1 Introduction

2 The Melnikov function

3 Monoharmonic forcing with arbitrary dissipation

4 Numerical examples

5 Conclusion

6 References
Periodic orbit: motion that repeats identically after a finite period of time
The Role of Periodic Orbits in Dynamics

Periodic orbit: motion that repeats identically after a finite period of time

Dynamical models

\[\dot{x} = f(x) + \varepsilon g(x, t, \varepsilon), \quad 0 < \varepsilon \ll 1 \]

Can we predict existence and stability of periodic orbits of the perturbed system starting from those of the conservative system?
Consider N coupled, periodically forced and damped oscillators for arbitrary motion amplitude. Some nonlinear phenomena
Motivations: the case of Mechanical Vibrations

Why would practitioners capitalize on analytical tools?

Computational speed-up for studies of the effect forcing & damping terms

Find isolas: identification is challenging from numerical continuation

Validate and extend experimental routines using the phase-lag quadrature

Available methods:
- Asymptotic expansions from an equilibrium
- LSM & SSM
- Energy-type arguments
- Melnikov methods

Overview of the Classic Melnikov Method

- Or better, the Poincaré-Arnold-Melnikov method (1963)

- Originally: \(\dot{x} = JDH(x) + \epsilon g(x, t), \quad g(x, t + T) = g(x, t), \quad x \in \mathbb{R}^2 \)

\(\epsilon = 0 \)

If \(\mathcal{M}(s) \) has a transverse zero

Homoclinic Tangle

Chaotic attractor

Overview of the Classic Melnikov Method

- Or better, the Poincaré-Arnold-Melnikov method (1963)

- Originally: \(\dot{x} = JDH(x) + \epsilon g(x, t), \quad g(x, t + T) = g(x, t), \quad x \in \mathbb{R}^2 \)

- Extended to integrable, low-dimensional hamiltonian systems

\[\epsilon = 0 \]

\[0 < \epsilon \ll 1 \]

... not the case for structural problems in practical applications.

Mechanical system with n degrees of freedom, whose conservative limit is defined by the Lagrangian $q \in \mathbb{R}^n$

$$L(q, \dot{q}) = \frac{1}{2} \langle \dot{q}, M(q)\dot{q} \rangle + \langle \dot{q}, G_1(q) \rangle + G_0(q) - V(q)$$

and its energy reads: $H(q, \dot{q}) = \frac{1}{2} \langle \dot{q}, M(q)\dot{q} \rangle - G_0(q) + V(q)$

Collecting any dissipative or active force in the small, time-periodic Lagrangian component Q with frequency Ω, the equations of motion are

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = \varepsilon Q(q, \dot{q}, t; \Omega, \varepsilon), \quad 0 \leq \varepsilon \ll 1$$
Periodic Orbits of Conservative Systems

- Present in almost all energy levels
- Generically, they exist in families \(\mathcal{NNM} \)
- Not structurally stable

Types of orbits in 1 parameter families:

- Regular periodic orbits

\[h', \omega' \neq 0 \]

Periodic Orbits of Conservative Systems

- Present in almost all energy levels
- Generically, they exist in families \(NNMs \)
- Not structurally stable
- Types of orbits in 1 parameter families:
 - Regular periodic orbits
 - Folding periodic orbits

\[
\begin{align*}
 h' &\neq 0 \\
 \omega' &\neq 0 \\
 h' &\neq 0 \\
 \omega' &\neq 0 \\
\end{align*}
\]

\(\text{Muñoz-Almaraz, Freire, Galán, Doedel & Vanderbauwhede (2003)} \)
Periodic Orbits of Conservative Systems

- Present in almost all energy levels
- Generically, they exist in families \(\mathcal{NNMs} \)
- Not structurally stable
- Types of orbits in 1 parameter families:
 - Regular periodic orbits
 - Folding periodic orbits
 - Critical cases

Perturbation from the Conservative limit

- We look for subharmonic orbits of order $l \in \mathbb{N}$ in the forced-damped system.

- Pick a regular orbit $q_0(t)$ with period τ_0 of the conservative backbone curve at (ω_0, h_0).

- Set $q(t) = q_0(t + s) + O(\varepsilon)$ as well as a resonance constraint to fix Ω, either

 (a) **Exact resonance**: $m\Omega = l\omega_0$ with m, l being relatively prime integers, or

 (b) **Near resonance**: $m\Omega = l\omega_0 + O(\varepsilon)$ and $H(q(0), \dot{q}(0)) = h_0$
Main Result: Existence

- Define the Melnikov function

\[\mathcal{M}_{m:l}(s) = \int_{0}^{m\tau_{0}} \langle \dot{q}_{0}(t + s), Q(q_{0}(t + s), \dot{q}_{0}(t + s), t; l\omega_{0}/m, 0) \rangle dt \]

- If \(\mathcal{M}_{m:l}(s_{0}) = 0 \) \& \(\mathcal{M}'_{m:l}(s_{0}) \neq 0 \), the conservative limit \(q_{0}(s_{0} + t) \) persists for the weakly damped, periodically forced system

\[\varepsilon = 0 \]

\[0 < \varepsilon \ll 1 \]

Main Result: Existence

- Define the Melnikov function

\[M_{m:l}(s) = \int_0^{m\tau_0} \langle \dot{q}_0(t + s), Q(q_0(t + s), \dot{q}_0(t + s), t; l\omega_0/m, 0) \rangle dt \]

- If \(M_{m:l}(s_0) = 0 \) & \(M'_{m:l}(s_0) \neq 0 \), but the backbone curve has a fold at \((\omega_0, h_0)\), then \(q_0(s_0 + t) \) persists in any direction transverse to the folding direction

Main Result: Existence

- Define the Melnikov function

\[M_{m:l}(s) = \int_0^{m\tau_0} \langle \dot{q}_0(t+s), Q(q_0(t+s), \dot{q}_0(t+s), t; l\omega_0/m,0) \rangle dt \]

- If \[|M_{m:l}(s)| > 0 \], the conservative limit does not persist for the weakly damped, periodically forced system

- If the conservative periodic orbit \(q_0(t) \) is a critical orbit, the Melnikov function alone is not sufficient to predict the fate of the fate of \(q_0(t) \)

Towards Stability

- Write the system in Hamiltonian form

\[p = \frac{\partial L}{\partial \dot{q}} = M(q)\dot{q} + G_1(q) \]
\[x = (q, p) \]

- For the stability of a periodic orbit with period \(l\Omega \) we need to study the eigenvalues of the monodromy matrix \(X(l\Omega) \in \mathbb{R}^{n \times n} \)

\[\dot{X} = JD^2H(x(t))X + \varepsilon D_xg(x(t), t; \Omega, \varepsilon) \]
\[X(0) = I \]
\[\Pi_0 = X_0(m\tau_0) \text{ is the solution at } \varepsilon = 0 \]

Towards Stability

The conservative limit has always at least 2 eigenvalues of Π_0 equal to $+1$. Possible configurations of the unperturbed spectrum
Towards Stability

- We consider a conservative limit that satisfies

- For each of the \(n \) couples of eigenvalues, define the nonlinear damping rate

\[
C_i = -\frac{1}{m\tau_0} \int_0^{m\tau_0} \text{trace} \left(S_i X_0^{-1}(t) D_x g(x_0(t), t; l\omega_0/m, 0) X_0(t) R_i \right) dt
\]

\(\text{span}(R_i) \) is the \(i \)-th eigenspace, \(S_i = (R_i^T J R_i)^{-1} R_i^T J \) and \(\dot{X}_0 = JD^2H(x_0(t))X_0, \ X_0(0) = I \)
Main Result: Stability

The forced-damped periodic orbit is **unstable** if

\[\mathcal{M}'_{m:l}(s_0)\omega'_0 < 0 \quad \text{or} \quad \exists \, i \in \{1,...,n\} : C_i < 0 \]

The forced-damped periodic orbit is **asymptotically stable** if

\[\mathcal{M}'_{m:l}(s_0)\omega'_0 > 0 \quad \text{and} \quad C_i > 0 \ \forall \, i \in \{1,...,n\} \]

Connection with Experimental Observations

- Assume that the nonlinear damping rates are positive

These predictions are obtained without any simulation of the forced-damped system.
Remarks

- The formula for the nonlinear damping rate is complex.

\[
C_i = - \frac{1}{m\tau_0} \int_0^{m\tau_0} \text{trace}\left(S_i X_0^{-1}(t) D_x g(x_0(t), t; l\omega_0/m, 0) X_0(t) R_i \right) dt
\]

- For \(n = 1 \), \(C_1 = - \frac{1}{m\tau_0} \int_0^{m\tau_0} \text{trace}\left(D_x g(x_0(t), t; l\omega_0/m, 0) \right) dt \)

- For \(Q = F(t) - \alpha M(q)p \), then \(C_i = \alpha \ \forall \ i \in \{1, \ldots, n\} \)

- Instability conditions can be formulated for other cases
Example: Subharmonics in a Gyro

\[m_b \ddot{q} + 2G \dot{q} - m_b \Omega^2 q + DV(q) = \hat{Q}(q, \dot{q}, t) \]

\[G = m_b \begin{bmatrix} 0 & -\Omega \\ \Omega & 0 \end{bmatrix}, \]

\[V(q) = \frac{1}{2} \sum_{j=1}^{4} k_j (l_j(x, y) - l_0)^2, \]

\[l_{1,3}(x, y) = \sqrt{(l_0 \pm x)^2 + y^2}, \]

\[l_{2,4}(x, y) = \sqrt{x^2 + (l_0 \pm y)^2}, \]

\[\Omega = 0.942, \ l_0 = 1, \ k_1 = 1, \ k_2 = 4.08, \ k_3 = 1.37, \ k_4 = 2.51 \]
Example: Subharmonics in a Gyro

\[m_b \ddot{q} + 2G \dot{q} - m_b \Omega^2 q + DV(q) = \hat{Q}(q, \dot{q}, t) \]

\[\hat{Q}(q, \dot{q}, t) = \varepsilon \left(Q_{d,\alpha}(q, \dot{q}) + Q_{d,\beta}(q, \dot{q}) + Q_f(t) \right) \]

- Damping linearly depending on the absolute velocities the mass \(m_b \) (e.g. air damping) \(\varepsilon Q_{d,\alpha}(q, \dot{q}) = -\varepsilon \alpha m_b (\dot{q} + m_b^{-1} Gq) \);

- Stiffness-proportional damping for the spring-damper elements, i.e. \(c_j = \varepsilon \beta k_j \) for \(j = 1, \ldots, 4 \) and \(\varepsilon Q_{d,\beta}(q, \dot{q}) = -\varepsilon \beta C(q) \dot{q} \),

\[
C(q) = \sum_{j=1}^{4} k_j \begin{bmatrix} \left(\partial_x l_j(x, y) \right)^2 & \partial_x l_j(x, y) \partial_y l_j(x, y) \\ \partial_x l_j(x, y) \partial_y l_j(x, y) & \left(\partial_y l_j(x, y) \right)^2 \end{bmatrix}
\]
Example: Subharmonics in a Gyro

\[m_b \ddot{q} + 2G \dot{q} - m_b \Omega^2 q + DV(q) = \hat{Q}(q, \dot{q}, t) \]

\[\hat{Q}(q, \dot{q}, t) = \varepsilon \left(Q_{d,\alpha}(q, \dot{q}) + Q_{d,\beta}(q, \dot{q}) + Q_f(t) \right) \]

- Damping linearly depending on the absolute velocities the mass \(m_b \) (e.g. air damping) \(\varepsilon Q_{d,\alpha}(q, \dot{q}) = -\varepsilon \alpha m_b (\dot{q} + m_b^{-1}Gq); \)

- Stiffness-proportional damping for the spring-damper elements, i.e. \(c_j = \varepsilon \beta k_j \) for \(j = 1, \ldots, 4 \) and \(\varepsilon Q_{d,\beta}(q, \dot{q}) = -\varepsilon \beta C(q)\dot{q}, \)

- Mono-harmonic forcing of frequency \(l\Omega \)

\[\varepsilon Q_f(t) = \varepsilon \begin{pmatrix} \cos(l\Omega t) \\ -\sin(l\Omega t) \end{pmatrix}, \quad l \in \mathbb{N}. \]
Example: Subharmonics in a Gyro

- Equations of motion in Hamiltonian form
 \[
 \dot{q} = -Gq + p, \\
 \dot{p} = -DV(q) - Gp + \varepsilon\left(Q_f(t) - \alpha p - \beta C(q)(p - Gq)\right).
 \]

- Conservative limit:
 - Linearized frequencies at the equilibrium 0.92513 and 3.1431
 - Focus on the first NNM
Example: Subharmonics in a Gyro

- Equations of motion in Hamiltonian form
 \[\dot{q} = -Gq + p, \]
 \[\dot{p} = -DV(q) - Gp + \varepsilon \left(Q_f(t) - \alpha p - \beta C(q)(p - Gq) \right). \]

- Conservative limit:
 - Linearized frequencies at the equilibrium
 0.92513 and 3.1431
 - Focus on the first NNM
 - Set \(l = 3 \)
Example: Subharmonics in a Gyro

- Analysis of the two separate damping mechanisms

- The Melnikov function is $\mathcal{M}_{1:3}(s) = 1.4402 \cos(3\Omega s) - 1.1553$ for $\alpha = 0.76376$, $\beta = 0$ and $\alpha = 0$, $\beta = 0.32$

Simulations with COCO at $\varepsilon = 0.01$
We have a framework to study eventual **singular behaviors** when varying a parameter κ.

We focus on quadratic zeros, defined as:

\[
\mathcal{M}_{m:l}(s_0, \kappa_0) = D_s \mathcal{M}_{m:l}(s_0, \kappa_0) = 0 \quad D_{ss} \mathcal{M}_{m:l}(s_0, \kappa_0) \neq 0
\]

The simplest case is the one of **limit point** (codim. 0)

\[
D_{\kappa} \mathcal{M}_{m:l}(s_0, \kappa_0) \neq 0
\]

Detection of maximal responses.
A Zoo of Bifurcations

Defining conditions: \[\mathcal{M}_{m:l}(s_0, \omega_0) = D_s \mathcal{M}_{m:l}(s_0, \omega_0) = D_\omega \mathcal{M}_{m:l}(s_0, \omega_0) = 0 \]

Isola Center
- **No solution**
- **Single solution**
- **Closed isola**

<table>
<thead>
<tr>
<th></th>
<th>Nondegeneracy condition: (\det(D^2 \mathcal{M}_{m:l}(s_0, \omega_0)) > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No solution</td>
<td></td>
</tr>
<tr>
<td>Single solution</td>
<td></td>
</tr>
<tr>
<td>Closed isola</td>
<td></td>
</tr>
</tbody>
</table>

Simple Bifurcation
- **Bottleneck**
- **Node singularity**
- **Break-up**

<table>
<thead>
<tr>
<th></th>
<th>Nondegeneracy condition: (\det(D^2 \mathcal{M}_{m:l}(s_0, \omega_0)) < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottleneck</td>
<td></td>
</tr>
<tr>
<td>Node singularity</td>
<td></td>
</tr>
<tr>
<td>Break-up</td>
<td></td>
</tr>
</tbody>
</table>

Example: Parametric Forcing and Isolas

\[\dot{q} = p, \]
\[\dot{p}_1 = -k(q_1 - q_2) - k/3q_1 - aq_1^2 - bq_1^3 - \varepsilon \alpha p_1, \]
\[\dot{p}_2 = -k(q_2 - q_1) - k(q_2 - q_3) - \varepsilon \alpha p_2, \]
\[\dot{p}_3 = -k(q_3 - q_2) + \varepsilon (q_3 f(t; \Omega) - \alpha p_3), \]

\[q, p \in \mathbb{R}^3 \]
\[k = 1, \]
\[a = -0.5, \]
\[b = 1, \]

Approximation of a square-wave up to the 6-th harmonic

\[f(t; \Omega) = \frac{4}{\pi} \sum_{j=1}^{3} \frac{1}{2j - 1} \sin((2j - 1)\Omega t), \]
Example: Parametric Forcing and Isolas

- Assume a 1:1 resonance and evaluate $\mathcal{M}_{1:1}$ along the family

$\frac{\pi}{2}$ π $\frac{3\pi}{2}$ $\frac{5\pi}{2}$

Distance of the frequency response from the backbone curve

Loci of zeros of the Melnikov function as function of the frequency and the phase shift of the orbit

$\epsilon = 0.0025$
Experimental Applications

Testing for backbone curve extraction

Phase-lag quadrature criterion: forcing is exactly balancing the damping if the phase lag between forcing and measurement is 90°

This was show for: synchronous motions and linear damping

Experimental Applications

Testing for backbone curve extraction

Phase-lag quadrature criterion: forcing is exactly balancing the damping if the phase lag between forcing and measurement is 90°

Using our Melnikov analysis one can show that this is valid, when forcing is mono-harmonic, for arbitrary motions and damping shapes, but only for co-located measurements!
Summary and Future Directions

- An energy balance is sufficient to establish the existence of weakly forced-damped vibrations from the conservative limit, while their stability can be studied with nonlinear damping rates.

- These analytical results matches with available ones for single-degree-of-freedom oscillators and with real life observations.

- Our approach offers significant advantages both for numerical and experimental studies.

- What about the survival of tori?