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Abstract
We propose a reformulation for a recent integral equations approach to
steady-state response computation for periodically forced nonlinear mechanical
systems. This reformulation results in additional speed-up and better con-
vergence. We show that the solutions of the reformulated equations are in
one-to-one correspondence with those of the original integral equations and
derive conditions under which a collocation-type approximation converges to
the exact solution in the reformulated setting. Furthermore, we observe that
model reduction using a selected set of vibration modes of the linearized sys-
tem substantially enhances the computational performance. Finally, we discuss
an open-source implementation of this approach and demonstrate the gains in
computational performance using three examples that also include nonlinear
finite-element models.
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1 INTRODUCTION

Computing the steady-state response of periodically forced nonlinear systems is a challenging task for contemporary
engineering problems comprising high-dimensional finite element models. A number of methods are nominally avail-
able in the literature for nonlinear periodic response calculation, ranging from analytical perturbation techniques1,2

to standalone computational packages (AUTO,3 coco,4 NLvib5) that perform numerical continuation (see References
6,7 for a review). Despite today’s advances in computing, however, a good approximation to nonlinear forced response
curves in complex structural vibration problems remains challenging to obtain and hence model reduction is still
required.8

In this work, we focus on the recently proposed integral equations approach7 to the computation of steady-state
response in nonlinear mechanical systems. Showing superior computational performance over other methods, this
approach uses an explicit Green’s function in the second-order form to derive an integral equation, whose solution rep-
resents the steady-state response. This solution is then computed via collocation or spectral methods. A distinguishing
aspect of this approach is that it allows for the simple and fast Picard iteration in obtaining the steady-state response even
for nonsmooth mechanical systems. From a computational perspective, this circumvents the computation and inversion
of the Jacobian matrices which is computationally intensive for high-dimensional problems. At the same time, however,
the Picard iteration may not converge near external resonances.7 Near such resonances, one is therefore forced to switch
to a more expensive Newton–Raphson scheme to secure convergence.
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The objectives of this article are twofold. First, we use a reformulation of the original integral equation approach,
which leads to improved speed and convergence. This reformulation is motivated by an idea of Kumar and Sloan9 for
scalar Hammerstein-type integral equations. Their approach reorders the nonlinearity and integration operations to
obtain better computational performance using a collocation-type approximation. Kumar and Sloan9 proved a one-to-one
correspondence between the solutions of the original and reformulated integral equations. Furthermore, they speci-
fied the rate of convergence of the collocation approximation to the exact solution when using this new, reformulated
approach. In this work, we extend these results to vector-valued functions before applying them to the integral equations
presented in Reference 7. We further verify the conditions under which Picard iteration is guaranteed to converge in the
reformulated setting and implement both Picard and Newton–Raphson iterations in an open-source package.10

Second, we approach the reformulated integral equation method from a model reduction perspective, given that
reduced-order models (ROM) are still required to cope with the complexity of contemporary engineering structures.
Projection-based ROMs, for instance, are constructed by projecting the governing equations to a linear subspace which
may be identified using a variety of techniques. Due to the general lack of invariance of such linear subspaces in nonlin-
ear systems, there are no mathematical results confirming the relevance of projection-based ROMs for nonlinear model
reduction. Yet such projection-based techniques are a common choice for model reduction due to their simple implemen-
tation. A recently developed technique11 allows us to optimally identify modal subspaces for projection-based reduction
using the rigorous theory of spectral submanifolds (SSM).12 SSMs are the smoothest nonlinear continuations of linear
modal subspaces that are invariant under the nonlinear flow and allow the reduction of the nonlinear dynamics into
an exact, lower-dimensional invariant manifold in the phase space. In this work, we also equip the reformulated inte-
gral equations approach with the SSM-based model reduction procedure,11 which allows us to compute the steady-state
periodic response of finite-element problems in a fast, automated and reliable manner.

The remainder of this article is organized as follows. We discuss the reformulation of the integral equation in Section 3
after a short introduction to the general setup in Section 2. Section 4 deals with numerical analysis of the proposed
approach. Here, we discuss the numerical advantages of the reformulated integral equation relative to the original one, fol-
lowed by results on numerical convergence and iterative solution methods, that is, Picard iteration and Newton–Raphson
iteration. Finally, in Section 5, we use an open-source implementation10 of the results to illustrate the improvements
arising from the proposed reformulation equipped with model reduction on three mechanical examples.

2 SETUP

We consider mechanical systems with geometric nonlinearities of the form

Mẍ + Cẋ + Kx + S(x) = f , (1)

where x(t) = (x1(t), … , xn(t)) ∈ Rn is the vector of generalized coordinates; M ∈ Rn×n is the positive definite mass matrix;
C ∈ Rn×n is the damping matrix; K ∈ Rn×n is the positive semidefinite stiffness matrix; S is a nonlinear, Lipschitz contin-
uous function satisfying S(x) =  (|x|2) with Lipschitz constant LS, where we denote by |⋅| the standard Euclidean norm;
and f = (f 1, … , f n) is a time-dependent, T-periodic forcing.

We assume proportional damping, that is, that the damping matrix C can be expressed as a linear combination of the
matrices M and K. This allows us to decouple the full system (1) at the linear level using the undamped vibration modes
uj ∈ Rn, defined by the eigenvalue problem(

K − 𝜔2
0,jM

)
uj = 0, for j = 1, … ,n, (2)

where 𝜔0,j is the eigenfrequency of uj. Using the linear transformation x = U𝜂, where 𝜂 ∈ Rn denotes the modal variables,
and U = [u1, … ,un] ∈ Rn×n is the transformation matrix composed of the undamped vibration modes, we transform the
original system (1) as

U⊤MU 𝜂̈(t) + U⊤CU 𝜂̇(t) + U⊤KU𝜂(t) + U⊤S(U𝜂(t)) = U⊤f (t), (3)

where (•)⊤ denotes the matrix transpose. Note that the n equations in system (3) decouple at the linear level but become
generally coupled under the nonlinear term U⊤S(U𝜂(t)).
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2.1 Modal truncation

The general idea of modal truncation is to project the equations of motion (1) onto linear subspaces spanned by the
vibration modes.13 Given a truncated set of m modes, say, u1, … , um (m≤n), we obtain a ROM from the full system (1)
using the reduced transformation matrix Um = [u1, … ,um] ∈ Rn×m via Galerkin projection as

U⊤
mMUm𝜂̈(t) + U⊤

mCUm𝜂̇(t) + U⊤
mKUm𝜂(t) + U⊤

mS(Um𝜂(t)) = U⊤
mf (t), (4)

where the ROM (4) has only m unknowns (𝜂 ∈ Rm). Note that we recover the full system (3) when all modes are included
in Um, that is, when m=n.

An optimal set of modes for the above truncation can be chosen using the mode-selection criterion in Reference 11, as
mentioned in the Introduction. This criterion is based on the recent theory of spectral submanifolds (SSMs),12 which are
exact invariant manifolds that act as nonlinear continuations of linear normal modes in the phase space. Starting with
an initial set of modes obtained from linear mode superposition, this criterion systematically identifies the modes whose
associated SSMs have the largest local curvature. Such modes are the most sensitive to system nonlinearities and hence
most relevant for any projection-based ROM. The mode selection process is automated for general systems (see section 5
in Reference 11) and has an open-source implementation,10 which we employ for modal truncation in this work.

Next, we discuss how the steady-state response to periodic forcing can be obtained from such a truncated set of modes
using the integral equations approach of Jain, Breunung, and Haller.7

2.2 Integral equations for steady-state response

Without loss of generality, we assume that the undamped vibration modes are mass-normalized, that is, UTMU = I and
in particular, UT

mMUm = I. For notational purposes, we write the linear part of the jth equation in system (4) as

𝜂̈j(t) + 2𝜁j𝜔0,j𝜂̇j(t) + 𝜔2
0,j𝜂j(t) = 𝜑j(t), j = 1, … ,m, (5)

where 𝜔0,j =
√⟨uj,Kuj⟩ are the undamped natural frequencies, 𝜁j = ⟨uj,Cuj⟩∕(2𝜔0,j) are the modal damping coefficients,

and 𝜑j(t)= ⟨uj, f (t)⟩ are the modal participation factors.
We arrange the eigenvalues of the damped linear system (5) as

𝜆2j−1,2j =
(
−𝜁j ±

√
𝜁2

j − 1
)
𝜔0,j, for j = 1, … ,m. (6)

As in Reference 7, we further define the constants

𝛼j ∶= Re(𝜆2j), 𝜔j ∶= |Im(𝜆2j)|, 𝛽j ∶= 𝜆2j−1, 𝛾j = 𝜆2j, j = 1, … ,m. (7)

For a T-periodic forcing f , the following statement recalls the second-order Green’s function (see lemma 3 in Reference
7) to compute the periodic response of the reduced linear system (5).

Lemma 1. For a T-periodic forcing f, if the nonresonance conditions

𝜆j ≠ i 2𝜋
T

l, l ∈ Z (8)

are satisfied for all eigenvalues 𝜆1, … , 𝜆2m defined in (6), then there exists a unique T-periodic response for the linear
system (5), given by

𝜂lin(t) = ∫
T

0
Lm(t − s,T)U⊤

mf (s) ds, (9)

where Lm(t, T) is the diagonal Green’s function matrix for the modal displacement variables defined as

Lm(t,T) = diag (L1(t,T), … ,Lm(t,T)) ∈ R
m×m,
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with

Lj(t,T) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e𝛼j t

𝜔j

[
e𝛼jT

[
sin𝜔j(t+T)−e𝛼jT sin𝜔jt

]
1+e2𝛼jT−2e𝛼jT cos𝜔jT

+ h(t) sin𝜔jt

]
, if 𝜁j < 1,

e𝛼j (t+T)
[(

1−e𝛼jT
)

t+T
]

(
1−e𝛼jT

)2 + h(t)te𝛼jt, if 𝜁j = 1,

1
(𝛽j−𝛾j)

[
e𝛽j(t+T)

1−e𝛽jT − e𝛾j(t+T)

1−e𝛾jT + h(t)
(

e𝛽jt − e𝛾jt
)]

, if 𝜁j > 1,

j = 1, … ,m, (10)

where h(t) denotes the Heaviside step function.

Proof. The proof carries over directly from the proof of lemma 3 in Reference 7 if we simply replace n with m since the
system (5) consists of decoupled equations. ▪

The Green’s function (10) of the linear system (5) provides us with an integral equation, whose solution represents
the nonlinear periodic response of the reduced nonlinear system (4), as follows.

Theorem 1.

1. If 𝜂(t) is a T-periodic solution of the nonlinear system (4), then 𝜂(t) must satisfy the integral equation

𝜂(t) = 𝜂lin(t) − ∫
T

0
Lm(t − s,T)U⊤

mS (Um𝜂(s)) ds, (11)

with 𝜂lin and Lm defined in (9) and (10).
2. Furthermore, any continuous, T-periodic solution 𝜂(t) of (11) is a T-periodic solution of the nonlinear system (4).

Proof. This is a special case of theorem 3 in Reference 7, when applied to system (4). ▪

Once again, note that the integral equation (11) provides us the nonlinear periodic response of the full system (3)
when m=n. As discussed in Reference 7, the integral equation formulation has advantages in the computation of the
nonlinear steady-state response of mechanical systems. We aim to further reduce computational costs of this integral
equation approach by using a reformulation due to Kumar and Sloan,9 which we discuss in the next section.

3 REFORMULATION OF THE INTEGRAL EQUATION

Kumar and Sloan9 established a one-to-one correspondence between the solutions y(t) of scalar Hammerstein-type
integral equation of the form

y(t) = f (t) + ∫
b

a
K(t, s)g (s, y (s)) ds, t ∈

[
a, b

]
, (12)

with the solutions z(t) of the integral equation

z(t) = g

(
t, f (t) + ∫

b

a
K(t, s)z(s) ds

)
, t ∈

[
a, b

]
, (13)

where −∞< a< b<∞, f ∶
[
a, b

]
→ R, K ∶

[
a, b

]
×
[
a, b

]
→ R, and g ∶

[
a, b

]
× R → R are known scalar functions (see

lemma 1 in Reference 9). In Appendix A, we extend their results to vector-valued functions, that is, f ∶
[
a, b

]
→ Rn, K ∶[

a, b
]
×
[
a, b

]
→ Rn×n, and g ∶

[
a, b

]
× Rn → Rn. This allows us to reformulate the integral equation (11) in the following

equivalent form.
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Theorem 2. Any solution 𝜂(t) of the integral equation (11) is in one-to-one correspondence with a solution 𝜁(t) of the integral
equation

𝜁(t) = −U⊤
mS

(
Um

[
𝜂lin(t) + ∫

T

0
Lm(t − s,T)𝜁(s) ds

])
, (14)

such that

𝜂(t) = 𝜂lin(t) + ∫
T

0
Lm(t − s,T)𝜁(s) ds, (15)

and

𝜁(t) = −U⊤
mS (Um𝜂(t)) . (16)

Proof. The proof is an application of Lemma 2 in Appendix A (which extends lemma 1 in Reference 9 for vector-valued
functions) to integral equations (11) and (14). ▪

As discussed by Kumar and Sloan,9 one advantage of the reformulation in Theorem 2 is that the convolution integral
in Equation (14) becomes independent of the exact shape of 𝜁 when a collocation-type approximation is implemented.
Thus, when solving Equation (14) via iterative schemes, one only needs to compute the convolution integral once in
contrast to (11), for which the integral has to be evaluated at each iteration step. We discuss this and other advantages of
the proposed reformulation in the following sections.

4 NUMERICAL ANALYSIS

In order to find the steady-state response of the dynamical system (1), we solve the integral equation (11)7 or, equivalently,
the reformulated integral equation (14) via a numerical approximation. We first compare the numerical approximation
to the solution of Equations (11) and (14).

4.1 Numerical comparison

We use a collocation-type approximation to the solution 𝜂(t) of Equation (11) in the form

𝜂N(t) =
N∑

i=1
aivN

i (t), t ∈ [0,T], (17)

with N collocation points in the interval [0, T], known basis functions vN
i , and unknown coefficients ai ∈ Rm. Substituting

Equation (17) into Equation (11), and evaluating it at each of the collocation points t1, … , tN , we obtain a closed system
of nonlinear equations in terms of the coefficients ai as

N∑
i=0

aivN
i (tj) = 𝜂lin(tj) − ∫

T

0
Lm(tj − s,T)U⊤

mS

(
Um

N∑
i=1

aivN
i (s)

)
ds, j = 1, … ,N. (18)

Consider now the collocation approximation to 𝜁(t) in Equation (14) as

𝜁N(t) =
N∑

i=1
bivN

i (t), t ∈ [a, b]. (19)



4642 BUZA et al.

As in the previous case, we substitute Equation (19) into Equation (14) and evaluate it at every collocation point
t1, … , tN to determine the unknown coefficients bi ∈ Rm as

N∑
i=1

bivN
i (tj) = −U⊤

mS

(
Um𝜂lin(tj) + Um

N∑
i=1

[
∫

T

0
Lm(tj − s,T)vN

i (s) ds
]

bi

)
, j = 1, … ,N. (20)

In general, Equation (18) or Equation (20) require an iterative solution method (e.g., Picard iteration or
Newton–Raphson iteration) due to the presence of the nonlinearity S. As noted by Kumar and Sloan,9 a disadvantage
of applying the collocation approximation to the original integral equation (11) is that the N integrals in (18) have to be
evaluated at every step of the iteration. In contrast, we observe from the approximation (20) of the reformulated integral
equation (14) that the convolution integrals become independent of the current iteration step (i.e., of the coefficients bi)
and thus they only need to be computed once.

4.2 Numerical convergence

In the following, we show that 𝜁N(t) converges to the exact solution 𝜁(t) of Equation (14), and analyze the rate of this
convergence analogous to section 4 in Reference 9.

Let the basis functions vN
i be piecewise polynomial on [0, T]. These basis functions define a finite-dimensional

subspace of C ([0,T],Rm) as

V N ∶= span
{

vN
1 , … , vN

N
}
⊗ R

m ⊂ C
(
[0,T],Rm)

. (21)

Let PN ∶ C ([0,T],Rm) → V N be the interpolatory projection operator defined by

PN w ∶=
N∑

i=1
w(ti)vN

i , w ∈ C
(
[0,T],Rm)

, (22)

which assigns to any continuous function w its piecewise polynomial interpolant. Furthermore, we define a substitution
operator  ∶ C ([0,T],Rm) → C ([0,T],Rm) and an affine integral operator  ∶ C ([0,T],Rm) → C ([0,T],Rm) as

(𝜁)(t) ∶= −U⊤
mS (Um𝜁(t)) , (23)

 (𝜁) ∶= 𝜂lin(t) + A𝜁(t), (24)

where A ∶ C ([0,T],Rm) → C ([0,T],Rm) is a linear integral operator defined as

A𝜁(t) ∶= ∫
T

0
Lm(t − s,T)𝜁(s) ds. (25)

Using the definitions in Equations (22), (23), and (24), we can rewrite the collocation approximation equation (20) to
the reformulated integral equation (14) in a more compact manner as

𝜁N = PN ◦  ◦  (𝜁N), 𝜁N ∈ V N . (26)

With these preliminaries, the following theorem guarantees the convergence of our collocation solution 𝜁N to
Equation (26) and predicts the rate of convergence.

Theorem 3 (Kumar and Sloan,9 theorem 2). Let 𝜂∗ ∈ C ([0,T],Rm) be a geometrically isolated solution of Equation (11),
and let 𝜁∗ be the corresponding solution of Equation (14). Suppose the nonlinearity S is of class C1 and that the interpolatory
operator PN is defined as in (22). Then:

(i) There exists a natural number N0 such that for N ≥N0, Equation (26) has a solution 𝜁N ∈ V N satisfying

||𝜁∗ − 𝜁N || → 0 as N → ∞, (27)
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and 𝜂N =  (𝜁N) defines an approximation to 𝜂∗ satisfying

||𝜂∗ − 𝜂N || → 0 as N → ∞.

(ii) Suppose in addition that 1 is not an eigenvalue of the linear operator D ( ◦  ) (𝜁∗). Then there exists a neighborhood of
𝜁∗ and a natural number N1 such that for N ≥N1 a solution 𝜁N of (26) is unique in that neighborhood. Furthermore,
the approximation 𝜂N =  (𝜁N) satisfies

||𝜂∗ − 𝜂N || ≤ c inf
𝜙∈V N

||𝜁∗ − 𝜙||,
where c> 0 is independent of N.

Proof. The proof carries over from theorem 2 in Reference 9 with slight modifications. See Appendix B for details. ▪

Theorem 3 signifies that the collocation-based approximation (20) of the reformulated integral equation (14) con-
verges to the corresponding solution of the original integral equation (11). Furthermore, the rate of convergence of 𝜂N

to a geometrically isolated solution 𝜂⋆ of equation (11) is, at the very least, equal to the rate of convergence of the best
approximation from V N to 𝜁⋆, which is the corresponding solution of equation (14).

Computing the numerical solution to the nonlinear system (20) for the unknown coefficients bi ∈ Rm(i = 1, … ,N),
involves the use of iterative methods, which we discuss next.

4.3 Iterative methods

Starting with an initial guess 𝜁0, we are interested in obtaining an iterative approximation to a solution of the reformulated
integral equation (14) in the space of continuous, T-periodic functions. By Theorem 2, this solution will be in a one-to-one
correspondence with a solution of the original integral equation (11), which in turn corresponds to the nonlinear periodic
response of the dynamical system (4) by Theorem 1.

With the operator definitions (23) and (24), the original integral equation (11) can be concisely written as

𝜂 =  ◦ (𝜂), (28)

and its reformulated variant (14) can be written as

𝜁 =  ◦  (𝜁). (29)

We seek a solution to Equation (29) in a 𝛿-ball of continuous T-periodic functions centered around the initial guess
𝜁0 ∈ C ([0,T],Rm) defined as

C𝜁0,𝛿 ∶= {𝜁 ∈ C
(
[0,T],Rm)||| 𝜁(0) = 𝜁(T), ||𝜁 − 𝜁0||∞ ≤ 𝛿}. (30)

To this end, we approximate the function 𝜁 numerically within some finite-dimensional subspace of C𝜁0,𝛿 . Specifically,
using the definition (21) of V N , we define the collocation subspace

CN
𝜁0,𝛿

∶= {𝜁N ∈ V N || 𝜁N(0) = 𝜁N(T), ||𝜁N − 𝜁N
0 ||∞ ≤ 𝛿} ⊂ C𝜁0,𝛿 , (31)

where 𝜁N
0 ∈ V N with 𝜁N

0 (0) = 𝜁N
0 (T) is an initial periodic solution guess in the collocation subspace. Finally, we aim to

iteratively solve the system

𝜁N = PN ◦  ◦  (𝜁N), 𝜁N ∈ CN
𝜁0,𝛿

, (32)

where PN ∶ C𝜁0,𝛿 → CN
𝜁0,𝛿

is the interpolatory projection operator defined in (22).
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In the next section, we derive explicit conditions that ensure the convergence of the simple Picard iteration when
applied to solve Equation (32).

4.3.1 Picard iteration

Note that solving Equation (32) is equivalent to obtaining fixed point(s) of the operator PN ◦  ◦  . Jain, Breunung and
Haller7 have already derived explicit conditions under which the simple Picard iteration,

𝜂𝓁 =  ◦ (𝜂𝓁−1), 𝓁 ∈ N, (33)

converges to a unique fixed point of the operator  ◦  (see theorem 5, remark 9 in Reference 7). This provides an iterative
solution of the original integral equation (11). However, their conditions are derived for the infinite-dimensional operator
equation (28) and hence do not account for the collocation-approximation of the integral equation. Here, we derive similar
estimates for the reformulated integral equation (14), taking into account the collocation approximation arising from the
operator PN .

First, we derive an upper bound for the operator norm of A (see Equation 25) as

||A|| = sup
t∈[0,T] ∫

T

0
max
1≤j≤m

||Lj(t − s,T)|| ds ≤ Γ(T) ∶= max
1≤j≤m

Γj(T), (34)

where the explicit expressions for the upper bounds Γj(T) are derived in Appendix D (see Equation D3). A similar bound
was derived for the Green’s function of general first-order systems in Reference 7. The expressions in Appendix D are
specifically relevant for second-order Green’s functions Lj employed in this work. This bound useful in obtaining con-
ditions under which the simple Picard iteration (32) is guaranteed to converge. We further define the error of the first
iteration step under the map PN ◦  ◦  as

(𝜁N
0 ) ∶= PN ◦  ◦  (𝜁N

0 ) − 𝜁N
0 . (35)

The following theorem establishes conditions under which the Picard iteration converges when applied to
Equation (32).

Theorem 4. Assume that the conditions

(i)

𝛿 ≥ ||(𝜁N
0 )||∞

1 − ||PN ||||UT
m||LS||Um||Γ(T) , (36)

(ii)

LS <
1||PN ||||UT

m||||Um||Γ(T) (37)

hold. Then the map PN ◦  ◦  has a unique fixed-point in the space CN
𝜁0,𝛿

and this fixed point can be found via the
convergent iteration

𝜁N
𝓁 = PN ◦  ◦  (𝜁N

𝓁−1), 𝓁 ∈ N. (38)

Proof. Analogous to the proof of theorem 5 in Reference 7, the proof here involves a direct application of the Banach
fixed-point theorem, whereby assumptions (i) and (ii) establish PN ◦  ◦  ∶ CN

𝜁0,𝛿
→ CN

𝜁0,𝛿
as a contraction. See Appendix

C for a detailed proof. ▪

The properties discussed in section 3.1 of Reference 7 apply in the reformulated setting as well. Most notably, under
the conditions (36) and (37), the Picard iteration converges monotonically to the unique periodic response in CN

𝜁0,𝛿
. Hence,
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an upper estimate for the iteration error after a finite number of iterations is readily available as the sup norm of the
difference ||𝜁N

𝓁 − 𝜁N
𝓁−1||∞ of the last two iterations.

We remark that when m=n (i.e., no model reduction) and ||PN ||= 1 (e.g., choosing orthonormal basis functions vN
i for

collocation), the estimates (i) and (ii) for convergence of the Picard iteration (38) match those given in theorem 5 of
Reference 7 for Equation (28).

The use of the Picard iteration (38) specifically in the reformulated setting enables us to precompute the integral

∫
T

0
Lm(tj − s,T)vN

i (s) ds, (39)

which arises in Equation (20). As a result, the action of the operator A (see Equation 25) in the iteration (20) becomes
independent of 𝜁N

𝓁−1 at the current iteration step. This leads to computational savings as discussed in Section 4.1. We shall
demonstrate these improvements on several numerical examples in Section 5.

4.3.2 Newton–Raphson iteration

As noted in Reference 7, the convergence criteria for the Picard iteration will not be satisfied for near-resonant forcing
and low damping. However, one or more periodic orbits might still exist even if the Picard iteration does not converge
and the Newton–Raphson scheme provides a robust alternative in such cases. An advantage of this iteration method is
its quadratic convergence when the initial guess 𝜁N

0 is close enough to the actual solution.
We now derive the Newton–Raphson scheme explicitly for Equation (26). Let us define an operator  as

 (𝜁N) ∶= 𝜁N − N ◦  ◦  (
𝜁N) . (40)

Then, looking for a fixed point of N ◦  ◦  in Equation (26) is equivalent to solving

 (
𝜁N) = 0. (41)

Starting with an initial guess 𝜁N
0 , the classic Newton–Raphson iteration for Equation (41) is given as

𝜁N
𝓁+1 = 𝜁N

𝓁 − [D (𝜁N
𝓁 )]

−1 (𝜁N
𝓁 ), 𝓁 ∈ N, (42)

where the Jacobian D (𝜁N
𝓁 ) can be computed from Equation (40) as

D (𝜁N
𝓁 )𝜇 = 𝜇 − D(N ◦  ◦  )

(
𝜁N
𝓁

)
𝜇 (43)

= 𝜇 + PN (
U⊤

mDS
(

Um (
𝜁N
𝓁

))
UmA𝜇

)
. (44)

As for the Picard iteration (cf. Section 4.3.1), we can again precompute the action of the operator A in the form of
integrals such as (39). Hence, we expect computational savings from the reformulated integral equation (see Section 4.1)
under the Newton–Raphson iteration as well.

The reformulated approach involves sparse matrix operations in the computation of the Jacobian D , which leads to
further speed gains relative to the original integral equation. Specifically, the action of A can be written as a matrix, say AN ,
constructed from blocks of diagonal matrices of the form (39). Now, in Equation (40), the computation of the Jacobian D
involves the multiplication of the sparse matrix AN with another sparse matrix, which is the block-diagonalized version
of the operator UT

m ◦ DS(Um ◦  (𝜁N
𝓁 )) ◦ Um. On the other hand, in the original setting,7 one must generally multiply a full

matrix with a blockdiagonal matrix in order to obtain the corresponding Jacobian. This advantage is due to the specific
reordering of operations introduced by the reformulation (cf. Equations 28 and 29).

A drawback of the Newton–Raphson iteration scheme relative to the Picard iteration is that the Jacobian D (𝜁N
𝓁 )

needs to be computed and inverted at each iteration step, which makes each iteration step much slower. At the same
time, by its quadratic convergence, the Newton–Raphson method requires much fewer iterations than the Picard iter-
ation to converge. We will illustrate the benefits of these iterative methods on several numerical examples in the next
section.
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5 NUMERICAL EXAMPLES

In this section, we demonstrate the performance gains obtained from the proposed reformulation of the original inte-
gral equations approach.7 We also compare the speed gains arising from model reduction relative to the full system for
these examples. For the latter, we employ the automated mode selection criterion developed in Reference 11 to obtain a
projection-based ROM, as discussed in Section 2.1.

In Reference 7, the original integral equation approach was validated using various examples against thepo-toolbox of
coco,4 which computes a collocation-based approximation to the periodic response and controls the associated trunca-
tion error by adaptively refining the collocation mesh. The objectives of the following numerical examples are to compare
the numerical performance of the reformulated integral equation approach to the original integral equation and to demon-
strate the effectiveness of the projection-based ROM relative to the full system. Hence, the original integral equation
approach for the full system is used as a reference here. For these demonstrations, we use N = 50 collocation points and
choose the interpolatory operator PN to be piecewise linear in the following examples.

For comparison purposes, we compute the forced response curves, that is, the amplitude of the steady-state response
as a function of the excitation frequency Ω = 2𝜋∕T in a given range. We compute these curves via sequential continuation,
where we sweep through the range of excitation frequencies in discrete steps, using the converged solution of the previous
(adjacent) step as the initial guess for the iteration at the current frequency step. Such an approach is generally bound
to fail near a fold bifurcation with respect to the base frequency Ω, where one can resort to more advanced continuation
schemes such as the pseudo-arc-length continuation (see, e.g., Reference 4).

The numerical implementation of the pseudo arclength technique for the original integral equation approach was
discussed in appendix J of Reference 7. Its implementation in the reformulated setting can be done following the same
procedure. The computation of the Jacobian of the zero function during numerical continuation requires the derivative
of the Green’s function Lj with respect to the time period T, whose expressions are explicitly available (see appendix E in
Reference 7). Furthermore, similar to the developments in Reference 7, the reformulated integral equation approach can
be directly implemented using coco,4 which provides superior continuation algorithms and enables adaptive refinement
of the collocation mesh based on user-defined truncation error tolerances. In this work, however, we stick to the simple
sequential continuation with a fixed collocation mesh, which is sufficient for our exposition.

For computing forced response curves, we optimize the benefits of the two iterative methods discussed above by using
the Picard iteration away from resonances where it converges to the nonlinear periodic response very fast, and switching to
the more robust Newton–Raphson method when Picard iteration fails to converge. We have included the implementation
of our results along with the examples discussed below in an open-source MATLAB package.10

5.1 Nonlinear oscillator chain

We first consider an n-mass oscillator chain, which was used to demonstrate the computational performance of the origi-
nal integral equations approach in Reference 7. The oscillator chain consists of n oscillators of mass m each, coupled with
linear springs (with spring constant k), dampers (with damping coefficient c) and cubic springs (with coefficient 𝜅), as
shown in Figure 1. The nonlinear function S (see Equation 1) in this example is explicitly given as

S(x) = 𝜅

⎛⎜⎜⎜⎜⎜⎝

x3
1 − (x2 − x1)3

(x2 − x1)3 − (x3 − x2)3

⋮

(xn − xn−1)3 − x3
n

⎞⎟⎟⎟⎟⎟⎠
. (45)

We consider a forcing of the form

fi(t) = F sin(Ωt), i = 1, … ,n, (46)

where F denotes the forcing amplitude, such that each oscillator is excited with the same forcing at frequency Ω. For
n= 20, we first compare the results between the original and reformulated approach without any model reduction, that
is, m=n in Equations 11 and (14). Based on Theorem 2, we expect the same results from both approaches. Indeed, the
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F I G U R E 1 An n-mass oscillator chain with coupled nonlinearities. In our analysis, we select the nondimensional parameters m= 1,
k= 1, c= 1 and 𝜅 = 0.5. Image taken from Reference 7

F I G U R E 2 (Left) The forced response curves obtained using the original and the reformulated approaches for various forcing
amplitudes F for the oscillator chain example (see Figure 1 with n= 20 degrees of freedom). As expected, the curves overlap when the two
approaches are applied to the full system (i.e., m=n). Furthermore, the reduced periodic response obtained using the reformulated
approach (14) with the first three modes, accurately approximates the full periodic response. (Right) The near-resonance region of the
F = 0.04 curve obtained using the reformulated approach. The gray markers provide bounds for the a priori guaranteed region of convergence
for the Picard iterations given by the conditions (36) and (37). In the red portion of the curve, the Picard iteration fails to converge in practice,
where we switch to the Newton–Raphson scheme instead

corresponding forced response curves coincide at various forcing amplitudes, as shown in Figure 2. Furthermore, we
construct a ROM using the modal truncation (4), where Um comprises of the first 3 vibration modes (m= 3), and compute
the steady-state response for this ROM using the reformulated integral equation (14). Figure 2 further shows that this
reduced periodic response accurately approximates the full system behavior.

Table 1 records the computational time spent on obtaining the forced response curves of Figure 2 for different forcing
amplitudes. We perform a sequential continuation to obtain these curves on a uniform grid of forcing frequency values for
each entry in Table 1. As mentioned earlier in this section, we use an optimal combination of Picard and Newton–Raphson
iterations to obtain these curves. Along with the total computation time, Table 1 also records the part of time spent on the
Picard and Newton–Raphson iterations separately in obtaining each of these curves. As expected, the 3-DOF ROM is an
order of magnitude faster relative to the full system of 20 DOFs. Furthermore, we observe that the reformulated approach
(see columns 3 and 5 in Table 1) is consistently faster than the original integral equation (see columns 2 and 4 in Table 1),
as expected.

5.2 Curved von Kármán beam

As a second example, we use a geometrically nonlinear von Kármán beam14 with a curved geometry moving in a
two-dimensional plane. The curvature of the beam introduces a linear coupling between the axial and transverse degrees
of freedom of the beam. As a consequence, various heuristic mode selection criteria become inapplicable, as discussed in
Reference 11.
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T A B L E 1 Computational time in seconds spent on obtaining the forced response curves of Figure 2 using the original (11) and the
reformulated (14) integral equation approaches

Computation time (seconds; time spent on Picard, time spent on Newton–Raphson)

Original full Reformulated full Original reduced Reformulated reduced
Forcing amplitude F (m=n= 20) (m=n= 20) (m= 3) (m= 3)

0.01 1.33 (1.33, 0) 0.83 (0.83, 0) 0.87 (0.87, 0) 0.71 (0.71, 0)

0.02 1.73 (1.73, 0) 1.05 (1.05, 0) 1.14 (1.14, 0) 0.90 (0.90, 0)

0.04 7.77 (2.09, 5.68) 5.88 (1.26, 4.62) 2.19 (1.42, 0.77) 1.83 (1.16, 0.67)

0.08 17.86 (2.25, 15.61) 11.91 (1.35, 10.56) 3.37 (1.51, 1.86) 2.76 (1.19, 1.57)

Note: The reformulated approach (columns 3 and 5) is consistently faster than the original approach (columns 2 and 4). The numbers in parentheses
provides the breakdown of the total computation time into contributions from the Picard and the Newton–Raphson iterations.

F I G U R E 3 The forced response curves obtained using the
original and the reformulated approaches for various forcing
amplitudes F for the finite element model of a curved von Kármán
with 10 elements. As expected, the curves overlap when the two
approaches are applied to the full system (i.e., m=n). Furthermore,
the reduced periodic response obtained using the reformulated
approach (14) with the modes {1, 2, 3, 4, 5, 6, 7, 12, 17}11 (m= 9)
accurately approximates the full periodic response

We follow a finite element discretization using cubic shape functions for the transverse displacements and linear
shape functions for the axial displacements (cf. Reference 14). We assume a linear viscous damping model, which results
in equations of motion of the general form (1) with purely position-dependent nonlinearities and proportional damping
with

C = 𝜅

E
K, (47)

where E is the Young’s modulus and 𝜅 is the material damping coefficient.
As in section 6.2 of Reference 11, we consider an aluminum beam, discretized using 10 elements of equal size.

The material parameters are E = 70 GPa, 𝜅 = 0.1 s⋅GPa, 𝜌 = 2700 kg/m3 (density) and the geometric parameters l= 1 m
(length), h= 0.007 m (height), and b= 0.1 m (width). The curved beam is in the form of a circular arch such that its
midpoint is raised by 5 mm relative to its ends. We choose doubly clamped boundary conditions at both ends of the
beam, that is, all degrees of freedom are constrained at both ends. We apply a uniform periodic forcing in the trans-
verse direction, such that fi = F sin(Ωt), where the index i represents each of the transverse displacement degrees of
freedom.

Similarly to the previous example (cf. Section 5.1), we compare the forced response curves between the reformulated
and original integral equations for different forcing amplitudes, as shown in Figure 3. The ROM is constructed using
the automated mode selection criterion in Reference 11, which returns the mode set {1, 2, 3, 4, 5, 6, 7, 12, 17} (m= 9) for
modal truncation. We observe that the reduced periodic response obtained using the reformulated approach (14) via this
optimal set of modes accurately approximates the full periodic response. Table 2 further compares the computation times
for these forced response curves showing again consistently faster performance for the reformulated approach in both
the full and the reduced setting.
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T A B L E 2 Computational time in seconds spent on the forced response curves of Figure 3 using the original (11) and the
reformulated (14) integral equation approaches

Computation time (seconds; time spent on Picard, NR)

Original full Reformulated full Original reduced Reformulated reduced
Forcing amplitude F (m=n= 27) (m=n= 27) (m= 9) (m= 9)

10 5.12 (5.12, 0) 4.48 (4.48, 0) 1.72 (1.72, 0) 1.50 (1.50, 0)

20 6.08 (6.08, 0) 5.23 (5.23, 0) 1.86 (1.86, 0) 1.73 (1.73, 0)

40 23.76 (7.44, 16.32) 20.84 (7.07, 13.77) 3.67 (2.32, 1.35) 3.21 (2.23, 0.98)

80 77.88 (2.33, 75.55) 66.56 (1.63, 64.93) 6.87 (0.75, 6.12) 5.29 (0.66, 4.63)

Note: The reformulated approach (columns 3 and 5) is consistently faster than the original approach (columns 2 and 4). The numbers in parentheses
provides the breakdown of the total computation time into contributions from the Picard and the Newton–Raphson iterations.

F I G U R E 4 Finite element mesh of a curved plate with
length = 40 mm, width = 20 mm, and thickness = 0.8 mm. The
curvature is cylindrical in nature along the y-axis such that its
midpoint is raised by 2 mm relative to the short edges. We choose an
aluminum material with parameters E = 70 GPa, 𝜌 = 2700 kg/m3 and
simply supported boundary conditions on the shorter, opposite edges

5.3 Curved plate model

As a final example, we consider a shell-based finite element model of a curved, rectangular plate shown in Figure 4, which
moves in a three-dimensional space. As boundary conditions, we choose the two shorter, opposite edges of the plate to be
simply supported, that is, constrain the translational displacements along these edges in all directions. The mesh is gen-
erated using triangular shell elements with six degrees of freedom per node based on the von Kármán nonlinearities (see
References 15,16). The mesh constitutes 91 nodes, which results in 504 degrees of freedom after applying the boundary
conditions.

We consider an aluminum as material with parameters E = 70 GPa (Young’s modulus), 𝜌 = 2700 kg/m3 (density), and
the geometric parameters l= 40 mm (length), b= 10 mm (width), h= 0.8 mm (thickness). The curved plate is in the form
of a cylindrical arch such that its midpoint is raised by 2 mm relative to its shorter edges. We use Rayleigh damping with
a modal damping factor of 4% for the first two modes. Once again, this results in governing equations (1) with purely
geometric nonlinearities and proportional damping. We apply a uniform in space, periodic in time pressure on the top of
the plate in the transverse direction, given in the form

p(t) = p0 sin(Ωt). (48)

For computing the forced response curves, we consider pressure amplitudes ranging from p0 = 0.01 up to
p0 = 0.04 MPa. We again use the automated nonlinear mode selection procedure in Reference 11 for obtaining an optimal
mode set for modal truncation, given by {1, 2, 3, 4, 5, 6, 7, 8, 16, 31}. The forced response curves showing softening-type
nonlinear behavior for different forcing amplitudes are depicted in Figure 5 and the corresponding computational times
for different approaches are recorded in Table 3. The results show trends analogous to the previous examples. The
reformulation produces a faster computation of the same steady state response obtained using the original integral
equation approach, and the automated mode-selection criterion11 produces a reliable ROM for approximating the
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F I G U R E 5 The forced response curves obtained using the
original and the reformulated approaches for various forcing
amplitudes p0 for the finite element model of a curved von Kármán
plate with n= 504 degrees of freedom. As expected, the curves
overlap when the two approaches are applied to the full system (i.e.,
m=n). Furthermore, the reduced periodic response obtained using
the reformulated approach (14) with the modes
{1, 2, 3, 4, 5, 6, 7, 8, 16, 31}11 (m= 10), accurately approximates the full
periodic response

T A B L E 3 Computational time in seconds spent in obtaining the forced response curves of Figure 5 using the
original (11) and the reformulated (14) integral equation approaches

Computation time (seconds; time spent on Picard, NR)

Original full
Reformulated
full

Original
reduced

Reformulated
reducedLoading

amplitude (p0) (m=n= 504) (m=n= 504) (m= 10) (m= 10)

0.01 1029 (1029, 0) 1028 (1028, 0) 917 (917, 0) 917 (917, 0)

0.02 4877 (949, 3928) 2763 (906, 1857) 1176 (910, 266) 1126 (900, 226)

0.04 11,615 (775, 10,840) 6411 (770, 5641) 1808 (953, 855) 1801 (952, 849)

Note: The reformulated approach (columns 3 and 5) is consistently faster than the original approach (columns 2 and 4). The
numbers in parentheses provides the breakdown of the total computation time into contributions from the Picard and the
Newton–Raphson iterations.

steady-state response using Equation (14). From the first two columns of Table 3 we observe that the improvements on
Newton–Raphson iteration steps are more significant for higher dimensional problems. Again, we discuss the reasons for
this in the following section.

The computation times spent on Picard steps are somewhat misleading in Table 3, since the most of these times is
spent on evaluating the nonlinearities for these higher degree-of-freedom finite element systems. In fact, of the 1029 s
spent on computing the “original full” response for the loading amplitude p0 = 0.01 MPa, 1008 s were contributed to
nonlinear function evaluation. The relatively small differences in the Newton–Raphson steps of the reduced system can
be attributed to the same fact because multiplying and inverting low dimensional matrices take significantly less time
than the function evaluations.

5.4 Discussion

Tables 1 and 2 show that the Picard iteration method is consistently faster in the reformulated setting. As the Picard
method takes the same number of iterations to converge in the reformulated and the original approaches (see Table 4 for
instance), the increase in speed arises from each iteration being faster. As discussed in Section 4.3.1, this is due to the fact
that we can precompute convolution integrals of the type (39).

We also observe that the Picard iteration converged for the same set of frequency values between the original and
reformulated approaches in these examples. This is expected since the conditions for the convergence of Picard iteration
in our reformulated setting (given by Theorem 4) match the conditions for the original approach (given by theorem 5 in
Reference 7) as discussed in Section 4.3.1.
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T A B L E 4 Total number of iterations involved in obtaining the forced response curves of Figure 2 using the original (11) and the
reformulated (14) integral equation approaches

Total number of iterations (Picard, Newton–Raphson)

Original full Reformulated full Original reduced Reformulated reduced
Forcing amplitude F (m=n= 20) (m=n= 20) (m= 3) (m= 3)

0.01 733 (733, 0) 733 (733, 0) 734 (734, 0) 734 (734, 0)

0.02 967 (967, 0) 967 (967, 0) 967 (967, 0) 967 (967, 0)

0.04 1240 (1152, 88) 1241 (1152, 89) 1240 (1152, 88) 1241 (1152, 89)

0.08 1553 (1286, 267) 1496 (1286, 210) 1522 (1296, 226) 1522 (1296, 226)

Note: The numbers in parentheses provides the breakdown of the total number of iterations into contributions from the Picard and the Newton–Raphson
method. The number of Picard iterations is the same for the reformulated approach (columns 3 and 5) as for the original approach (columns 2 and 4).

T A B L E 5 Total number of iterations involved in obtaining the forced response curves of Figure 5 using the original (11) and the
reformulated (14) integral equation approaches

Total number of iterations (Picard, Newton–Raphson)

Original full Reformulated full Original reduced Reformulated reduced
Loading amplitude (p0) (m=n= 504) (m=n= 504) (m= 10) (m= 10)

0.01 534 (534, 0) 534 (534, 0) 538 (538, 0) 538 (538, 0)

0.02 677 (642, 35) 672 (642, 30) 666 (627, 39) 660 (627, 33)

0.04 655 (558, 97) 653 (558, 95) 667 (571, 96) 667 (571, 96)

Note: The numbers in parentheses provides the breakdown of the total number of iterations into contributions from the Picard and the Newton–Raphson
method. The number of Picard iterations is the same for the reformulated approach (columns 3 and 5) as for the original approach (columns 2 and 4).

For the curved plate example, we observe that the computational gains from using the Picard iteration in the reformu-
lated setting are marginal (see Table 3). This is because the primary computational bottleneck is the evaluation of the non-
linear function S, which is costly due to the finite element nature of the problem. This bottleneck may be alleviated by the
use of hyperreduction methods (see, e.g., References 15,17, which aim at fast approximation of the nonlinearity by sam-
pling the mesh. Such methods can also be equipped with our proposed reformulation of the integral equations approach.

The number of calls to the nonlinear function S or the Jacobian DS is governed by the number of iterations of the
nonlinear solver employed (Picard/Newton–Raphson) and is, in principle, unaffected by the proposed reformulation.
Hence, for the same number of iterations between the original and reformulated approaches, we have the same number
of nonlinearity/Jacobian evaluations, as seen for the forcing amplitudes of 0.01 and 0.02 in Table 4, for instance. For the
forcing amplitude of 0.08 in Table 4, however, we observe a significantly smaller number of Newton–Raphson iterations
in the reformulated setting for the full system in comparison to the original approach (267 vs. 210). This results in a lower
number of nonlinearity/Jacobian evaluations translating into the speed gains reported in Table 1. In practice, we observed
similar or lower number of iterations in the reformulated setting relative to the original integral equation in the examples
we tried (see also Table 5).

For the curved plate example, we observe a similar number of iterations between the reformulated and the original
setting, as shown in Table 5. Still, the Newton–Raphson iteration is significantly faster in the reformulated setting (see
Table 3). Aside from the precomputation of the integral in the reformulated setting, this speed gain results from the spar-
sity operators arising in the computation of the Jacobian D (see Equation 44) in the reformulated setting, as discussed
in Section 4.3.2.

6 CONCLUSIONS

Jain, Breunung, and Haller7 proposed an integral equation for the fast computation of the steady-state response of non-
linear mechanical systems under (quasi)periodic forcing. In this work, we have proposed a reformulation to this integral
equation based on the results of Kumar and Sloan,9 which leads to better computational performance. We have established
the one-to-one correspondence between solutions of the original and reformulated integral equations (Theorem 2) for
which, we have extended the scalar results of Kumar and Sloan9 for vector-valued functions (Appendix A).
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We have performed numerical analysis of the reformulated approach and have discussed the Picard and
Newton–Raphson iterative methods to solve these integral equations in Section 4. We conclude that the proposed refor-
mulation leads to categorically better computational performance relative to the original integral equation approach
in Reference 7 when using the Picard or the Newton–Raphson iterations. We have used an optimal combination of
the Picard and the Newton–Raphson iterations to compute the forced response curves in periodically forced mechan-
ical systems. We have derived explicit conditions that guarantee convergence of the fast Picard iteration (Theorem 4).
In contrast, we have used the more robust but expensive Newton–Raphson method when the Picard iteration failed to
converge.

Finally, we have integrated this approach with modal truncation-based reduced-order modeling using the automated
mode selection procedure developed in Reference 11. We have demonstrated the gains in computational performance
from the proposed reformulation on several numerical examples of varying complexity in Section 5 both with and without
modal truncation. We observe that modal truncation using the optimal mode selection criterion results in a significant
increase in the computational performance with negligible losses in accuracy, as apparent from all examples (cf. Tables 1,
2, and 3 with Figures 2, 3, and 5). An open-source implementation10 of the results is now available which serves as an
update to the original MATLAB code of Jain, Breunung, and Haller.7

In this work, we have restricted ourselves to second-order, proportionally damped and periodically forced systems
with purely geometric nonlinearities, which are relevant for structural dynamics applications. This was a special case for
the original integral equations approach (see section 2.3 in Reference 7), which also treats general first-order systems sub-
ject to quasiperiodic forcing. Indeed, it is straightforward to obtain a similar reformulated integral equation in the general
first-order setting with numerical advantages for a collocation approximation of the periodic response. In the quasiperi-
odic case, however, where a spectral basis is required for the numerical approximation, the computational advantages of
the reformulation are not immediately clear and will be examined in future work.
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APPENDIX A. EXTENSION OF KUMAR AND SLOAN’S RESULTS9 TO VECTOR-VALUED
FUNCTIONS

A.1 Function spaces and preliminary definitions
For any two normed vector spaces V and W , we denote by(V ,W) the space of continuous (i.e., bounded) linear operators
from V to W equipped with the operator norm

||A||(V ,W) = sup
v∈V ,||v||≤1

||Av||.
Next, we recall the notion of compact and completely continuous operators (see Reference 18, for instance), which are
frequently used in the subsequent proofs.

Definition 1. A bounded operator A ∈ (V ,W) is said to be compact if A(B1(0)) has compact closure in W , where B1(0)
denotes the unit ball in V .

Definition 2. Let V and W be Banach spaces. An operator A : V →W is said to be completely continuous if it is
continuous and maps any bounded subset of V into a relatively compact subset of W .

In this work, we are concerned with the space of continuous functions defined on a closed interval
[
a, b

]
that take

values in Rn, that is,

C
([

a, b
]
,Rn) ∶= {f ∶

[
a, b

]
→ R

n||| f is continuous},

We equip this vector space with the supremum norm

||f ||∞ = sup
a≤t≤b

||f (t)||2, f ∈ C
([

a, b
]
,Rn), (A1)

which makes
(

C
([

a, b
]
,Rn), || ⋅ ||∞)

a Banach space.
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A.2 Integral equations
We consider general, vector-valued integral equations of the form

y(t) = f (t) + ∫
b

a
K(t, s)g (s, y (s)) ds, t ∈

[
a, b

]
, (A2)

where −∞< a< b<∞, f ∶
[
a, b

]
→ Rn, K ∶

[
a, b

]
×
[
a, b

]
→ Rn×n, and g ∶

[
a, b

]
× Rn → Rn are known functions and y

is the solution to be determined. The function g is assumed to be nonlinear in its second argument.
Following Kumar and Sloan,9 we define a new function z ∶

[
a, b

]
→ Rn by z(t) ∶= g (t, y (t)) . In the following, we show

that Equation (A2) is equivalent to a reformulated equation of the form

z(t) = g

(
t, f (t) + ∫

b

a
K(t, s)z(s) ds

)
, t ∈

[
a, b

]
, (A3)

that is, the solutions of Equation (A3) are in bijective correspondence with solutions of (A2).
We further define the assumptions on the functions f , g, and K analogous to Kumar and Sloan9

(A1) supa≤t≤b ∫ b
a ||K(t, s)||2 ds < ∞,

(A2) limt→t′ ∫ b
a ‖K(t, s) − K(t′, s)‖2 ds = 0, t′ ∈

[
a, b

]
,

(A3) f ∈ C
([

a, b
]
,Rn),

(A4) the function g is defined and continuous on [a, b] × Rn,
(A5) the function 𝜕g/𝜕v is defined and continuous on [a, b] × Rn.

Next, we define some operators related to the integral equations (A2) and (A3). Let A ∶ C
([

a, b
]
,Rn) → C

([
a, b

]
,Rn)

denote the linear integral operator defined as

(Aw)(t) ∶= ∫
b

a
K(t, s)w(s) ds, t ∈

[
a, b

]
. (A4)

Let  be the nonlinear operator defined by

 (w) ∶= f + (Aw), w ∈ C
([

a, b
]
,Rn) . (A5)

Finally, we define a substitution operator for the function g by

(y)(t) ∶= g(t, y(t)), t ∈ [a, b], y ∈ C
([

a, b
]
,Rn) . (A6)

Equations (A2) and (A3) can now be written in operator form as

y =  ◦ (y), y ∈ C
([

a, b
]
,Rn) , (A7)

and

z =  ◦  (z), z ∈ C
([

a, b
]
,Rn) . (A8)

A.3 One-to-one correspondence between solutions of Equations (A2) and (A3)
With the operator Equations (A7) and (A8) at hand, we can recall a result that has been pointed out by Reference 19 (see
page 143) in the form of the following lemma.

Lemma 2 (Kumar and Sloan,9 Lemma 1). The operator  is a bijection from the solution set Θ ◦  ∶={
y ∈ C

([
a, b

]
,Rn) | ◦ (y) = y

}
onto Θ ◦  ∶=

{
z ∈ C

([
a, b

]
,Rn) | ◦  (z) = z

}
, with inverse  .

This guarantees the one-to-one correspondence between solutions of (A2) and (A3).
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A.4 Compactness of A
Establishing the compactness of A is a vital step in confirming the convergence result stated in Theorem 3. Proving
compactness in the vector-valued case requires a more generalized formulation of the Arzelà-Ascoli theorem (see Ref-
erence 20) than the one used by Kumar and Sloan.9 We first recall the notion of equicontinuity used in Arzelà-Ascoli
theorem.

Definition 3. Let (X , dX ) and (Y , dY ) be two metric spaces. A family of functions ℱ ⊂ C(X ,Y ) is called equicontinuous
if ∀𝜀 > 0 ∃𝛿 > 0 such that ∀x, x′ ∈X and ∀f ∈ ℱ ∶ dX (x, x′) < 𝛿 ⇒ dY (f (x), f (x′)) < 𝜀.

Theorem 5 (Arzelà-Ascoli). Let (X , dX ) be a compact metric space and (Y , dY ) be a complete metric space. Consider a
subset ℱ ⊂ C(X ,Y ).

The following are equivalent:

(i) ℱ has a compact closure.
(ii) ℱ is equicontinuous and ℱ (x) ∶= {f (x)|f ∈ ℱ} ⊂ Y has a compact closure for every x ∈X .

With these preliminaries, we prove the compactness of A in the following statement.

Lemma 3. Let A ∶ C
([

a, b
]
,Rn) → C

([
a, b

]
,Rn) be the linear integral operator defined in (A4). Then under the assump-

tions (A1) and (A2), A is a compact operator.

Proof. Let B1(0) denote the unit ball in C
([

a, b
]
,Rn) defined as

B1(0) ∶= {w ∈ C
([

a, b
]
,Rn)||| ||w||∞ < 1}.

First we show that A (B1(0)) is equicontinuous. Fix 𝜀> 0. Then for any w∈B1(0)

||(Aw)(t) − (Aw)(t′)||2 =
‖‖‖‖‖∫

b

a

(
K(t, s) − K(t′, s)

)
w(s) ds

‖‖‖‖‖2
≤ ∫

b

a

‖‖K(t, s) − K(t′, s)‖‖2 ds.

By assumption (A2), for all t′ ∈ [a, b] we can choose 𝛿 > 0 such that for |t − t′| < 𝛿, ∫ b
a ‖K(t, s) − K(t′, s)‖2 ds < 𝜀. This

shows pointwise equicontinuity at all t′ ∈ [a, b], which implies uniform equicontinuity in the sense of Definition 3 by
compactness of [a, b].

Next we show that A (B1(0)) (t) has compact closure for every t ∈
[
a, b

]
. Pick w∈B1(0) and t ∈ [a, b]. Then

||(Aw)(t)||2 ≤ ∫
b

a
||K(t, s)||2 ds ≤ sup

a≤u≤b ∫
b

a
||K(u, s)||2 ds < ∞,

by assumption (A1). Since w and t were arbitrary, A (B1(0)) (t) is bounded for all t ∈ [a, b]. Clearly A (B1(0)) (t) is bounded
whenever A (B1(0)) (t) is bounded. By the Heine–Borel theorem a subset of Rn is compact if and only if it is closed and
bounded. We can now apply Theorem 5 withℱ = A (B1(0)), X = [a, b], and Y = Rn to conclude that A(B1(0)) has compact
closure. ▪

Being compact and linear, A is necessarily completely continuous (see Reference 18, p. 244). Furthermore,
 is also a completely continuous operator like A, as it differs from A only due to the inhomogeneous
term.

The substitution operator (A6) is continuous and bounded if g is continuous in both variables (see section 17.7 in
Reference 19) (assumption A4). Since  is completely continuous and  is continuous and bounded, it is clear from
Definition 2 that  ◦  is completely continuous. The complete continuity of  ◦  is immediate from the continuity of
, since continuous operators map compact sets into compact sets.

Once the complete continuity of operators  ◦  and  ◦  is established, we are essentially in the setting of Kumar
and Sloan,9 and all the remaining results follow with some slight notational alterations. We repeat these results here for
the sake of completeness.
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A.5 Numerical analysis of the collocation approximation
For an analysis of the numerical method we consider geometrically isolated solutions of (A7).21 A solution y∗ of (A7) is
geometrically isolated if it is the only solution of (A7) in some ball centered at y∗.

Lemma 4 (Kumar and Sloan,9 lemma 2). Suppose assumptions (A1) to (A4) hold. If y∗ is a geometrically isolated solution
of (A7), then z∗ ∶= (y∗) is a geometrically isolated solution of (A8). Conversely, if z∗ is a geometrically isolated solution of
(A8), then y∗ ∶=  (z∗) is a geometrically isolated solution of (A7).

Proof. The proof follows from the continuity of  and  . ▪

Subsequent results of Kumar and Sloan9 make use of a topological approach to nonlinear equations. For this, the
notion of the index of a singular point is used, which is analogous to the notion of multiplicity for zeroes of polynomials
in algebra. The index is defined via the common value of the rotation of a vector field around an isolated singular point.
For a proper definition of the rotation and a better understanding of these concepts, we refer to pages 5–9 in Reference
19. By these definitions, the index of a geometrically isolated solution y∗ is the common value of rotation of id −  ◦ 
over all sufficiently small spheres centered at y∗, where id ∶ C

([
a, b

]
,Rn) → C

([
a, b

]
,Rn) denotes the identity map.

Lemma 5 (Kumar and Sloan,9 lemma 3). Suppose assumptions (A1) to (A4) hold. Let y∗ be a geometrically isolated solution
of (A7) and let z∗ be the corresponding geometrically isolated solution of (A8). Then y∗ and z∗ have the same index.

Proof. This is a special case of theorem 26.3 of Reference 19 (this theorem uses that  ◦  and  ◦  are completely
continuous). ▪

The following lemma establishes conditions under which the operator  ◦  is Fréchet differentiable.

Lemma 6 (Kumar and Sloan,9 lemma 4). Suppose assumptions (A1) to (A5) hold. Then  is continuously Fréchet dif-
ferentiable on C

([
a, b

]
,Rn); its Fréchet derivative at x ∈ C

([
a, b

]
,Rn) is the multiplicative linear operator D(x) given

by

D(x)w(t) =
𝜕g
𝜕v

||||(t,x(t))w(t), t ∈ [a, b], w ∈ C
([

a, b
]
,Rn) . (A9)

Furthermore  ◦  is continuously Fréchet differentiable on C
([

a, b
]
,Rn); its Fréchet derivative at x ∈ C

([
a, b

]
,Rn) is the

completely continuous linear operator D ( ◦  ) (x) given by

D ( ◦  ) (x)w(t) =
𝜕g
𝜕v

||||(t, (x)(t))
Aw(t), t ∈ [a, b], w ∈ C

([
a, b

]
,Rn) . (A10)

Proof. The first result (A9) is obvious, the second result (A10) uses the chain rule:

D ( ◦  ) (x)w(t) = D( (x)) ◦ D (x)w(t)
(†)
=

𝜕g
𝜕v

||||(t, (x)(t))
Aw(t),

where the equality (†) follows from D (x) = A. The fact that D ( ◦  ) (x) is completely continuous is a direct consequence
of theorem 17.1 in Reference 19, which uses the fact that  ◦  itself is completely continuous. ▪

Lemma 7 (Kumar and Sloan,9 proposition 1). Assume the conditions (A1) to (A5) hold, and let z∗ be a solution of (A8). If
1 is not an eigenvalue of the linear operator D ( ◦  ) (z∗), then z∗ is geometrically isolated and has index ±1.

Proof. This is theorem 21.6 in Reference 19. ▪

From the definition (22), we see that PN is a bounded linear operator with norm

||PN || = sup
0≤t≤T

N∑
i=1

||vN
i (t)|| ,
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and that PN ◦PN =PN . Assume that the subspace V N and the collocation points {ti}N
i=1 are such that

lim
N→∞

||w − PN w|| = 0, for all w ∈ C
(
[0,T],Rn) . (A11)

Then, by the uniform boundedness principle (Banach–Steinhaus), there exists c> 0 such that ||PN ||≤ c for all N, that
is, PN is uniformly bounded as an operator from C ([a, b],Rn) to V N .

The next result is a direct application of theorem 19.7 of Reference 22 along with the results of Lemma 3–7.

Theorem 6 (Kumar and Sloan,9 theorem 1). Let y∗ ∈ C ([a, b],Rn) be a geometrically isolated solution of (A7), and let z∗
be the corresponding solution of (A8). Suppose conditions (A1) to (A4) hold, and that the interpolatory operator PN satisfies
(A11).

(i) If y∗ has a nonzero index, then there exists an N0 such that for N ≥N0, PN ◦  ◦  has a fixed point zN ∈V N satisfying

||z∗ − zN || → 0 as N → ∞.

(ii) Suppose in addition that (A5) holds, and that 1 is not an eigenvalue of the linear operator D ( ◦  ) (z∗). Then there exists
a neighborhood of z∗ and an N1 such that for N ≥N1 a fixed point zN of PN ◦  ◦  is unique in that neighborhood,
and

c2||z∗ − PN z∗|| ≤ ||z∗ − zN || ≤ c3||z∗ − PN z∗||,
where c2, c3 > 0 are independent of N.

An immediate corollary of Theorem 6 establishes the optimal convergence of zN , in the sense that it converges to z∗
with the same asymptotic order as the best approximation of z∗ in V N .

Corollary 1 (Kumar and Sloan,9 corollary 1). Suppose conditions (A1) to (A5) hold, and that 1 is not an eigenvalue of the
linear operator D ( ◦  ) (z∗). Then there exists a constant c4 > 0 such that

||z∗ − zN || ≤ c4 inf
𝜙∈V N

||z∗ − 𝜙||.
Proof. The proof remains the same as the one given in Reference 9. Take 𝜙 ∈ V N , then

||z∗ − PN z∗|| (†)
= || (id − PN) (z∗ − 𝜙) || ≤ (

1 + ||PN ||) ||z∗ − 𝜙||,
where (†) used that PN = id on V N . The result now follows from Theorem 6(ii) and the uniform boundedness of PN . ▪

APPENDIX B. PROOF OF THEOREM 3

With the operators ,  and A defined in Equations (23), (24), and (25), we use the results stated in Appendix A to
prove Theorem 3. We first need to check that the assumptions (A1)–(A5) are satisfied by the integral equations (11) and
Equation (14). Indeed, conditions (A1) and (A2) are automatically satisfied by the definition (10) of the Green’s function
Lm.

The function Lm seems discontinuous due to the presence of step function h(t), but since h(t) is multiplied by a con-
tinuous function that takes the value 0 at t = 0, Lm is indeed continuous. The linear solution 𝜂lin is also continuous and
T-periodic by Lemma 9 and the continuity of forcing f (t). Hence, assumption (A3) is also satisfied. Furthermore, since
the nonlinearity S is of class C1 in the hypothesis of Theorem 3, assumptions (A4) and (A5) also hold.

Finally, we note that assumption (A11) is already satisfied for the piecewise polynomial interpolation operator
PN (22).23 This allows us to use Theorem 6, which gives (27). It follows from Lemma 4 that

𝜂∗ =  (𝜁∗) = f + A𝜁∗,
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thus

||𝜂∗ − 𝜂N || = ||A(𝜁∗ − 𝜁N)|| ≤ ||A|| ‖‖𝜁∗ − 𝜁N‖‖ .
Now, since assumption (A1) means that ||A||<∞, it follows that

||𝜂∗ − 𝜂N || → 0 as N → ∞,

which proves (i).
To show (ii), we use Corollary 1 with the same argument as in part (i) of the proof:

||𝜂∗ − 𝜂N || ≤ ||A|| ‖‖𝜁∗ − 𝜁N‖‖ ≤ c4||A|| inf
𝜙∈V N

||𝜁∗ − 𝜙|| = c inf
𝜙∈V N

||𝜁∗ − 𝜙||.
This concludes the proof of Theorem 3.

APPENDIX C. PROOF OF THEOREM 4

Once we show that the conditions for the Banach fixed-point theorem are satisfied, the statement of Theorem 4 follows
directly.

1.
(

CN
𝜁0,𝛿

, || ⋅ ||∞)
is a closed subspace of the Banach space C ([0,T],Rm), and is therefore a complete metric space.

2. To show that PN ◦  ◦  ∶ CN
𝜁0,𝛿

→ CN
𝜁0,𝛿

is satisfied, we need to prove that PN ◦  ◦  (𝜁N)(t) = PN ◦  ◦  (𝜁N)(t + T) and||PN ◦  ◦  (𝜁N) − 𝜁N
0 ||∞ ≤ 𝛿. The first part is proven by a change of variables as follows

PN ◦  ◦  (𝜁N)(t) = PN ◦ 
(
∫

T

0
Lm(t − s,T)

[
UT

mf (s) + 𝜁N(s)
]

ds
)

(†)
= PN ◦ 

(
∫

T

0
Lm(t + T − (s + T),T)

[
UT

mf (s + T) + 𝜁N(s + T)
]

ds
)

= PN ◦ 
(
∫

2T

T
Lm(t + T − u,T)

[
UT

mf (u) + 𝜁N(u)
]

du
)

= PN ◦  ◦  (𝜁N)(t + T),

where the equality (†) follows from the periodicity of f and 𝜁N . For the second part of the proof, we invoke
assumption (i):

||PN ◦  ◦  (𝜁N) − 𝜁N
0 ||∞ = ||PN ◦  ◦  (𝜁N) − PN ◦  ◦  (𝜁N

0 ) + PN ◦  ◦  (𝜁N
0 ) − 𝜁N

0 ||∞
≤ ||PN ◦  ◦  (𝜁N) − PN ◦  ◦  (𝜁N

0 )||∞ + ||PN ◦  ◦  (𝜁N
0 ) − 𝜁N

0 ||∞
≤ ||PN ||||UT

m||LS||Um|||| (𝜁N) −  (𝜁N
0 )||∞ + ||(𝜁N

0 )||∞
≤ ||PN ||||UT

m||LS||Um||||A||𝛿 + ||(𝜁N
0 )||∞ ≤ 𝛿.

3. PN ◦  ◦  ∶ CN
𝜁0,𝛿

→ CN
𝜁0,𝛿

is a contraction mapping, since for any 𝜁N
1 , 𝜁N

2 ∈ CN
𝜁0,𝛿

||PN ◦  ◦  (𝜁1) − PN ◦  ◦  (𝜁2)||∞ ≤ ||PN ||||UT
m||LS||Um||||A||||𝜁1 − 𝜁2||∞,

where ||PN ||||UT
m||LS||Um||||A|| < 1 by assumption (ii).

We can now apply the Banach fixed-point theorem to conclude the statement of Theorem 4.
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APPENDIX D. AN UPPER BOUND FOR ||A||

First, we note that Lj(t, T) (given in (10)) has a translational symmetry, that is,

Lj(t + T,T) = Lj(t,T), t ∈ [−T, 0], 1 ≤ j ≤ m.

This allows us to simplify ||A|| from (34) as

||A|| = sup
t∈[0,T] ∫

T

0
max
1≤j≤m

||Lj(t − s,T)|| ds = max
1≤j≤m ∫

0

−T

||Lj(t,T)|| dt ≤ max
1≤j≤m

(
sup

t∈[−T,0]
T ||Lj(t,T)||) .

Therefore, we only need to establish upper bounds of ||Lj(t,T)|| on t ∈ [−T, 0]. From definition (10), we have three separate
cases depending on the value of the damping coefficient 𝜁j. For the case 𝜁j < 1, we obtain

||Lj(t,T)|| = |||||e𝛼j(t+T) [sin𝜔j(t + T) − e𝛼jT sin𝜔jt
]

𝜔j
(
1 + e2𝛼jT − 2e𝛼jT cos𝜔jT

) |||||
=

|||||e𝛼j(t+T) [(cos𝜔jT − e𝛼jT
)

sin𝜔jt + sin𝜔jT cos𝜔jt
]

𝜔j
(
1 + e2𝛼jT − 2e𝛼jT cos𝜔jT

) |||||
≤ e𝛼j(t+T)

√
1 − 2e𝛼jT cos𝜔jT + e2𝛼jT

𝜔j(1 − 2e𝛼jT cos𝜔jT + e2𝛼jT)

≤ 1

𝜔j

√
1 − 2e𝛼jT cos𝜔jT + e2𝛼jT

.

In the critically damped (𝜁j = 1) and the overdamped (𝜁j > 1) cases, we identify the local maxima of Lj by computing
the values of t at which the derivative of Lj(t, T) with respect to t vanishes, that is,

tc
j =

T
e𝛼jT − 1

− 1
𝛼j
, if 𝜁j = 1, (D1)

to
j =

𝛾jT
𝛽j − 𝛾j

ln

(
𝛾j
(

e−𝛽jT − 1
)

𝛽j
(
1 − e𝛾jT

) )
if 𝜁j > 1. (D2)

Indeed, these local maxima are also global maxima over the [−T, 0] interval as the boundary values do not exceed
them. Finally, taking the supremum over t ∈ [−T, 0] and noting that the Ljs are nonnegative in this interval, the desired
upper bounds Γj(T) as

Γj(T) ∶= sup
t∈[−T,0]

T ||Lj(t,T)|| =
⎧⎪⎪⎨⎪⎪⎩

T
(
𝜔j

√
1 − 2e𝛼jT cos𝜔jT + e2𝛼jT

)−1

, if 𝜁j < 1,

TLj(tc
j ,T), if 𝜁j = 1,

TLj(tc
j ,T), if 𝜁j > 1,

j = 1, … ,m. (D3)


