eq. (A29).

By assumption, the complex conjugated complex pairs related
to the normal space are distinct for ε = 0, so we can iteratively apply

Theorem A.5 considering V as each of the two-dimensional strongly
invariant subspaces Nk for k = 1, . . . , n − 1. Moreover, these eigen-
value pairs persist as complex ones since P(ε) is real, so it is sufficient
to evaluate their squared modulus to evaluate whether they move
inside or outside the unit circle of the complex plane. As done in
the proof of Theorem IV.2, this can be estimated as 1 − εmτCNk

at

first order. Hence, all the eigenvalues of the normal space have mod-
ulus lower than 1 if all the n − 1 volume contractions related to the
subspaces Nk are positive. �

We remark that, for the estimates of the last theorem to be
valid, the value of ε must be much smaller than the minimal sep-
aration between the pairs of eigenvalues of 5. In particular, in the
vicinity of bifurcation or crossing points, these approximations may
turn out to be weak.

Remark A.1. If the unperturbed system is not in Hamiltonian
form, then one can still prove that the quantity T′(h)M′

m:l(0) gov-
erns the stability in the tangential directions. However, the formulas
for the volume contractions are more complicated in this case. The
Hamiltonian form provides drastic simplifications so that these con-
tractions only depend on the pullback of the linear vector field ∂xg
under X0. Moreover, all the results we have proved in these sections,
also apply to more general perturbations of Hamiltonian systems
rather than the specific form we assumed in Sec. II.

4. Proof of Proposition IV.4

Proof. With the shorthand notation

∂qQ = ∂qQ(q0(t; z), F(q0(t; z), p0(t; z)), t; mτ/l, 0),

∂pQ = ∂pQ(q0(t; z), F(q0(t; z), p0(t; z)), t; mτ/l, 0),
(A37)

we split

∂xg(x0(t, z), t; mτ/l, 0) =
[

0 0
∂qQ ∂pQ

]

= JAq(t) + Ap(t),

Aq(t) =
[

−∂qQ 0
0 0

]

, Ap(t) =
[

0 0
0 ∂pQ

]

,

(A38)

so that, using Eq. (A11), we have

CV = − 1

2mτv

∫ mτ

0

trace
(

SVX−1
0 (t; z)Âq(t)X0(t; z)RV

)

dt

− 1

2mτv

∫ mτ

0

trace
(

SVX−1
0 (t; z)Âp(t)X0(t; z)RV

)

dt, (A39)

where Âq(t) = J(Aq(t) − A>
q (t)) and Âp(t) = Ap(t) − JA>

p (t)J. For

Aq(t) = A>
q (t), the first of the integrals above vanishes. By using the

fact that

Âp(t) =
[

∂pQ
> 0

0 ∂pQ

]

, (A40)

and by substituting ∂pQ = −αI, we obtain CV = α as claimed. This
result agrees with the symmetry property of the Lyapunov spectra of
conformal Hamiltonian systems.74 �
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